
Automatic Uniform Quantum State Preparation
Using Decision Diagrams

Fereshte Mozafari Mathias Soeken Heinz Riener Giovanni De Micheli
Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—Most quantum algorithms assume some specific
initial state in superposition of basis states before performing
the desired application-specific computations. The preparation
of such states itself requires a computation performed by a
quantum circuit. In this paper, we investigate the automatic
state preparation of a specific subset of quantum states that
are uniform superpositions over a subset of basis states, called
uniform quantum states. We exploit that such states can be
represented using Boolean functions and present a recursive
algorithm based on functional decomposition. When using binary
decision diagrams as function representation, we can enable fast
and scalable quantum state preparation with respect to the size
of the decision diagram. We show that the algorithm can find
quantum circuits for functions, where state-of-the-art algorithms
cannot be applied anymore.

Index Terms—Quantum Computing, Quantum State Prepara-
tion, Boolean Functions, Decision Diagrams

I. INTRODUCTION

Quantum computing is concerned with developing comput-
ing technology based on the principles of quantum mechanics.
In classical computing, a bit is a single piece of information
that exists in one of the two classical states 0 and 1. In
quantum computing the fundamental unit of information is
a quantum bit, or for short qubit. The state of a qubit includes
the two basis states |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
, but unlike

a classical bit, the state can also be any superposition of
these states α|0〉 + β|1〉 =

(
α
β

)
, where α and β are two

complex amplitudes. The square of the amplitude’s absolute
value is the probability of the measurement outcome being 0
or 1, therefore, |α|2 + |β|2 = 1. Analogously, the combined
state for n qubits is described in terms of 2n complex-
valued amplitudes. Each amplitude corresponds to one of the
2n possible classical states, again, with the square of the
amplitude’s absolute value being the probability of resulting
in the corresponding classical state after measuring all qubits.

A quantum gate on n qubits describes the time evolution of
one quantum state into another one, and is modeled as 2n×2n

unitary matrices. A combination of these gates represents a
quantum circuit, which describes the interaction of quantum
gates with qubits in the quantum computer. A quantum algo-
rithm to solve a specific problem is often described in terms of
a quantum circuit. Two well-known quantum algorithms are
Grover’s search algorithm [1], and Shor’s algorithm [2] for
period finding that can be used for prime factorization.

In general the initial quantum state is the classical basis state
in which all bits are 0. Some quantum algorithms require a
specific quantum state at the beginning of the computation.
Hence, in addition to the quantum circuit that performs the

quantum algorithm, a specific quantum circuit is required that
prepares the desired initial quantum state. Consequently, an
efficient quantum state preparation is an important task in
quantum compilation.

Some approaches [3]–[8] have been considered in the past
to prepare arbitrary quantum states. Since these approaches
can generate arbitrary quantum states, the input to such algo-
rithms are 2n complex-valued amplitudes, which limits their
scalability drastically. Further, some of the algorithms require
a rather abstract set of gates, and an additional compilation
step in order to run on physical quantum computers.

In this paper, we target uniform quantum states. A uniform
quantum state is a superposition of a nonempty subset of basis
states. In other words, all nonzero amplitudes in such a state
have the same value. Uniform quantum states are important
because they are considered as initial quantum state for
algorithms such as Grover walk [9]. Moreover, many important
quantum states are uniform, such as the Bell state, the W
state [10], the GHZ state [11], and the uniform superposition of
all basis states. The W and GHZ states are used as fundamental
resources in distributed quantum information processing [12].

Such states can be characterized by a Boolean function
where each minterm corresponds to a nonzero amplitude. As
a result, the quantum state can be represented in a compact
form, if the Boolean function permits a compact represen-
tation. In particular, in this paper we propose a quantum
state preparation algorithm that works directly on decision
diagrams. This enables a scalable quantum state preparation,
since many Boolean functions of practical interest have small
representations, e.g., in terms of binary decision diagrams
(BDDs) [13].

