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Approximation errors must be taken into account when compiling quantum programs into a low-level gate set.

We present a methodology that tracks such errors automatically and then optimizes accuracy parameters to

guarantee a specified overall accuracy while aiming to minimize the implementation cost in terms of quantum

gates. The core idea of our approach is to extract functions that specify the optimization problem directly from

the high-level description of the quantum program. Then, custom compiler passes optimize these functions,

turning them into (near-)symbolic expressions for (1) the total error and (2) the implementation cost (e.g.,

total quantum gate count). All unspecified parameters of the quantum program will show up as variables in

these expressions, including accuracy parameters. After solving the corresponding optimization problem, a

circuit can be instantiated from the found solution. We develop two prototype implementations, one in C++

based on Clang/LLVM, and another using the Q# compiler infrastructure. We benchmark our prototypes on

typical quantum computing programs, including the quantum Fourier transform, quantum phase estimation,

and Shor’s algorithm.
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1 INTRODUCTION
There exists a wide range of quantum algorithms that promise asymptotic speed-ups with respect

to their classical counterparts. Application domains include cryptography [Bennett and Brassard

2014; Pirandola et al. 2020], machine learning [Havlíček et al. 2019], material science [McArdle

et al. 2020], and quantum chemistry [Babbush et al. 2017; Low and Chuang 2019]. However,

concrete resource estimates for problems and corresponding problem sizes at which quantum

computers are expected to outperform their classical counterparts remain scarce. To carry out such

resource estimates, several quantum programming languages and toolchains have been developed

such as Q# [Svore et al. 2018], Quipper [Green et al. 2013], Scaffold/ScaffCC [Javadi-Abhari et al.

2014], Qiskit [Aleksandrowicz and et al. 2019], ProjectQ [Steiger et al. 2018], and QuRE [Suchara
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et al. 2013]. Some of these frameworks provide domain-specific languages with the necessary

abstractions, libraries, simulators, and cloud access to small-scale quantum computers. Despite

the availability of these languages, there is still a significant amount of manual work involved in

resource estimation [Reiher et al. 2017; Scherer et al. 2017]—one reason being the lack of built-in

support for handling approximation errors.

Why do approximation errors occur in quantum programs in the first place? We discuss three

main sources of errors in this paper, however, we note that the framework is extensible to other

sources of errors.

1. Synthesis Errors. Due to the discrete nature of fault-tolerant instruction sets (and indeed, it is

known that any universal fault-tolerant instruction set necessarily must be discrete [Nielsen and

Chuang 2000]), it cannot be avoided to introduce approximation errors for general target operations.

For instance, consider a rotation around the 𝑍 -axis such as

𝑅𝑍 (𝜃 ) =
[
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

]
,

which can be defined for any 𝜃 ∈ [0, 4𝜋). These rotations can only be implemented exactly for

a discrete subset of the interval [0, 4𝜋), as gates have to be expressed as words of finite length

over any universal set of generators. It should be noted that there is a mathematical function that

expresses the length of the approximating word in terms of an approximation error, which we call

𝜀𝑅 in this paper. This mathematical function depends on the concrete synthesis algorithm used

to perform the factorization into fault-tolerant instructions. State-of-the-art synthesis algorithms

lead to a cost (e.g., number of 𝑇 gates, where 𝑇 = 𝑒𝑖𝜋/8𝑅𝑍 (𝜋/4)) that is proportional to log
2
(𝜀−1

𝑅
)

[Kliuchnikov et al. 2013; Ross and Selinger 2016].

2. Phase Estimation Errors. An important technique in quantum computing is to extract estimates

of an eigenvalue 𝜆 of an operator 𝑈 [Kitaev 1995; Shor 1994] to 𝑘 bits of precision. A common

method to achieve this is to prepare an eigenstate |𝜓𝜆⟩ of 𝑈 and to then apply powers 𝑈 2
𝑖

, for

𝑖 = 0, . . . , 𝑘−1, to the eigenstate |𝜓𝜆⟩. This application is done conditionally on the value of a

reference system and allows us to extract the 𝑘 most significant bits of the eigenvalue. As 𝜆 can

in principle be any complex number of the form 𝜆 = 𝑒𝑖𝛼 , where 𝛼 ∈ [0, 2𝜋), the particular choice
of 𝑘 introduces an approximation error and limits how precisely we can estimate 𝜆. We call the

resulting approximation error 𝜀𝑄𝑃𝐸 in this paper.

3. Algorithmic Errors. Some quantum programs are part of a parametric family of programs that

gracefully degenerate with a reduction of the parameters. A concrete example for such a family of

programs is the quantum Fourier transform [Shor 1994], or QFT for short. While the transformation

itself can be implemented exactly and with no approximation error over a gate set that includes

continuous rotations such as 𝑅𝑍 (𝜃 ) for arbitrary 𝜃 ∈ [0, 4𝜋), it is possible to approximate the

transformation by selectively dropping some of the rotations that occur, in particular by “pruning”

the values of 𝜃 that are very close to 0. One such pruning method is well known [Coppersmith

2002] and allows us to drop many of the 𝑂 (𝑛2) rotations that a simple implementation of the

Fourier transform requires and just retain 𝑂 (𝑛 log𝑛) rotations, while still maintaining a sufficient

approximation. We call the resulting approximation error 𝜀𝑄𝐹𝑇 in this paper. Another example

of algorithmic error comes from formulas that are known to converge to a target program when

taking a suitable limit, e.g., of alternations of other, typically smaller and simpler, programs. An

example for the latter is the so-called Trotter formula, a well-known identity to implement an

approximation to 𝑒𝑖 (𝐴+𝐵) for Hermitian matrices 𝐴 and 𝐵, from the knowledge of implementations

for 𝑒𝑖𝐴 and 𝑒𝑖𝐵 . The resulting approximation error (the “Trotter error”) is called 𝜀𝑇𝐸 in this paper.
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1.1 Overview of Our Approach
A quantum program can be expressed at a high level of abstraction using any of the languages and

frameworks mentioned above. Instead of specifying quantum circuits at the level of single- and

two-qubit quantum gates, these languages provide high-level abstractions such as quantum Fourier
transform and quantum phase estimation, which can be used to express quantum algorithms. Once

the target machine has been specified, a compiler is used to translate these high-level abstractions

into lower-level gates, such as the gates from the Clifford+𝑇 gate set [Amy et al. 2013], which can

be implemented fault-tolerantly on several scalable quantum computer architectures [Bravyi and

Kitaev 2005].

Various approximations, such as the ones described above, may be necessary during compilation

and with existing languages, programmers must manually keep track of all the introduced errors.

Furthermore, programmers must tune the parameters of their implementation to keep the total error

within a target budget. To guarantee this, they must derive the resulting error bounds manually—a

task that is tedious and error prone.

To address this issue, our methodology introduces language support into existing quantum

programming languages, allowing programmers to deal independently with the approximation

errors in each subroutine. The job of inferring how all introduced approximation errors interact is

thus transferred from the programmer to the compiler. Our methodology automatically infers an

error bound for the overall quantum program and then selects appropriate values for each of the

program’s accuracy parameters to simultaneously (1) satisfy a user-specified overall tolerance and

(2) reduce the required quantum resources.

More specifically, our methodology supports:

(1) given the desired approximation error, determining the assignment of accuracy parameters

that guarantees the given approximation error while aiming to minimize the number of

operations;

(2) given a maximal operation count, determining the assignment of accuracy parameters that

yield at most the given operation count while aiming to reduce the total approximation error.

The automatic optimization of accuracy parameters is carried out by solving an optimization

problem before the quantum circuit is generated. The constraint and cost functions describing the

optimization problem are extracted by the compiler directly from the source code of the quantum

program. Then, before execution, the optimized accuracy parameters are fed into the main program.

Finding a suitable assignment of accuracy parameters using, e.g., simulated annealing, requires

hundreds of evaluations of both constraint and cost functions. Hence, our methodology has to lean

on a fast method to estimate resource requirements and the total approximation error. Available

methods, e.g., in Q#, estimate resources by actually generating quantum circuits from completely

specified programs and then counting the generated gates. Hence, their runtime will increase

with increasing problem size, making them ill-suited for use as cost functions in an optimization

procedure, as we will show in Section 8.

Instead, we propose fast symbolic methods that extract a symbolic expression for the desired

cost or constraint function (total approximation error or number of gates) directly from the source

code of the quantum program. The resulting expressions feature variables that correspond to the

various parameters of the program, including accuracy parameters. The symbolic approach does

not need to execute the complete control flow of the quantum program to get an estimate, hence it

provides a much faster solution that is viable even for application-scale programs.

Our two prototypes both implement a symbolic approach for resource and error estimation. Since

the resulting expressions may theoretically still contain some residual code that must be executed

(e.g., certain if-else statements), we refer to them as being (near-)symbolic. The parentheses indicate
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that, for most applications, the resulting expressions would be fully symbolic. However, there are

examples where this is not the case, e.g., a quantum program that executes one of two different

algorithms depending on a runtime parameter. We note that our prototypes both generate fully

symbolic expressions for all the examples in this paper.