We propose an automatic quantum state preparation algo-
rithm, which takes as input a Boolean function and produces
a sequence of multiple-controlled gates. Afterwards, to run on
a physical quantum computer, we use decomposition methods
to generate a quantum circuit over CNOTs and single-qubit
quantum gates. The detailed contributions are summarized as
follows:

• Utilizing Boolean functions in order to provide a recur-
sive algorithm

• Proposing an algorithm that works on BDDs to enable a
fast execution when the function representation is small
(algorithm runs in polynomial time with respect to the
number of BDD nodes).

• Reducing the number of elementary quantum gates by
removing redundancies in the BDDs as well as applying

a post-optimization technique for the GHZ state.
Experimental results show that the proposed approach can
achieve a significant reduction in run-time compared to a
state-of-the-art approach which relies on an explicit quantum
state representation implemented in IBM’s QisKit quantum
programming framework. Moreover, the results show that we
can reduce the number of elementary quantum gates over the
state of the art.

II. BACKGROUND AND RELATED WORK

In this section, we introduce necessary background on
Boolean functions and quantum computation.

A. Boolean Functions

A Boolean function is a function f : Bn → B, where
B = {0, 1}, which can be represented in terms of its truth
table. A truth table is a column vector

f =
(
f(0, . . . , 0, 0), f(0, . . . , 0, 1), . . . ,

f(1, . . . , 1, 0), f(1, . . . , 1, 1)
)T
, (1)

where each entry corresponds to the function value of one of
the input assignments. In this paper, we use f to both refer to
the function and its truth table.

The on-set and off-set of the function are the sets of all input
assignments that map to 1 and 0, respectively. We define

on(f) = {x ∈ Bn | f(x) = 1},
off(f) = {x ∈ Bn | f(x) = 0}.

(2)

We define |f | = | on(f)| as the number of minterms in f . A
minterm is an input assignment x ∈ Bn for which f(x) = 1.

The positive and negative co-factors of a Boolean function
f(xn−1, . . . , x0) with respect to a variable xi are obtained by
assigning xi to 1 and 0, respectively, which are defined by

fxi = f(xn−1, . . . , xi+1, 1, xi−1, . . . , x0),

fx̄i = f(xn−1, . . . , xi+1, 0, xi−1, . . . , x0),
(3)

respectively. We use co-factors in this paper to compute the
influence of each variable on the function’s output. To compute
the probability of being 1 and 0 for xi in f , we define

pf (xi) =
|fxi |
|f |

and pf (x̄i) =
|fx̄i |
|f |

, (4)

respectively. The intuition is that the co-factors partition the
function into two halves. Note that pf (xi)+pf (x̄i) = 1. When
f is clear from the context, we simply write p(xi) and p(x̄i).

B. Quantum Gates and Quantum Circuits

A quantum circuit is a diagram to represent a quantum pro-
gram. A combinational quantum circuit consists of a sequence
quantum gates from left to right that correspond to the passage
of time.

Qubits: A qubit models the fundamental unit of information
in quantum computing that has two basis states, represented

using |0〉 and |1〉. In fact, a qubit can be any superposition of
the two basis states, which can be denoted as

|ψ〉 = α0 |0〉+ α1 |1〉 =

(
α0

α1

)
. (5)

Here, α0, α1 ∈ C with |α0|2 + |α1|2 = 1. The squared
complex numbers |α0|2 and |α1|2 indicate the probability that
the quantum state will collapse to the classical state |0〉 =

(
1
0

)
or |1〉 =

(
0
1

)
after the qubit is measured. Moreover, quantum

states over n qubits are represented by

|ϕ〉 =

2n−1∑
i=0

αi |i〉, (6)

a column vector of 2n complex values αi such that∑2n−1
i=0 |αi|

2
= 1. Each squared amplitude |αi|2 indicates the

probability that after measurement the n qubits are in the
classical state i.

Quantum states can be combined by applying the Kro-
necker product to produce larger ones, e.g.,

(
1
0

)
⊗ 1√

2

(
1
1

)
=

1√
2

(1, 1, 0, 0)
T , which represents a 2-qubit state that is in the

perfect superposition between the classical states 00 and 01
[14].

Quantum gates: Quantum gates are modelled as unitary
operations which are applied on the qubits to alter their
states. A single-qubit quantum gate acts on a single-qubit, and
transforms its state into another state. The single-qubit gates
are represented by 2× 2 unitary matrices [15], [16].

Since single-qubit states correspond to points on the Bloch
sphere [16], quantum gates on a single-qubit correspond to
rotations. There are three types of rotation gates Rx, Ry , and
Rz regarding the three axis x, y, and z. Each rotation gate is
parameterized with a continuous angle θ ∈ R:

Rx(θ) =
(

cos θ2 −i sin θ
2

−i sin θ
2 cos θ2

)
, Ry(θ) =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
,

Rz(θ) =
(
e−i θ

2 0

0 ei
θ
2

)
.

(7)

Quantum gates that act on n qubits are represented in terms of
2n×2n unitary matrices. Some 2-qubit gates that we consider
in this work are

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.
(8)

In fact, a CNOT gate consists of one control and one target,
the target will be flipped when the control is 1. A SWAP gate
interchanges the state of 2 qubits with each other.

Uniformly-controlled rotation gates: In this work, we make
use of a family of unitary matrices called uniformly-controlled
single-qubit gates [3]. These unitary matrices are 2n+1×2n+1

block diagonal matrices of the form

U = u0 ⊕ · · · ⊕ u2n−1 =

u0

. . .
u2n−1

 , (9)

q2

q1

q0 U

=

u0 u1 u2 u3

Fig. 1. A uniformly-controlled single-qubit gate with two controls.

where u0, . . . , u2n−1 are 2× 2 unitary matrices.
An example of a uniformly-controlled single-qubit gate with

two controls is shown in Fig. 1. The figure also shows the
visual representation of the uniformly-controlled single-qubit
gate on the left-hand side.

Decomposing an n-qubit uniformly-controlled rotation gate
requires an exponential number of elementary gates (2n − 1
rotation gates and 2n − 2 CNOTs) [3].

C. Related Works

Although approaches for the preparation of arbitrary quan-
tum states have been proposed in the past [3]–[6], they lead to
a large number of gates and additionally in some approaches
the detailed decomposition is not presented. Thus, one has
to re-design the quantum generation circuit. The quantum
state preparation method in [7] is proposed based on unifying
phases, probabilities, and finally removing superposition to get
basis states. In this manner, it is required to do some swaps
in between to reach the state vector which all have same
amplitudes and phases. This approach can synthesize arbitrary
states, but relies on an explicit representation of the state in
terms of a column vector with 2n entries. It is therefore not
scalable for a large n.

State preparation described in [17] derives a lower bound on
the number of CNOT gates using three different decomposition
methods. But similarly to other related work, this approach
works on arbitrary quantum states and requires an explicit
representation. The algorithm is implemented for quantum
state preparation in IBM’s QisKit framework.

Previous methods are not efficient when the number of
qubits is large. We circumvent this problem by using BDDs
as a symbolic function representation to describe the input
quantum states. The use of BDDs for a compact function
representation in quantum circuit synthesis was considered be-
fore, e.g., in [18]. However, in that work, the authors targeted
synthesis of reversible functions, while we are targeting the
preparation of quantum states.

III. PROPOSED APPROACH

In this section, we present a two-step approach to prepare
uniform quantum states. In the first step, we use Boolean func-
tions to generate a circuit of uniformly-controlled single-qubit
gates. We introduce the problem (Section III.A), present the
general idea (Section III.B), and propose a scalable algorithm
using decision diagrams (Section III.C). In the second step,
we discuss how to obtain a quantum realization executable on
a quantum computer (Section III.D).