1.2 Contributions
To the best of our knowledge, we are the first to present a quantum programming framework that

provides built-in support for automatic accuracy management. Our methodology automatically

selects accuracy parameters such that the overall error is at most equal to a user-specified value

while aiming to reduce the quantum resource requirements, or vice versa. As the interplay between

the various approximation errors can be quite complicated, it can be difficult for a human to find

the best trade-offs.

In addition, our approach for extracting symbolic resource estimates from the quantum program,

and using them to specify and solve the optimization problem of tuning accuracy parameters,

appears to be new. Some state-of-the-art methods exist to automate resource estimation. Examples

are methods embedded in Q#, ProjectQ, and Quipper [Smith et al. 2014], which are based on

circuit-description languages, and QuRE, which is capable of evaluating different technologies

and error-correcting codes. Nevertheless, all these frameworks require a priori specified quantum

circuits. Thus, they cannot be used to derive asymptotic estimates as a function of the input

parameters of the algorithm, in contrast to the symbolic approach we propose.

Indeed, a salient feature is that we acquire symbolic estimates for the total error and gate count

directly from the high-level description of a quantum program, without executing the control-flow.

It is only after the final resource requirements and total approximation error are known that we

instantiate a circuit using the determined accuracy parameters. This allows us to automatically

evaluate the resource requirements of a given quantum program in an accuracy-aware fashion,

without the overhead of having to execute the entire control-flow of the program.

We implement a prototype of our framework in C++ for evaluation purposes. To demonstrate

integration into an existing quantum programming language, we then present a prototype imple-

mentation into the Q# compiler. In both cases we implement new compiler passes to enable the

new functionality. Finally, we validate and benchmark our methodology on quantum programs

such as quantum phase estimation and Shor’s algorithm [Shor 1994]. We show that the runtime gap

between the best previous methods and our symbolic method for resource and error estimation is

unbounded as a function of the problem size.

Our methodology can be integrated into any of the cited quantum programming frameworks.

We give details on the language and compiler features that are required to achieve such integration.

Furthermore, our methodology is fully extensible: (1) more algorithmic errors can be defined at

any point in the quantum program and will be handled automatically by our implementation; (2)

more gate errors can be defined by adding a new type of error to each primitive gate; (3) custom

implementations of library functions can be added.

1.3 Related Work
In the work by Hung et al. [2019], a theoretical framework is presented to reason about the

robustness of quantum programs when executed on noisy quantum hardware. Specifically, the

authors develop a logic with which it is possible to characterize the distance between an ideal

quantum program and its noisy counterpart, given a noise model of the target hardware. Hung

et al. [2019] present several case studies consisting of small quantum circuits (between 1 and 6

qubits). Computing the (𝑄, 𝜆)-diamond norm, which measures the distance between the ideal and

the erroneous program, involves solving a semidefinite programming problem (as is the case for
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the regular diamond norm [Watrous 2009]). This becomes computationally intractable for large

systems (and their corresponding noise models) due to the exponential scaling of the dimension

with the number of qubits.

In contrast, our framework is concerned with approximation errors that occur at the algorithmic

level. In particular, such errors may be decreased by using more quantum resources. Our framework

thus aims to select appropriate accuracy parameters balancing this trade-off. Furthermore, we

present two prototype implementations of our framework and demonstrate that it is capable

of handling application-scale quantum programs featuring thousands of qubits and billions of

operations.

Our methodology also relates to the automatic approach presented by Panchekha et al. [2015]

for handling floating-point rounding errors in classical computing. Their approach, called Herbie,
is capable of locating sources of errors in the code and proposing candidate rewrites to improve

the overall precision. Similarly, our approach locates and adapts accuracy parameters to reduce

the total error. While Herbie must be combined with other methods [Barr et al. 2013; Boldo

2009; Darulova and Kuncak 2014] to provide worst-case guarantees, our methodology proposes

parameter assignments that guarantee the specified worst-case upper bound, assuming a correct

implementation. We are not concerned with verifying actual correctness of the quantum program,

but refer the reader to, e.g., the works by Amy et al. [2017]; Paykin et al. [2017]; Ying [2011].

Symbolic execution, which is widely used for code testing, is another approach related to our

work. The method translates the given program into a logical formula in order to check some input

properties. A relevant example is veritesting [Avgerinos et al. 2014], which alternates dynamic

(DSE) and static (SSE) symbolic execution. Similarly, we extract from a quantum program symbolic

expressions for upper bounds on the total error and the gate count.

1.4 Paper Outline
This paper is organized as follows.

Section 2 provides the necessary background information on quantum computing. In particular,

Section 2.3 provides a detailed description of how approximation errors compose in quantum

programs.

Section 3 illustrates three typical quantum algorithms, with an emphasis on the trade-offs between

implementation cost and approximation error.

Section 4 motivates the need for language support when implementing large-scale quantum

algorithms in an accuracy-aware fashion. Furthermore, it illustrates how the proposed language

features improve the readability and simplicity of the code, thus simplifying the implementation

process.

Section 5 describes the proposed procedure to extract expressions for cost and constraint functions

from a given quantum program. These expressions define an optimization problem, the solution of

which yields appropriate values for all accuracy parameters. Moreover, the section details how the

extracted expressions are optimized in order to arrive at (near-)symbolic expressions that may be

evaluated much faster.

Section 6 provides a list of all the features that a quantum programming language and its compiler

should support to integrate our proposed methodology. It also contains a description of how these

features have been implemented in our LLVM prototype and in our Q#-based implementation.

Section 7 shows the pseudo-code of our sample quantum programs and the corresponding cost and

constraint functions that our framework automatically deduces from the code.
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Fig. 1. Example of a quantum circuit computing an entangled state (a) and the corresponding expected
measurement outcomes (b).

Section 8 reports the results of our runtime evaluation, which compares solving the optimization

problem using a simulated annealing procedure with or without extracting (near-)symbolic expres-

sions. It shows that our approach of extracting (near-)symbolic expressions is capable of reducing

the time to solution by many orders of magnitude.

2 QUANTUM COMPUTING BACKGROUND
2.1 Quantum States
Quantum computers process information encoded in qubits. The quantum state of a qubit |𝜓 ⟩
(using Dirac or bra-ket notation) can be written as

|𝜓 ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ ,

where 𝛼0, 𝛼1 ∈ C are the complex probability amplitudes corresponding to the computational basis
states |0⟩ and |1⟩, respectively, and |𝛼0 |2+|𝛼1 |2 = 1. The computational basis states |0⟩ and |1⟩may be

associated with two-dimensional basis vectors |0⟩ =
(
1

0

)
and |1⟩ =

(
0

1

)
. Single-qubit quantum gates

(or quantum operations) can be written as 2× 2-dimensional complex unitary matrices. A matrix𝑈

is unitary if its conjugate transpose corresponds to its inverse: 𝑈𝑈 † = 𝑈 †𝑈 = 1. When applying

a quantum gate to a single qubit, its new quantum state can be computed via a matrix-vector

multiplication of the gate matrix and the two-dimensional amplitude vector |𝜓 ⟩ =
( 𝛼0

𝛼1

)
.

Composition of vector spaces is achieved using the tensor product. Suppose 𝑉 and𝑊 are Hilbert

spaces of dimension𝑚 and 𝑛 respectively. Then𝑉 ⊗𝑊 is an 𝑛×𝑚-dimensional vector space. To see

the connection to quantum states, let 𝑉 denote a two-dimensional vector space with basis vectors

|0⟩ and |1⟩ (a single-qubit state), then |0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩ is an element of 𝑉 ⊗ 𝑉 (i.e., a 2-qubit

state). The notation |𝜓 ⟩⊗𝑘 means |𝜓 ⟩ tensored with itself 𝑘 times. An analogous notation is also

used for operators on tensor product spaces. A more detailed description of the tensor product and

its properties can be found in Nielsen and Chuang [2000, Section 2.1.7].

Therefore, an 𝑛-qubit quantum state may be described by a vector containing the 2
𝑛
amplitudes

corresponding to all possible bitstrings of length 𝑛, or, using the bra-ket notation and two shorter

alternatives: ∑
𝑥 ∈B𝑛

𝑎𝑥 |𝑥1⟩ ⊗ · · · ⊗ |𝑥𝑛⟩ =
∑
𝑥 ∈B𝑛

𝑎𝑥 |𝑥1 · · · 𝑥𝑛⟩ =
∑
𝑥 ∈B𝑛

𝑎𝑥 |𝑥⟩,

where 𝑥𝑖 denotes the 𝑖-th bit of 𝑥 and

∑
𝑥 |𝑎𝑥 |2 = 1. Measuring all 𝑛 qubits of the 𝑛-qubit state

above results in a collapse of the superposition onto one of the computational basis states |𝑥⟩ with
probability |𝑎𝑥 |2.
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2.2 Quantum Programs and Gates
A quantum program consists of classical and quantum instructions [Knill 1996]. While classical

instructions are performed on the (classical) controller, the latter are performed on the quantum

processing unit (QPU). In each step of the computation, the controller sends a sequence of quantum

instructions to the QPU. After executing each sequence, the QPU returns classical measurement

results to the controller, which may use them to decide on the quantum instructions to perform

next (if any).

The mentioned sequences of quantum instructions can be visualized using circuit diagrams,

so-called quantum circuits.