A. Problem Definition

In this work, we consider n-qubit quantum states that
are uniform superpositions over a nonempty subset of the

qn−1 : |0〉
qn−2 : |0〉

...

q0 : |0〉

QSPf |ϕf 〉

Fig. 2. The problem of quantum state preparation over Boolean function f .

basis states |0〉, |1〉, . . . , |2n − 1〉. In such quantum states all
amplitudes of the state vector are either 0 or have the same
value α = 1/

√
s, where s is the size of the subset of basis

states. We exploit that such states can be characterized by a
Boolean function f : Bn → B such that f(x) = 1, if and
only if |x〉 is in the subset of the considered basis states, and
therefore its corresponding amplitude is nonzero.

Example 1: The majority-of-three function f = 〈x0x1x2〉,
where 〈x0x1x2〉 = x0x1∨x0x2∨x1x2, and has the truth table
f = (0, 0, 0, 1, 0, 1, 1, 1)T . It encodes the uniform quantum
state |ϕ〉 = 1√

4
(0, 0, 0, 1, 0, 1, 1, 1)

T .
We are interested in generating a quantum state |ϕf 〉 that

corresponds to the normalized truth table of f

|ϕf 〉 =
f√
|f |

=
1√
|f |

∑
x∈on(f)

|x〉. (10)

Next, we propose an automatic algorithm to find a quantum
circuit for generating such a state given as input a Boolean
function f in some representations. In the beginning, all states
are assumed to be zero, then we are looking for a construction
that transforms a given unitary matrix QSPf into a circuit,
where QSPf |0〉⊗n = |ϕf 〉. Fig. 2 summarizes our problem
formulation.

Uniform quantum states can be found in various quantum
algorithms, e.g., the uniform superposition of all basis states,
for which f = 1 (tautology), the Bell state, for which f = x̄1⊕
x2, the generalized GHZ state, for which f = x̄1x̄2 . . . x̄n ⊕
x1x2 . . . xn, and the generalized W state, for which f = [x1+
x2 + · · ·+xn = 1] that means only one of the variables is one
and the others are equal to zero.

B. General Idea

To prepare an n-qubit uniform quantum state |ϕf 〉 that
encodes the Boolean function f , we define a correspondence
between the qubits in the quantum circuit and the variables
in f . Without loss of generality, we assume that qubit qi and
the uniform quantum state |ϕf 〉 correspond to variable xi and
the Boolean function f , respectively. In the remainder, we will
use the symbols interchangeably.

The general idea of our state preparation algorithm relies
on the identity

QSPf |0〉⊗n = (QSPfx̄i
⊕QSPfxi

)(G(pf (x̄i))⊗ I2n−1)|0〉,

where G(p) is a unitary transformation gate that satisfies

G(p)|0〉 =
√
p|0〉+

√
1− p|1〉. (11)

To prepare the ith qubit, a quantum gate G(pf (x̄i)), is
applied. This gate results in the probability of being zero

qn−1 : |0〉

qn−2 : |0〉
...

q0 : |0〉

G(pf (x̄n−1))

QSPfx̄n−1
QSPfxn−1

Fig. 3. The general idea.

q2 : |0〉

q1 : |0〉

q0 : |0〉

(x̄2)

x̄2(x̄1)

x̄2x̄1(x̄0) x̄2x1(x̄0)

x2(x̄1)

x2x̄1(x̄0) x2x1(x̄0)

Fig. 4. The abstract quantum gates of QSP〈x0x1x2〉.

after measurement for xi, which corresponds to qi, in the
Boolean function f . Next, the circuit is divided into two parts
corresponding to the negative co-factor and positive co-factor,
a negative control is added to the negative co-factor, and a
positive control is added to the positive co-factor. Fig. 3 shows
the application of this identity in the quantum circuit model
for i = n − 1. By applying this identity recursively for all
variables, we obtain the desired quantum circuit.

Example 2: Fig. 4 shows the result of the proposed recursive
algorithm for the majority function f = 〈x0x1x2〉 from Exam-
ple 1. In the figure, for the sake of readability, we use a short-
hand notation to label boxes. For instance, the label x2x̄1(x̄0)
denotes the unitary transformation gate G(pfx2x̄1

(x̄0)).
Notice that in Example 2, the two gates with target q1 can be

moved next to each other, since the right-most gate commutes
with the two gates left of it, with target q0. This movement
allows us to utilize uniformly-controlled single-qubit gates.
We generalize this idea which allows us to retrieve a generic
quantum circuit with n uniformly-controlled single-qubit gates
as shown in Fig. 5. The box labeled with G(p(x̄i)) denotes the
probability of being zero for the variable xi in the cofactors
over previously prepared qubits. For example G(p(x̄n−2))
corresponds to G(pfx̄n−1

(x̄n−2)) and G(pfxn−1
(x̄n−2)).

C. Approach using Decision Diagrams

In practice it is infeasible to store the Boolean function as a
truth table for a large number of variables (typically more than
15 variables). As an alternative, the proposed approach can
extract the quantum circuit for QSPf , when f is represented
as reduced ordered binary decision diagram (ROBDD, or BDD
for short). This is due to the fact that counting all minterms
and computing co-factors can be efficiently performed using
BDDs. The compact representation not only enables a scalable
quantum state preparation, if the BDD representation for f is
small, but also can reduce the number of multiple-controlled
gates.

We illustrate the BDD-based synthesis algorithm using the
majority-of-three function as an example in Fig. 6. The BDD
consists of 4 nodes. We traverse the BDD from bottom to top
to first count the number of ones for each node, then from top
to bottom to compute probabilities by dividing the number of
ones from the low-child over the number of ones of the current

qn−1 : |0〉

qn−2 : |0〉
...

q0 : |0〉

G(p(x̄n−1))

G(p(x̄n−2))

G(p(x̄0))

Fig. 5. The general structure of the proposed algorithm.

x
2

�

 !

"#

$

!

�

$

x
0

%&'

f
(&'

"&'#

"&'#

"
%

"
(

x
1

x
1

)
*'
+',#

)
"'+',#

)
#'
+',#

!

"
*-.'''/

"
%-.'''/

-.'''/"(

-.#/

-.#/ -.#/

�
-.#/

-.#/

)
"'+',#

)
#'
+',#

)
"'+',#

)
#'
+',# "

*-.'''/

"
%-.'''/

-.#/

�

-.#/)
#'
+',#

Fig. 6. BDD for 〈x0x1x2〉 and the procedure of extracting gates for each
node from bottom to top.

node. The number of ones and probabilities for each node are
shown within the figure in red and blue colors, respectively.

To construct multiple-controlled gates, we again traverse the
BDD from bottom to top. In a recursive manner, we construct
for each node a circuit that consists of one G(p) gate, and
a negative-controlled application of the circuit constructed by
the low-child, as well as a positive-controlled application of the
circuit constructed by the high-child. These gates are located in
the figure using boxes in the right-hand side for each node with
the same color. Special consideration is required for children
that contain missing nodes on their path. In that case, we need
to insert a G(1

2) gate for each of the missing nodes on that path
which leads to the both 0 and 1 values with half probabilities
for those nodes. Note that we do not consider this case for the 0
terminal. To provide more details, we explain the construction
of the gates for node ‘b’. First, we have to apply G(1

3) to
the qubit corresponding to ‘b’, then we connect the negative-
control to the gates of node ‘d’ and the positive-control to a
newly inserted G(1

2) for the missing node x0 on this path.
Consequently, the BDD-based synthesis algorithm is linear

in the number of nodes in order to construct the partial circuits
for each node. Depending on the number of paths in the BDD,
the monolithic circuit composed of all partial circuits may
become exponential, however, the use of symbolic quantum
circuit representations can prevent this.

D. Quantum Gate Realization

From the definition of Ry(θ) one can readily derive that

G(p) = Ry
(
2 cos−1(

√
p)
)
. (12)

Consequently, by replacing all gates on the target line by Ry
gates in Fig. 5, we obtain a circuit consisting only of multiple-

q2 : |0〉

q1 : |0〉

q0 : |0〉

Ry(120)

Ry(180) Ry(110)

Ry(180) Ry(180) Ry(90)

Fig. 7. Final majority-of-three quantum circuit consisting of multiple-
controlled Ry rotation gates.

controlled Ry (MC-Ry) rotation gates. The resulting circuit for
majority-of-three is shown in Fig. 7.