Example 1. An example of a quantum circuit is shown in Fig. 1. This circuit generates a Greenberger-
–Horne–Zeilinger state on three qubits, i.e., the state

1

√
2

( |000⟩ + |111⟩).

In a quantum circuit, each qubit is represented by a horizontal line. Operations are denoted by boxes
or other symbols on the qubit(s) they are being applied to. Time advances from left to right. The initial
state is |0⟩⊗3. The first operation is a Hadamard gate (𝐻 ) applied to the first qubit. In matrix notation,

𝐻 =
1

√
2

[
1 1

1 −1

]
.

Applying 𝐻 to the first qubit maps |000⟩ to 1√
2

( |000⟩ + |100⟩). The next gate is a controlled-NOT or
CNOT,

CNOT =

[
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

]
,

which entangles the first with the second qubit by flipping the latter if the first qubit is |1⟩. After
the two CNOT gates, the three qubits are in the state 1√

2

( |000⟩ + |111⟩). Finally, all three qubits are
measured. There is a 50% probability of measuring all 0s and a 50% probability of measuring all 1s.

Quantum programs can be written in one of the various languages and software frameworks for

quantum computing, e.g., ProjectQ, Q#, Qiskit. All of these languages allow programmers to specify

the quantum program in terms of high-level operations. They also provide methods to decompose

such operations into the native gate set of the QPU.

Different quantum architectures support different native operations. A common low-level in-

struction set is the so-called Clifford+𝑇 gate set [Amy et al. 2013]. This instruction set includes the

Clifford gates, i.e., the CNOT gate and Hadamard gate 𝐻 , as well as the phase gate 𝑆 , plus the 𝑇

gate, which is a non-Clifford gate required to achieve universality:

𝑆 =

[
1 0

0 𝑖

]
, 𝑇 =

[
1 0

0 𝑒𝑖𝜋/4

]
.

In a fault-tolerant setting, it is particularly expensive to apply the 𝑇 gate. Consequently, the 𝑇 -

count (number of𝑇 gates) is a goodmeasure for the cost of a fault-tolerant implementation of a given

quantum program [Campbell and Howard 2017; Fowler et al. 2012]. In contrast, IBM’s quantum

computers, which are examples of noisy-intermediate-scale-quantum (NISQ) systems, natively

support the 𝑈 gate, 𝑈 (𝜃,𝜓, 𝜆) = 𝑅𝑥 (𝜓 )𝑅𝑦 (𝜃 )𝑅𝑧 (𝜆), which is parameterized over 3 continuous

variables, and the CNOT gate. Usually, 2-qubit gates are more error-prone than single qubit gates.

For this reason, a good measure for the cost of a quantum circuit synthesized for NISQ machines is

the number of CNOT gates. The same is also valid for the Controlled-𝑍 gate that is used, e.g., in

Rigetti’s NISQ systems.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 130. Publication date: November 2020.



130:8 Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Häner

2.3 Approximation Errors inQuantum Circuits
As mentioned in Section 1, our framework addresses approximation errors, which may be reduced

at an increased implementation cost. For the example of synthesis errors, which occur due to the

discrete nature of fault-tolerant instruction sets, the trade-off between the number of𝑇 gates and the

approximation error is logarithmic [Kliuchnikov et al. 2013]. That is, to achieve an approximation

error 𝜀, O(log(1/𝜀)) 𝑇 gates are sufficient. In a typical quantum program, multiple different sources

of such errors are present and thus the question arises: How do the approximation errors of individual
operations compose?

In this section, we prove that it is possible to derive an upper bound on the total approximation

error by summing up all the individual approximation errors. Consequently, our methodology

produces quantum circuits with accuracy guarantees for quantum programs without measurement

feedback. Note that this excludes programs that rely on repeat-until-success statements, i.e., loops

that iterate until a certain measurement outcome is observed (see, e.g., Paetznick and Svore [2014]).

Such cases can be handled separately using, e.g., an upper bound on the number of iterations. In

the last section, we propose a possible way of enabling accuracy management for such programs

as future work. In all other cases, branching on measurement results may be addressed using an

expression for the total error of the form 𝜀𝑏 = max(𝜀1, 𝜀2), where 𝜀1 and 𝜀2 denote the errors of

each branch. This follows from the Deferred Measurement Principle [Nielsen and Chuang 2000,

Section 4.4], which says that measurements may be delayed until the end of the computation,

transforming all quantum operations that are executed conditionally on the measurement result

into quantum-controlled operations.

Quantum circuits corresponding to feedback-free programs consist of a sequence of gates

𝑈1, ...,𝑈𝑚 , followed by a sequence of measurements𝑀1, ..., 𝑀𝑘 that produce a measurement outcome

𝑚 = 𝑥𝑖 for a final state

|𝜓 ⟩ = 𝑈𝑚 · · ·𝑈1 |0⟩⊗𝑁

with probability

𝑃 (𝑚 = 𝑥𝑖 ) = | ⟨𝑥𝑖 |𝜓 ⟩ |2,
where ⟨𝑥𝑖 |𝜓 ⟩ denotes the overlap of |𝜓 ⟩ with |𝑥𝑖⟩.

Therefore, our methodology must ensure that the actual final state | ˜𝜓 ⟩ is close to the desired

final state |𝜓 ⟩ after all decompositions have been applied to𝑈1, ...,𝑈𝑚 .

Let 𝑉1, ...,𝑉𝑛 be an approximate decomposition of the quantum program in terms of the gates

supported by the target hardware, i.e.,

∥𝑈𝑚 · · ·𝑈1︸     ︷︷     ︸
𝑈

−𝑉𝑛 · · ·𝑉1︸   ︷︷   ︸
𝑉

∥ ≤ 𝜀,

where ∥ · ∥ denotes the spectral norm as defined in Nielsen and Chuang [2000, Section 2.1.4].

Then, ∥ |𝜓 ⟩ − | ˜𝜓 ⟩ ∥ = ∥𝑈 |0⟩⊗𝑁 −𝑉 |0⟩⊗𝑁 ∥ ≤ 𝜀, which guarantees that, with |𝜓 ⟩ = ∑
𝑖 𝑎𝑖 |𝑥𝑖⟩ and

| ˜𝜓 ⟩ = ∑
𝑖 𝑎𝑖 |𝑥𝑖⟩,

|𝑎𝑖 − 𝑎𝑖 | =
√
|𝑎𝑖 − 𝑎𝑖 |2

≤
√∑

𝑖

|𝑎𝑖 − 𝑎𝑖 |2

≤ 𝜀.

Therefore, it is sufficient that our methodology guarantees

∥𝑈 −𝑉 ∥ ≤ 𝜀.
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| 𝑗1⟩
| 𝑗2⟩

...

| 𝑗𝑛−1⟩
| 𝑗𝑛⟩

𝐻 𝑅2 · · ·
· · ·

𝑅𝑛−1 𝑅𝑛

𝐻 · · · 𝑅𝑛−2 𝑅𝑛−1 · · ·

· · ·
· · ·

𝐻 𝑅2

𝐻

|0⟩ + 𝑒2𝜋𝑖0. 𝑗1 ... 𝑗𝑛 |1⟩
|0⟩ + 𝑒2𝜋𝑖0. 𝑗2 ... 𝑗𝑛 |1⟩
...

|0⟩ + 𝑒2𝜋𝑖0. 𝑗𝑛−1 𝑗𝑛 |1⟩
|0⟩ + 𝑒2𝜋𝑖0. 𝑗𝑛 |1⟩

Fig. 2. Efficient circuit computing the quantum Fourier transform.

For more details on approximated unitary operators, we refer to Box 4.1 “Approximating quantum
circuits" of Nielsen and Chuang [2000].

In the process of translating the quantum program to the native gate set, several decompositions

are applied that introduce approximation errors. Let𝑈 be a quantum operation being approximated

by the decomposition into𝑊1, ...,𝑊𝑡 . The decomposition introduces atmost 𝜀𝑈 if ∥𝑈−(𝑊𝑡 · · ·𝑊1)∥ ≤
𝜀𝑈 , assuming that all𝑊𝑖 are implemented exactly. Now, combining multiple such approximate

implementations �̃�𝑖 of 𝑈𝑖 such that ∥𝑈𝑖 − �̃�𝑖 ∥ ≤ 𝜀𝑖 yields a total error of at most

∑
𝑖 𝜀𝑖 [Bernstein

and Vazirani 1997].

Therefore, it is possible to derive recursively-defined expressions for the error 𝐸 (𝑈 , 𝜀𝑈 ) and the

total gate count 𝑇 (𝑈 , 𝜀𝑈 ) [Häner et al. 2018]:

𝐸 (𝑈 , 𝜀𝑈 ) = 𝜀𝑈 +
∑

𝑊 ∈𝐷 (𝑈 ,𝜀𝑈 )
𝐸 (𝑊, 𝜀𝑊 ) 𝑓𝑊 (𝜀𝑈 ),

𝑇 (𝑈 , 𝜀𝑈 ) =
∑

𝑊 ∈𝐷 (𝑈 ,𝜀𝑈 )
𝑇 (𝑊, 𝜀𝑊 ) 𝑓𝑊 (𝜀𝑈 ),

where 𝐷 (𝑈 , 𝜀𝑈 ) is the set of gates in the 𝜀𝑈 -approximate decomposition of 𝑈 and 𝑓𝑊 (𝜀𝑈 ) denotes
the number of𝑊 operations in the decomposition. Looking at these expressions, it is clear that an

upper-bound on the total error can be computed very similarly to counting gates.