To obtain a circuit that can be run on a physical quantum
computer, we need to decompose MC-Ry gates into elemen-
tary quantum gates. We utilize the decomposition method
presented in [19] to synthesize uniformly-controlled rotation
gates directly into a sequence of CNOT gates and Ry rotations.
The decomposition of the ith qubit yields at most 2i−1 Ry
rotation gates and 2i−1 CNOTs. As a result, the quantum state
preparation affords at most 2n−1 Ry gates and 2n−2 CNOTs.
While, as we reduce the number of MC-Rys using decision
diagrams, it is better to decompose each MC-Ry , separately to
reduce the number of elementary quantum gates. In this man-
ner, we employ the decomposition method presented in [20].
Note that this method makes use of some helper qubits in
order to reduce the number of elementary quantum gates. To
avoid using helper qubits, we can use [21].

IV. EXPERIMENTAL EVALUATION

In this section, we discuss the experimental setup and
results.

A. Experimental Setup

We implemented the proposed approach into the C++ library
for quantum state preparation angel.1 We used the CUDD
library for BDD representation and traversal. To compare
our results with the state of the art, we make use of IBM’s
QisKit [22] that implemented the algorithm of [17]. We per-
formed experiments for the two most-known quantum states
GHZ and W. As there is no standard benchmark set for
quantum state preparation and our method utilizes Boolean
functions, we further used the ISCAS benchmarks as practical
benchmarks to extract large functions with different numbers
of variables which correspond to the number of qubits (n).
Since ISCAS benchmarks have multiple outputs, we extracted
the logic cone for a given primary output. All experiments
have been conducted on an Intel Core i7, 2.7 GHz with 16
GB memory.

B. Results and Discussion

Experimental results are shown in Table I. The first column
names the benchmark. The suffixes for the ISCAS benchmarks
correspond to the indices of the extracted logic cones. We
evaluate the proposed method for run-time and circuit size.
We future discuss a way to optimize the number of gates.
Run-time: We track the actual run-time, and also report the
number of nodes in the BDD, since the algorithm’s complexity

1github.com/fmozafari/angel

depends on the number of nodes. There are two columns in
Table I that show run-time for the proposed method and the
state of the art. Experimental results show that our proposed
method reduced the run-time significantly for all cases. More-
over, as the proposed method uses decision diagrams in the
implementation, the number of nodes is extracted only for the
proposed method. A timeout of 9000 seconds is considered to
extract the results. The results show that generating circuits
for quantum state preparation using the proposed method is
fast. When the number of qubits grows too large, approaches
based on explicit state representation require too much time
(see the cells marked TO).

Circuit size: Experimental results regarding circuit size are
evaluated in terms of the number of MC-Rys, the number of
elementary quantum gates (CNOT and single-qubit quantum
gates), and helper qubits. These results are summarized in
Table I for both the proposed method and the state-of-the-
art approach. Note that we only extracted MC-Rys for the
proposed method. The number of MC-Rys is reduced using
decision diagrams by removing redundancies. As shown in the
table, we reduced the number of MC-Rys from 2n − 2 into
n − 1 for GHZ and W. Moreover, MC-Rys are reduced for
ISCAS benchmarks instead of growing exponentially. As we
generate MC-Rys, our algorithm has the potential to represent
these gates in a compact way in terms of Boolean functions.
It is an advantage of the proposed approach to provide the
high-level representations for MC-Ry gates such that different
decomposition methods may be applied later.