In conclusion, by applying this reasoning to the main entry point of a quantum program, we can

choose all 𝜀 ( ·) in the expression for

𝐸 (𝑈𝑀𝑎𝑖𝑛, 𝜀𝑈𝑀𝑎𝑖𝑛
)

such that 𝐸 (𝑈𝑀𝑎𝑖𝑛, 𝜀𝑈𝑀𝑎𝑖𝑛
) ≤ 𝜀. This ensures that the measurement probability amplitude for a

given bit-string changes by at most 𝜀.

3 SAMPLE QUANTUM PROGRAMS
3.1 Quantum Fourier Transform
The quantum Fourier transform (QFT) is an algorithm that performs the Fourier transform of

quantummechanical amplitudes. QFT is implemented as a linear operator that applies the following

unitary transformation on a basis state | 𝑗⟩ [Nielsen and Chuang 2000]:

| 𝑗⟩ ↦→ 1

√
𝑁

𝑁−1∑
𝑘=0

𝑒2𝜋𝑖 𝑗𝑘/𝑁 |𝑘⟩

The effect of the transform on an arbitrary state can be described using a product representation

that maps | 𝑗1, . . . , 𝑗𝑛⟩ to
( |0⟩ + 𝑒2𝜋𝑖0. 𝑗𝑛 |1⟩)(|0⟩ + 𝑒2𝜋𝑖0. 𝑗𝑛−1 𝑗𝑛 |1⟩) · · · ( |0⟩ + 𝑒2𝜋𝑖0. 𝑗1 𝑗2 ... 𝑗𝑛 |1⟩)

2
𝑛/2

where 0. 𝑗𝑙 𝑗𝑙+1 . . . 𝑗𝑛 is the binary expansion 𝑗𝑙/2 + 𝑗𝑙+1/4 + · · · + 𝑗𝑛/2𝑛−𝑙+1. This representation has

a direct correspondence to the circuit implementation of the quantum Fourier transform shown
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in Fig. 2. The circuit is composed of 𝑛 steps, one for each qubit. In each step, for each qubit, a

Hadamard gate is applied, followed by a series of rotation gates controlled by all remaining qubits.

In this work, we will largely refer to an approximate version of QFT (AQFT) in which the number

of rotations is reduced according to the desired approximation error 𝜀𝑄𝐹𝑇 . This is done by pruning

the rotations with small angles. In particular, for each qubit 𝑗𝑖 with 1 ≤ 𝑖 < 𝑛 a maximum of

𝑙 = ⌈log
2
(𝑛/𝜀𝑄𝐹𝑇 )⌉ + 3

controlled-rotations is applied [Coppersmith 2002].

The quantum Fourier transform enables the quantum phase estimation algorithm and has a key

role in the solution of many relevant problems, e.g., the integer factorization problem.

3.2 Simulating Time-Evolution of Operators
Being a quantum system, a quantum computer can be programmed to simulate other quantum

systems. This, for example, can be used to elucidate chemical reaction mechanisms [Reiher et al.

2017].

Given the quantum-mechanical Hamiltonian H which describes the system being studied,

the time evolution of the system can be simulated by implementing the time-evolution operator
𝑈 = 𝑒−𝑖H𝑡

. The time-evolved quantum state can then be obtained by applying𝑈 to the initial state

|𝜓 (0)⟩:
|𝜓 (𝑡)⟩ = 𝑒−𝑖H𝑡 |𝜓 (0)⟩

In order to implement the time-evolution operator on a quantum computer, it needs to be decom-

posed into the native gate set, e.g., Clifford+𝑇 . Different decomposition methods are available, each

one with a different scaling with respect to the targeted precision 𝜀𝑇𝐸 : polynomial for the Trotter

decomposition method, logarithmic for the linear combination of unitaries (LCU) [Babbush et al.

2017; Poulin et al. 2015].

Example 2. Consider the Hamiltonian of a 1D transverse-field Ising model (TFIM)

H = −𝐽
∑
⟨𝑖, 𝑗 ⟩

𝑍 𝑖𝑍 𝑗

︸         ︷︷         ︸
H1

−ℎ
∑
𝑖

𝑋 𝑖

︸   ︷︷   ︸
H2

,

whereH1 defines the interaction of adjacent spins, denoted by ⟨𝑖, 𝑗⟩, with periodic boundary conditions,
H2 defines the interaction of the system with the external transverse field, and 𝑋 𝑖 , 𝑍 𝑖 denote the
application of 𝑋 =

(
0 1

1 0

)
and 𝑍 =

(
1 0

0 −1
)
, respectively, to spin 𝑖 .

Using a second-order Trotter-Suzuki decomposition, the time-evolution operator under this Hamil-
tonian can be written as

𝑒−𝑖H𝑡 ≈ (𝑒−𝑖H1

𝑡
2𝑀 𝑒𝑖H2

𝑡
𝑀 𝑒−𝑖H1

𝑡
2𝑀 )𝑀 .

The number of Trotter steps 𝑀 will be chosen according to the desired accuracy 𝜀𝑇𝐸 . In particular,
for this second-order Trotter decomposition we have that 𝑀 is proportional to 1/√𝜀𝑇𝐸 [Reiher et al.
2017]. Each Trotter step can be implemented using CNOT and 𝑅𝑍 (𝜃 ) gates. The latter being a gate that
applies a rotation equal to the angle 𝜃 around the z-axis. Considering Clifford+𝑇 as the native gate set,
each rotation has to be synthesized or decomposed in terms of these gates. As not every rotation can
be realized exactly using this gate library, rotation synthesis also introduces an error. Given a target
approximation error 𝜀𝑅 , the number of 𝑇 gates per rotation will be proportional to log

2

(
1

𝜀𝑅

)
.

Thus, to express the time-evolution operator we need to take into account two inter-dependent
approximation errors, namely 𝜀𝑇𝐸 and 𝜀𝑅 .
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|0⟩
...

|0⟩
|0⟩
|𝜓0⟩ 𝑛

𝐻

𝐻

𝐻

𝑈 𝑈 2

· · ·

· · ·
· · ·
· · · 𝑈 2

𝑘

𝑄𝐹𝑇 †

...

Fig. 3. Quantum circuit performing quantum-phase estimation on an 𝑛-qubit system with an accuracy of
𝑘 + 1 bits.

3.3 Quantum Phase Estimation
Once time-evolution under the HamiltonianH is implemented, one may perform measurements

similar to experiments with the actual system. Quantum computing, however, allows us to achieve

a quadratic advantage over repeated measurement and sampling via quantum phase estimation

(QPE). Given a state with large overlap with the ground state |𝜓0⟩ of the Hamiltonian, this algorithm

allows us to determine the ground state energy 𝐸0

H|𝜓0⟩ = 𝐸0 |𝜓0⟩.

Fig. 3 shows one of several possible implementations of QPE [Nielsen and Chuang 2000]. The

measurement outcomes of the top 𝑘 + 1 qubits yield a 𝑘 + 1-bit approximation to the phase due

to time-evolution. More precisely, the number of qubits to choose 𝑛𝑄𝑃𝐸 depends on the desired

accuracy and the probability 𝑝 of a successful measurement as

𝑛𝑄𝑃𝐸 = 𝑛 +
⌈
log

(
2 + 1

2(1 − 𝑝)

)⌉
,

where 𝑛 is the desired accuracy in number of bits.

The number of controlled time-evolution unitaries required for QPE to succeed with 𝑝 = 0.5 and

accuracy 𝜀𝑄𝑃𝐸 may thus be bounded by 2
𝑛𝑄𝑃𝐸 − 1 ≤ 16𝜋/𝜀𝑄𝑃𝐸 .

Not only does QPE allow one to infer the ground state energy if the ground state is known, but

it also collapses a non-eigenstate input |𝜙⟩ to the 𝑖-th eigenstate |𝜓𝑖⟩ of the Hamiltonian 𝐻 with

probability | ⟨𝜓𝑖 |𝜙⟩ |2.
In terms of accuracy, it is important to distinguish between the different applications of QPE.

If QPE is used to determine only the energy, i.e., |𝐸0 − 𝐸0 | ≤ 𝜀 is required, then it is sufficient to

implement time-evolution such that ∥𝑈−�̃� ∥ ≤ 𝜀−𝜀𝑄𝑃𝐸 . However, if the goal is to prepare the ground

state, i.e., ∥ |𝜓0⟩ − | ˜𝜓0⟩ ∥ ≤ 𝜀, then ∥𝑈 − �̃� ∥ ≤ 𝜀−𝜀𝑄𝑃𝐸

2
𝑛𝑄𝑃𝐸−1 is sufficient (both via triangle inequality).

Distinguishing these cases clearly has a great impact on the resulting resource requirements.

4 ADDING LANGUAGE SUPPORT FOR ACCURACY MANAGEMENT
Since large-scale quantum computers are not yet available, resource estimation is a crucial feature

of any software framework for quantum computing. Typically, resource estimation is performed by

compiling the quantum program into the chosen target gate set and then executing the resulting

circuit on a classical simulator that counts native operations (instead of executing them). For this

to be possible, however, all the parameters of the program, including accuracy parameters for each

subroutine, must be determined.

Existing quantum programming languages do not offer built-in support for accuracymanagement.

Consequently, it is very cumbersome to implement large-scale quantum algorithms in an accuracy-

aware fashion. Thus, despite the availability of a wide range of quantum programming languages,
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resource estimates are still computed (semi-)manually, taking care of accuracy parameters using

pen and paper [Reiher et al. 2017; Scherer et al. 2017].

The main difficulty when selecting appropriate accuracy parameters is that parameters at a

higher level of abstraction have an effect on the ones at lower levels, as illustrated by the following

example:

Example 3. Consider QPE on𝑈 = 𝑅𝑍 (𝛼) := 𝑒−𝑖
𝛼
2
𝑍 and the target gate set Clifford+𝑇 . The number

of phase-estimation qubits 𝑛𝑄𝑃𝐸 depends on the desired precision of the phase (and the probability of
success). At the lowest level, the various𝑈 2

𝑖

= 𝑅𝑍 (𝛼𝑖 ) are decomposed into a sequence of Clifford+𝑇
gates featuring𝑂 (log 1

𝜀𝑟
) 𝑇 gates, where 𝜀𝑟 is the error of a single rotation. To achieve an overall target

accuracy 𝜀, 𝜀𝑟 must be chosen such that 𝜀𝑄𝑃𝐸 + 𝜀𝑅 ≤ 𝜀, where 𝜀𝑅 denotes the error introduced by all
rotations in the quantum circuit. If the same accuracy is chosen for all the rotations, then 𝜖𝑅 = 𝑁𝑟𝑜𝑡𝜖𝑟 ,
where 𝑁𝑟𝑜𝑡 is the number of rotations. Since 𝜀𝑄𝑃𝐸 affects the number of rotations in the circuit, 𝜀𝑟 must
be chosen as a function of 𝜀𝑄𝑃𝐸 .

In general, it would be possible to adapt all values in the code manually on a case-by-case

basis—however, this defeats the purpose of having a high-level programming language. The lack

of language support forces programmers to manually handle accuracy parameters by passing all

such parameters to the main routine, which forwards them to each subroutine. In case of the QPE

algorithm, this might result in code as follows:

function QPE(𝜀𝑄𝑃𝐸 , 𝜀𝑇𝐸 ,𝜀𝑄𝐹𝑇 , 𝜀𝑅𝑇𝐸
, 𝜀𝑅𝑄𝐹𝑇

, U)

𝑟𝑒𝑔_𝑠𝑖𝑧𝑒 ← 𝑓 (𝜀𝑄𝑃𝐸 )
for 𝑖 ← 0 to 𝑟𝑒𝑔_𝑠𝑖𝑧𝑒 do

for 𝑗 ← 0 to 𝑛_𝑖𝑡𝑒𝑟 (𝑖) do
𝑐
U(𝜀𝑇𝐸 , 𝜀𝑅𝑇𝐸

)

AQFT
†
(𝜀𝑄𝐹𝑇 , 𝜀𝑅𝑄𝐹𝑇

)

Here,
𝑐𝑈 is the controlled version of𝑈 ; we also omitted all qubit variables for better readability.

This programmer-unfriendly approach does not allow code reuse for resource estimation, as

implementations of subroutines need to be adapted to the context in which they are used and, in

particular, to the choice of accuracy parameters. For example,
𝑐
U(𝜀𝑇𝐸 , 𝜀𝑅𝑇𝐸

) is implemented using a

number of Clifford+𝑇 gates that depends on the chosen accuracy parameters.

When using our methodology, programmers need to worry about accuracy parameters only in

subroutines where the corresponding errors are introduced. The compiler will take care of extracting

all dependencies. Specifically, this allows us to express the pseudo-code for phase estimation as

follows:

function 𝑐
R

declare 𝜀𝑅
. . .

function 𝑐
U

declare 𝜀𝑇𝐸
. . .

function AQFT
†

declare 𝜀𝑄𝐹𝑇

𝑙 ← 𝑔(𝜀𝑄𝐹𝑇 )
for 𝑖 ← 0 to 𝑔′(𝑙) do

. . .
𝑐
R()

. . .

function QPE(U)

declare 𝜀𝑄𝑃𝐸

𝑟𝑒𝑔_𝑠𝑖𝑧𝑒 ← 𝑓 (𝜀𝑄𝑃𝐸 )
for 𝑖 ← 0 to 𝑟𝑒𝑔_𝑠𝑖𝑧𝑒 do

for 𝑗 ← 0 to 𝑛_𝑖𝑡𝑒𝑟 (𝑖) do
𝑐
U()

AQFT
†
()
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QPE

𝑐𝑈

RR

𝑐𝑈

RR

AQFT
†

RR. . . . . . . . .

. . .

+ + +

+ + +

+
𝜀

𝜀𝑄𝑃𝐸

𝜀𝑅

𝜀𝑐𝑈 𝜀𝑄𝐹𝑇

Fig. 4. Flow diagram explaining how the code of the QPE algorithm is transformed into a code evaluating
the overall approximation error 𝜀.

Using abstract syntax tree (AST) transformations, our methodology is able to handle various

levels of granularity: from using the same value for all accuracy parameters to using a different

value for every instance that is created during runtime (via an accuracy parameter data structure

that mirrors the call graph). This is crucial as there is a substantial trade-off between the number of

accuracy parameters being considered and the resulting gate count [Häner et al. 2018]. This can be

illustrated with the following example:

Example 4. Consider Beauregard’s implementation of Shor’s algorithm [Beauregard 2002]. In
addition to the (semi-classical) inverse Fourier transform of phase estimation, every addition circuit
requires two (approximate) QFTs [Coppersmith 2002] (one inverted, one regular) [Draper 2000]. While
the number of additions (and thus the number of QFTs) varies with the bit-size 𝑛 of the number to
factor, phase estimation always requires a single QFT. Therefore, it is natural to choose a different
accuracy parameter for the (approximate) QFT of the phase estimation than for the (approximate)
QFTs of the O(𝑛2)-many 𝑛-bit additions.

Besides facilitating accuracy-aware implementations of quantum programs and providing various

levels of granularity for assigning accuracy parameters, our methodology allows us to automatically

deduce the number of contexts in which a given (approximate) decomposition is applied. This

enables automatic selection of the number of accuracy parameters and thus removes the need to

perform this task manually.

5 AUTOMATING ACCURACY MANAGEMENT
In this section, we describe the proposed procedure to automatically determine accuracy parameters.

The optimization problem is solved using a simulated annealing procedure that iteratively changes

the parameters and evaluates the corresponding total approximation error. The procedure terminates

as soon as accuracy parameters have been found that guarantee a user-specified overall accuracy.

To further improve the parameter selection, we also evaluate the circuit cost in terms of number

of expensive gates and pass the information to the optimization procedure. The result is a valid

distribution of the available approximation error that in addition aims to minimize the circuit cost.

Our approach is to extract a (near-)symbolic expression for the total error and gate count from the

algorithm and to use the obtained expressions in the annealing procedure. In general, it is possible
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to use the annealing procedure with any available resource estimation method, the difference being

that the runtime of each evaluation depends on the problem size if non-symbolic methods are used.

In the following sections, we use the 𝑇 -count as a measure of the implementation cost of a

quantum circuit, as this closely captures the cost in a fault-tolerant setting. We also envision that

our framework is most beneficial in this setting, since larger programs lead to larger improvements

over non-symbolic approaches. Nevertheless, we note that our approach may be employed with any

cost function. For example, one may want to select accuracy parameters while aiming to minimize

the number of CNOT or CZ gates when targeting NISQ devices.

5.1 Cost/Constraint Functions: Extraction
Our methodology proceeds by automatically generating two pieces of code that compute (an upper

bound on) (1) the number of costly quantum gates (T) and (2) the overall approximation error as a

function of the different approximation errors (E). We denote the two functions by

𝑇 (𝜀1, . . . , 𝜀𝑛) and 𝐸 (𝜀1, . . . , 𝜀𝑛).
The automatic generation of these two functions can be achieved via a few simple transformations

of the program’s AST. Specifically, to generate 𝑇 , all calls to native operations are removed from

the AST, except those corresponding to costly gates that are replaced by counter-increments. The

program computing a bound on the overall approximation error (𝐸) can be generated in a similar

fashion, where increments are added for every epsilon declaration (see Sec. 2.3).

Example 5. In Fig. 4 we show the different decomposition levels of the QPE algorithm. The standard
coherent QPE requires 2𝑛𝑄𝑃𝐸 − 1 controlled time-evolution unitaries 𝑐𝑈 , followed by an inverse QFT.
At the next decomposition level, each unitary (including the QFT) is decomposed into rotation gates.
In turn, those rotations will be fed into rotation synthesis, which outputs a sequence of O(log 1

𝜀𝑅
)

Clifford+𝑇 gates for each rotation, where 𝜀𝑅 denotes the target accuracy of rotation synthesis (per
rotation). Since errors accumulate at most linearly due to being unitary (see Sec. 2.3), an upper bound
on the overall approximation error can be computed by adding all the 𝜀𝑖 introduced by the various
decomposition steps.

5.2 Cost/Constraint Functions: Optimization
Once the two pieces of code evaluating the total approximation error 𝐸 (𝜀1, ..., 𝜀𝑛) and the cost

𝑇 (𝜀1, ..., 𝜀𝑛) have been generated, they could be fed into the simulated annealing procedure. While

this would allow us to perform accuracy management automatically, the resulting code will take
substantial time to execute: typical quantum applications require on the order of 10

15
or more

operations [Reiher et al. 2017] and the optimization loop is executed hundreds of times until suitable

accuracy parameters are found.

As a remedy, we employ custom compiler optimization passes that significantly reduce the time

required to evaluate gate counts and error bounds. Specifically, our methodology aims to infer

symbolic and loop-free expressions for (upper bounds on) gate count and overall approximation

error. The following example demonstrates how beneficial the use of our symbolic approach is:

Example 6. Consider the example of the approximate quantum phase estimation algorithm and a
two-mode simulated annealing procedure. Even with an optimized annealing schedule, it will require a
minimum of about 200 evaluations to guarantee an overall approximation error of at most 10−2. As
accuracy parameters 𝜀1 . . . 𝜀𝑛 approach the optimal values (minimizing the 𝑇 -count), one evaluation
of the non-optimized 𝑇 (𝜀1, ..., 𝜀𝑛) function on 8 qubits takes 9𝑚 10𝑠 , while evaluating the inferred
symbolic expression takes 0.1𝜇𝑠 . If the number of qubits grows to 16, then we have 34𝑚 14𝑠 for the
non-optimized case, while evaluating the expression still takes 0.1𝜇𝑠 .
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The transformations that we propose to implement at the level of the intermediate-representation

of the compiler are shown in the following table:

Table 1. Compiler transformations that our approach uses to optimize the cost and constraint functions.

Original Code Symbolic expression

1
for 𝑖 ← 0 to 𝑁 do

𝑣 += 𝑐𝑜𝑛𝑠𝑡
𝑣 += 𝑐𝑜𝑛𝑠𝑡 · 𝑁

2

for 𝑖 ← 0 to 𝑁 do
𝑣 += 𝑓 (𝑖) 𝑣 += ∑

𝑖 𝑓 (𝑖)

for 𝑖 ← 0 to 𝑁 do
𝑣 += min(𝑔(𝑖), ℎ(𝑖))

𝑣 += ∑
𝑖 min(𝑔(𝑖), ℎ(𝑖))

≤
𝑣 += min(∑𝑖 𝑔(𝑖),

∑
𝑖 ℎ(𝑖))

for 𝑖 ← 0 to 𝑁 do
𝑣 += 𝑖𝑝

𝑣 += ∑
𝑖 𝑖

𝑝

(𝑝 + 1) th degree polynomial

derived from Faulhaber’s formula

3

if (. . . ) then 𝑒𝑥𝑝𝑟1

else 𝑒𝑥𝑝𝑟2 max(𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2)

In particular, our optimization routine would:

(1) Check if there is an addition between a variable 𝑣 initialized outside the loop and a loop

invariant, and if 𝑣 is not used elsewhere in the loop. If so, apply transformation 1, where 𝑁 is

the number of iterations of the loop.

(2) Check if there is an addition between a variable 𝑣 initialized outside the loop and a function 𝑓

only depending on the inductive variable and other loop invariants. If so, apply transformation

2. In the particular case where 𝑓 (𝑖) is min(), the expression can be upper bounded as shown

in Table 1. In addition, polynomial expressions can be derived from some finite series using

Faulhaber’s formula [Conway and Guy 1996].

(3) Transform generic branching instructions into max(𝑖 𝑓 , 𝑒𝑙𝑠𝑒) instructions, where the branch
that gives the largest contribution to the cost function is selected.

The following example shows the described transformations applied to the AQFT quantum

algorithm.

Example 7. The pseudo-code of the function 𝐴𝑄𝐹𝑇_𝑇 , which computes the total number of 𝑇 gates
required for the AQFT algorithm, obtained after source-to-source transformation is shown in Alg. 1. As
our implementation uses three rotation gates for each controlled-rotation, the function takes as input
three accuracy parameters. This is why there are three innermost loops in Alg. 1. Since we want to
extract a symbolic expression for the variable 𝑇𝑐𝑜𝑢𝑛𝑡 , we have to get rid of as many loops as possible.
The if statement in the inner-loop may be hoisted, resulting in the following expression:

for 𝑗 ← 0 to min(𝑛 − 1 − 𝑖, 𝑙) do

Then all the loops are optimized by applying the transformations in Table 1. Finally, the code in
Alg. 2 is obtained, which shows the closed-form expression for the𝑇𝑐𝑜𝑢𝑛𝑡 with respect to the algorithm’s
parameters.
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Algorithm 1 Cost function for the AQFT algorithm

function N_ROT(𝜀𝑟𝑜𝑡 ) return 1.5 ∗ log
2
(1./𝜀𝑟𝑜𝑡 )

function AQFT_T(𝜀𝑄𝐹𝑇 , 𝜀𝑅1
, 𝜀𝑅2

, 𝜀𝑅3
)

𝑇𝑐𝑜𝑢𝑛𝑡 ← 0

𝑙 ← ⌈log
2
(𝑛/𝜀𝑄𝐹𝑇 )⌉ + 3

for 𝑖 ← 0 to 𝑛 do
for 𝑗 ← 0 to 𝑛 − 1 − 𝑖 do

if 𝑗 ≤ 𝑙 then
for 𝑘 ← 0 to 𝑁_𝑅𝑂𝑇 (𝜀𝑅1

) do 𝑇𝑐𝑜𝑢𝑛𝑡++
for 𝑘 ← 0 to 𝑁_𝑅𝑂𝑇 (𝜀𝑅2

) do 𝑇𝑐𝑜𝑢𝑛𝑡++
for 𝑘 ← 0 to 𝑁_𝑅𝑂𝑇 (𝜀𝑅3

) do 𝑇𝑐𝑜𝑢𝑛𝑡++
return 𝑇𝑐𝑜𝑢𝑛𝑡

Algorithm 2 Cost function for the AQFT algorithm after loop optimization

function AQFT_T(𝜀𝑄𝐹𝑇 , 𝜀𝑅1
, 𝜀𝑅2

, 𝜀𝑅3
)

𝑇𝑐𝑜𝑢𝑛𝑡 ← 0

𝑙 ← ⌈log
2
(𝑛/𝜀𝑄𝐹𝑇 )⌉ + 3

𝑇𝑐𝑜𝑢𝑛𝑡 = 𝑇𝑐𝑜𝑢𝑛𝑡 +min( 𝑛 (𝑛−1)
2

, 𝑛𝑙) · (𝑁_𝑅𝑂𝑇 (𝜀𝑅1
) + 𝑁_𝑅𝑂𝑇 (𝜀𝑅2

) + 𝑁_𝑅𝑂𝑇 (𝜀𝑅3
))

return 𝑇𝑐𝑜𝑢𝑛𝑡

While our methodology succeeds at extracting closed-form expressions for all our examples, we

note that this is not necessary for our methodology to work: the remaining control flow would

not affect applicability or correctness, but merely cause an increase in runtime. Indeed, there are

cases in which some residual code remains in the resulting expressions. This happens, for example,

when some of the program parameters are read from a file. Consider the program performing

phase estimation of the time evolution of a TFIM Hamiltonian described in Section 3, but where the

parameters 𝐽 , ℎ and 𝑛 are read from a file. The program may check whether the input Hamiltonian

is valid, e.g., whether 𝑛 ≥ 0, before instantiating the circuit. As a consequence, such an if/else

statement would remain in the final expression.

6 COMPILER AND LANGUAGE REQUIREMENTS
To add our methodology for automatic accuracy management to any quantum programming

language, a few features must be added to the compiler if not already supported. Here we list all

the features that the compiler must support to bring such an integration into fruition.

We have identified such features by working on our initial prototype. The prototype has been

developed using the LLVM project, which we chose for its modular infrastructure and libraries.

The strategy that we identified while implementing our methodology in LLVM can be applied to

any other quantum programming language. We illustrate this by developing a second prototype in

Q#. Furthermore, our LLVM prototype shows that support for our framework may also be added to

quantum programming languages that are embedded in a classical host language.

Don’t Cares. Our methodology requires that the compiler identifies subroutine parameters that do

not or only negligibly affect the total error and the cost function. We call such function parameters

don’t cares. The corresponding arguments will be replaced by a default value in all calls to that

subroutine. This allows the compiler to optimize repeated calls to the same function.
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Example 8. Consider AQFT, which includes many calls to the rotation gate with different rotation
angles. Normally, these calls will have to be evaluated several times by the compiler, even if the angle
will have no impact on the approximation error selected to decompose the rotation. We address this
problem by annotating the angle parameter as a don’t care. This will result in many calls to the same
function with identical arguments that hence may be removed by the compiler.

Epsilon Declarations. To provide language support (see Section 4) the compiler must be capable

of locating all introduced accuracy parameters. This can be done by matching against a specific

class or by using annotations.

AST Transformation. The compiler must provide access to the AST (or to a reasonably high-level

IR) and allow rewriting and copying. In particular, we need to generate 3 different versions of the

entire program: one that computes the total approximation error, one that computes the total cost,

and the original quantum program, which will ultimately be invoked using optimized accuracy

parameters.

The programs obtained after the described AST modifications could already be used to estimate

the resource requirements of the quantum program. In this case, the only advantage with respect to

using state-of-the-art methods would be that our approach provides language support by keeping

track of all the introduced approximation errors, work that otherwise would have to be performed

manually. In addition, the estimation would be too slow to be used in an optimization procedure

(see results in Fig. 7). As a remedy, we introduce specific rewrites that reduce the time to evaluate

these expressions (see next paragraph).

Rewrites to Make Evaluation More Efficient. In order to speed up the optimization process, we

need fast evaluations of the cost and error functions. The two functions extracted from most

quantum algorithms will feature many loops performing simple counter increments or floating-

point additions. To achieve our goal of extracting a symbolic expression from the control flow

structure, we implement and employ several compiler optimizations, see Table 1.

6.1 LLVM Prototype
Having described the features that are necessary to equip a programming language with automatic

accuracy management, we now provide implementation details for our LLVM prototype.

Don’t Cares. In our LLVM implementation, we use compiler annotations to introduce additional

information in the source code. In particular, we attach a don’t care annotation to a parameter

declaration if it has negligible effect on the cost/constraint functions.

Epsilon Declarations. Epsilon declarations are matched with a custom type. Our prototype frame-

work provides a macro that allows the programmer to quickly define new types of error. This can

be seen in the source code for the approximate QFT in Fig. 5, where epsilon_QFT is registered as a

new type of error in line 4 and then used in lines 8–9.

AST Transformation. We approach the problem of modifying the AST using a source-to-source

transformation. We implement a ClangTool and run an ASTFrontendAction: a routine that has access
to the AST and allows us to interface with the source code. Our ClangTool outputs files containing
the function to compute the 𝑇 -count, e.g., the one in Alg. 1, and the function computing the total

approximation error 𝐸. Our action exploits the ASTMatcher library, which allows us to match nodes

in the AST that have some specific properties. The library provides a concise way of describing

patterns and is implemented as a domain-specific language (DSL). In addition, matchers allow us

to access the source code by running a callback function on the matched AST nodes. Once the

locations of interest in the code have been identified, we can use an instance of the Rewriter class
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1 #include <qadf/epsilons.hpp >

2 #include <qadf/operations.hpp >

3

4 REGISTER_EPSILON(epsilon_QFT)

5

6 inline void Q_FUNC AQFT(int qubits[], const int n)

7 {

8 epsilon_QFT eps_QFT;

9 int lim = ceil(log2(n / eps_QFT))+3;

10 for(int i = 0; i < n; i++)

11 {

12 H(qubits[i]);

13 for (int j = 0; j < min(n-1-i, lim); j++)

14 {

15 CR(qubits[j + i + 1], M_PI /(1 << (j + 1)), qubits[i]);

16 }

17 }

18 }

Fig. 5. C++ code for the approximate QFT as consumed by our LLVM prototype.

to modify the code accordingly. As the AST is constant by design, we must generate a new file

containing our transformed source code.

Our tool also makes use of header files in which we define basic quantum operations, such as

the ones in the Clifford+𝑇 gate set. Those header files can be adjusted according to the specific

application. For example, in addition to the 𝑇 -gate, we might want to consider other expensive

operations, e.g., two-qubit gates for NISQ devices.

The result of running the Clang tool is a new source file computing the total error or gate count

as a function of all the accuracy parameters defined in the source code.

Rewrites to Make Evaluation More Efficient. Our compiler optimization passes eliminate loops in

the expressions for the cost (or the total error) by replacing them with additions and multiplications.

For example, the first loop optimization described in Table 1 is supported for both integral and

floating-point numbers. We use a custom LLVM loop pass to perform this optimization.

Example 9. Consider the following code that computes the total approximation error of 𝑛 quantum
operations, characterized by the same approximation error 𝑣𝑎𝑙 :

1 double Eps = 0.00;

2 double val = 0.02;

3 for (int i = 0; i < n; i++) {

4 Eps += val;

5 }

Once this function is compiled into Intermediate Representation (IR) code, 𝑣𝑎𝑙 will be identified as a
loop-invariant variable, while 𝐸𝑝𝑠 will be assigned to a so-called PHI node. PHI nodes assign a variable
with a different value, depending on the predecessor of the current block, where blocks are groups of
instructions. In our example, the PHI node would have two incoming values: 0.00 (if the predecessor
block is outside the loop) and the temporary value containing the addition result (if the predecessor
was the previous loop iteration). PHI nodes are defined in the loop header block.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 130. Publication date: November 2020.



Enabling Accuracy-AwareQuantum Compilers using Symbolic Resource Estimation 130:19

The loop pass traverses the code from the innermost to the outermost loop in the IR and checks

whether:

(1) it contains an instruction performing the addition operation between a loop-invariant operand

and a variable defined through a PHI node in the loop header,

(2) the PHI node is only used in the addition operation inside the loop or in the loop latch block,

(3) the result of the addition is only used as the incoming value of the PHI node.

If the described conditions apply, the loop is removed. Referring to the code in Example 9, the

operations %1 = 𝑣𝑎𝑙 ∗𝑛 and %2 = 𝐸𝑝𝑠 +%1 would be added to the pre-header loop block, i.e., outside
the loop. In addition, the result %2 would replace all uses of the original addition operation, which

can then be erased. All the other transformations in Table 1 are implemented in a similar fashion.

Extraction of symbolic Representation. Our LLVM prototype also has a method that navigates

the fully optimized IR code and extracts symbolic expressions for the two estimates. The symbolic

expression that we obtained by running our sample quantum algorithms are listed in Table 2.

The pass to extract the symbolic expression from the IR is implemented as an LLVM function pass.
Given the main function, it starts from the return instruction and recursively visits all instruction’s

operands annotating the respective functionality. The recursion terminates when the operand is a

constant or, in general, not an instruction.

The extraction pass supports the following instructions: casting, PHI nodes, selects, truncations,

zero extensions, call instructions, compare instructions, shifts, addition, multiplication, division, and

subtraction. The expression is written in the Wolfram language, such that Mathematica [Wolfram

Research Inc. 2019] can be used for conversion to LATEX and further expression simplifications.

6.2 Q# Integration
Q# is a standalone quantum programming language developed by Microsoft to facilitates the

description of hybrid quantum-classical programs. In Fig. 6, we show a snippet of Q# code that

implements the approximate quantum Fourier transform operation, as described in Section 3.

Qubits are represented in Q# using the type Qubit and they are treated as opaque items that can

be passed to both functions and operations, but that can only be interacted with by passing them to

intrinsic (built-in) operations. Q# also uses namespaces to group definitions together, and elements

from other namespaces may be referenced. Q# distinguishes functions from operations. Functions

are pure and free of side effects, whereas operations can have side effects, such as the application

of an intrinsic operation to a qubit or register. Q# can perform type-safe symbolic computations

to automatically derive the adjoint (inverse) and the controlled variants of an operation, enforced

by providing the is Adj+Ctl declaration in line 13 of Fig. 6. Line 15 shows a declaration of

an approximation parameter, i.e., eps_QFT, which is possible by adding language support for

approximation errors. In the remainder of this section, we provide details on how this and other

features have been implemented in the Q# compiler.

Don’t Cares. Currently, our Q# prototype does not support don’t cares. We implement operations

such as rotation gates—in which don’t cares can help to declare that the rotation angle affects the

gate cost only negligibly—as intrinsic operations that introduce an epsilon variable and increment

the gate counter explicitly by a value depending on the accuracy parameter. For more general cases,

we would require Q# to support parameter-level annotations to declare don’t cares explicitly.

Epsilon Declarations. We use an intrinsic function for epsilon declarations. Being intrinsic, it

does not require an implementation inside the Q# program to be used, but we can locate it inside

the AST in our transformation passes. In the AQFT example, the function is declared in lines 9-11

and allows the programmer to declare and use accuracy parameters, e.g., as done in lines 15-16.
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1 namespace Accuracy {

2

3 open Microsoft.Quantum.Arrays;

4 open Microsoft.Quantum.Convert;

5 open Microsoft.Quantum.Intrinsic;

6 open Microsoft.Quantum.Math;

7

8 // intrinsic function for epsilon declaration

9 function EpsilonValue () : Double {

10 body intrinsic;

11 }

12

13 operation AQFT(qs : Qubit []) : Unit is Adj+Ctl {

14 let nQubits = Length(qs);

15 let eps_QFT = EpsilonValue (); // epsilon -declaration

16 let lim = Ceiling(Lg(IntAsDouble(nQubits) / eps_QFT)) + 3;

17 for ((i, q) in Enumerated(qs)) {

18 H(q);

19 for (j in 0 .. MinI(nQubits - i - 1, lim)) {

20 (Controlled R1Frac)([q], (1, j + 1, qs[j + i + 1]));

21 }

22 }

23 }

24 }

Fig. 6. Q# implementation of the approximate quantum Fourier transform with epsilon declarations.

AST Transformation. We have implemented an AST transformation pass to detect all Epsilon-
Value declarations, remove them, and add them as arguments to the operation signature. This

step is performed before producing the two pieces of code that compute the number of costly

quantum gates and the upper bound on the overall approximation error. Note that the intrinsic

EpsilonValue function is never called in the resulting programs.

There exist no global variables and no call-by-reference parameters in Q#. However, it is possible

to declare an intrinsic operation in Q# and implement it in C#. In order to count the number of 𝑇

gates, we introduce an operation IncrementCounter(id, value) whose implementation in C#

increments a global counter, called id, by value.
We use a similar technique as used for counting gates to accumulate the bound on the overall

approximation error. Each declaration of an epsilon value is replaced by a call to an operation

IncrementValue(id, value) whose implementation in C# increments a global variable called id
by value.

Rewrites toMake EvaluationMore Efficient. TheQ# compiler already contains some transformation

passes, e.g., for operation inlining, propagating constants, or removing unused code. We have

added two additional transformation passes that optimize the use of IncrementCounter and

IncrementValue calls. Without loss of generality we explain the transformation passes by means of

the IncrementCounter operation, remarking that they work analogously for the IncrementValue
operation.

The first transformation pass collects all IncrementCounter calls inside a scope level that have

the same id and do not contain values incorporating mutable variables. These calls can be merged
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into a single call by accumulating all values, benefiting from further optimization, e.g., constant

propagation. The second transformation pass lifts IncrementCounter calls inside a for-loop. If the

call is the only statement in the body of the for-loop and does not use the loop variable to compute

the value, the for-loop can be removed when multiplying the value in the IncrementCounter call

by the number of loop iterations.

7 QUALITATIVE EVALUATION
In this section, we evaluate our prototypes using different quantum algorithms. Starting with a

simple quantum Fourier transform, we increase the complexity of our examples. As a highlight,

our prototype automatically extracts a symbolic expression for the phase estimation of a Trotter-

decomposed time-evolution under a transverse-field Ising model Hamiltonian, where the phase

estimation features an approximate QFT. The C++ code for the approximate QFT can be found in

Fig. 5 and the corresponding Q# code is shown in Fig. 6. In addition, we also tested our prototype

on Shor’s algorithm [Shor 1994], to provide the reader with a large-scale example. We used the

period finding quantum routine as implemented in the open source programming framework Pro-

jectQ [Steiger et al. 2018]. All the obtained expressions for the𝑇 -count and the total approximation

error are reported in Table 2.

Exact QFT. The first example is an implementation of the exact quantum Fourier transform. Our

prototype is able to directly optimize all loops, including the outermost loop which yields a sum

of the form

∑𝑛−1
𝑖 𝑖 =

𝑛 (𝑛−1)
2

. It finds the correct closed-form expression for the total error and it

correctly identifies the number of 𝑇 gates to be O(𝑛2 log(1/𝜀𝑅)). For the detailed output, we refer

to Table 2.

Approximate QFT (AQFT). Next, we consider the approximate quantum Fourier transform. The

C++ source code that serves as the input to our prototype is depicted in Fig. 5. Our prototype

upper bounds an intermediate expression of the form 𝑐 +∑
𝑖 min(𝑓 (𝑖), 𝑔(𝑖)) by choosing one of the

arguments to the min-function and successfully derives a closed-form expression for both the 𝑇

gate count and the total approximation error, see Table 2.

Quantum Phase Estimation (QPE). We combine the time evolution of a TFIM with QPE, to find

the ground state of the TFIM. In this first QPE example, we make the simplifying assumption that

the inverse QFT can be performed natively. As can be seen in Table 2 (labeled QPE simplified), our
methodology is capable of removing all loops and outputs two closed-form expressions for the

𝑇 -count and the total error.

In a next step, we drop the simplifying assumption that the inverse QFT can be performed

natively. We implement the inverse QFT as discussed in Section 3.1 and run our prototype on this

larger example. The closed-form expressions for this case can be found in Table 2 labeled QPE with
QFT.
Finally, we replace the exact QFT by an approximate QFT (see Fig. 5 for the C++ code). As in

the AQFT example, our optimization pass upper bounds an intermediate expression of the form

𝑐 +∑
𝑖 min(𝑓 (𝑖), 𝑔(𝑖)) by choosing one of the arguments to the min-function. We refer to Table 2

for the detailed output, which consists of two fully-symbolic expressions for the 𝑇 -count and for

the approximation error.

Shor’s Algorithm. As last example, we present the results for Beauregard’s implementation of

Shor’s algorithm [Beauregard 2002], which defines two approximation errors, one for the rotation

gates 𝜀𝑅 and one for the approximate QFT (𝜀𝑄𝐹𝑇 ). In this implementation, each controlled unitary

in the phase-estimation procedure is a modular multiplication (by a constant). Please note that in
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our QPE example, we perform a phase-estimation on the time-evolution operator that evolves the

system according to the transverse-field Ising model Hamiltonian. Therefore, while both examples

make use of phase estimation, their cost and error functions are vastly different because the phase

estimation is performed on different unitaries.

In summary, our methodology successfully produces closed-form expressions for the total error and

gate count for all our examples. In the next section, we show that access to symbolic expressions

enables a significant reduction in the time required to optimize accuracy parameters.

8 QUANTITATIVE EVALUATION
In this section, we demonstrate how our prototype implementation enables faster evaluations

of the cost and constraint functions by leveraging the transformations in Table 1. We compare

the runtimes of our symbolic resource estimation method against a non-symbolic approach. The
latter does not use symbolic estimations for resources and errors. The non-symbolic estimates are

generated by our prototypes during the AST modification step (see Section 6).

We ran all experiments on a MacBook Pro with an Intel Core i5 processor with 3.1 GHz processor

clock frequency and 16 GB main memory. All source codes have been compiled using Clang version

9.0.0 with level 3 optimization (-O3) and with the fast-math mode enabled (-ffast-math).
For these experiments, we choose our Clang/LLVM prototype. As previously described, it uses

a two-mode annealing procedure to find suitable assignments for all accuracy parameters. We

measure the runtime for performing one evaluation of the 𝑇 and 𝐸 functions using accuracy

parameters provided by the annealer, guaranteeing an upper bound on the overall approximation

equal to 5 · 10−3. The runtime measurements are performed using different input sizes for Shor’s

algorithm and for our QPE example (with approximate QFT). The plots in Fig. 7 depict the sum of

the runtimes required for evaluating the constraint and cost functions once, as they are always

evaluated the same number of times in the simulated annealing procedure. While the non-symbolic

approach exhibits a growing runtime as a function of the problem size, our symbolic method shows

the expected constant behavior. In particular, the runtime of the non-symbolic approach grows

linearly for the QPE example and (roughly) cubically for our implementation of Shor’s algorithm.

Given that both examples are valid applications of quantum computers only for large prob-

lem sizes (e.g., the target number of bits for Shor’s algorithm is 𝑛 ≈ 4000), we show func-

tion extrapolations for the non-symbolic approach in Fig. 7. The two resulting functions are

𝑓𝑄𝑃𝐸 = 1737.30𝑥 + 816.98 and 𝑓𝑆ℎ𝑜𝑟 = 2.38 · 10−5𝑥3.
To estimate the time it would take to optimize accuracy parameters using a non-symbolic ap-

proach, we multiply our runtime results in Fig. 7 by a lower bound on the number of function

evaluations. For our examples, we find a loose lower bound of 100 evaluations (of each function). To

determine suitable accuracy parameters for Shor’s algorithm, we thus obtain a theoretical runtime

of approximately 1890 days for 𝑛 = 4096 bits and an overall approximation error of at most 5 · 10−3.
Therefore, we may conclude that non-symbolic approaches are not suitable for large-scale

applications.

9 CONCLUSION AND OUTLOOK
We describe the first framework with the ability to automatically manage approximation errors and

outputting (near-)symbolic resource estimates. Our methodology can be added to any quantum

software framework, thereby greatly facilitating resource estimation of quantum programs. Such

integration will allow even domain experts from, e.g., chemistry or machine learning, to write

accuracy-aware quantum programs without having to manually derive and prove error bounds.
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Fig. 7. Each data point marks the runtime required for a single evaluation of the 𝑇 function plus a single
evaluation of the 𝐸 function for the QPE algorithm with approximate QFT and for Shor’s algorithm. Optimized
accuracy parameters are used as input in order to assert that the total approximation error is at most 5 · 10−3.
A comparison between the runtimes of the non-symbolic approach and the symbolic approach developed in
this paper is shown. We provide polynomial extrapolations from the collected runtimes for the non-symbolic
approach as the runtime tops out for bit sizes above 512 for Shor and 32 for QPE.

In this work, we identify the features that a quantum programming language must support in

order to enable our methodology. We develop two prototype implementations that are capable of

handling several example programs, including an implementation of Shor’s algorithm.

Future work could implement improved handling of branching on measurement results and

repeat-until-success-like structures. To handle such programs, our methodology requires additional

input such as themaximal or expected iteration count (e.g., as a program annotation). For verification

purposes, one could instrument the code in order to assert that the actual number of iterations does

not deviate (too much) from the provided estimate. Future work could also compare upper bounds

to actually achieved errors on example applications. Currently, our methodology does not take into

account gate cancellations that may be performed by circuit optimization. This, in addition to the

repeated use of the triangle inequality to bound the overall error, likely leads to pessimistic error

bounds.
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