We transform the MC-Rys into elementary quantum gates
using decomposition methods that were explained in Section
III.D. The method presented in [20] requires helper qubits
that are shown in the table. The results show that reducing
CNOTs and single-qubit gates (Rys for the proposed method)
is comparable over the state of the art. As we discussed in
Section III.D, the upper bound on CNOTs and single-qubit
gates are 2n − 2 and 2n − 1, respectively. The results show
that we reduce the number of elementary quantum gates as
much as possible while for the state of the art are close to the
upper bounds.

Optimization: To prepare the GHZ quantum state, our method
generates one MC-Ry on each line with positive controls.
Fig. 8 on the left-hand side shows this sequence of gates for
GHZ state on 4 qubits. As all qubits in the beginning are
assumed to be 0, each line can alter to 1 only in one case,
when the corresponding controls are 1. Hence, last control is 1
when previous controls are 1. Hence, we can reduce redundant
controls and only keep the last control, which results in a
sequence of n − 1 single-controlled Ry gates (decomposing
these gates results n − 1 CNOTs and one Ry rotation gate).
The optimized circuit for GHZ on 4 qubits is shown on the
right-hand side of Fig. 8.

V. CONCLUSIONS

We have presented an algorithm to generate circuits for
the preparation of uniform quantum states. This subclass is
motivated by several quantum states in the literature which are

TABLE I
EXPERIMENTAL RESULT REGARDING NUMBER OF MC-Ry ROTATION GATES, ELEMENTARY QUANTUM GATES AND TIME.

Proposed approach State-of-the-art approach
QSs Qubits Nodes MC-Rys CNOTs Single-qubit gates Helper qubits Time CNOTs Single-qubit gates Time

GHZ 15 29 14 539 720 6 < 0.01 32752 97857 60.57
GHZ 18 35 17 809 1083 8 < 0.01 262125 786071 929.03
GHZ 20 39 19 1027 1389 9 < 0.01 1048555 3145488 7809.02
GHZ 27 53 26 1951 2628 12 < 0.01 TO TO TO

GHZ 30 59 29 2437 3279 14 < 0.01 TO TO TO

W 15 29 14 539 720 6 < 0.01 32752 98175 104.8
W 18 35 17 809 1083 8 < 0.01 262125 786255 5087.05
W 27 53 26 1951 2628 12 < 0.01 TO TO TO

W 30 59 29 2437 3279 14 < 0.01 TO TO TO

c17-0 4 6 11 14 15 1 < 0.01 11 39 0.03
c17-1 4 6 8 14 15 1 < 0.01 11 37 0.03
c432-0 18 18 2024 103074 126514 8 < 0.01 262125 3399580 1801.26
c432-1 27 3795 1256482 98417906 108854256 12 16.35 TO TO TO

c7552-65 29 7389 2847926 241536510 277309441 13 45.34 TO TO TO

c7552-66 26 3501 681374 45046398 48877056 12 9.21 TO TO TO

c7552-67 23 1653 163474 6994910 7928448 10 1.73 TO TO TO

c7552-68 20 793 41188 1048574 1048575 9 0.37 1048576 3015488 5948.47

TO: time-out of 9000 seconds.

q3 : |0〉

q2 : |0〉

q1 : |0〉

q0 : |0〉

Ry(θ3)

Ry(θ2)

Ry(θ1)

Ry(θ0)

=

Ry(θ3)

Ry(θ2)

Ry(θ1)

Ry(θ0)

Fig. 8. Reducing the number of controls for GHZ state.

contained in this family. The advantage of such states is that
they can be characterized by a Boolean function, and therefore
permit a compact representation, if the Boolean function
has a compact representation—e.g., in terms of a BDD. We
have shown a recursive algorithm to generate a quantum
circuit based on uniformly-controlled Ry rotation gates. Our
algorithm provides a scalable quantum state preparation as
well as reduces the number of multiple-controlled gates.
Acknowledgments: This research was supported by the Swiss
National Science Foundation (200021-169084 MAJesty).

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” arXiv preprint quant-ph/9605043, 1996.

[2] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science. IEEE, 1994, pp. 124–134.

[3] V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa,
“Quantum circuits with uniformly controlled one-qubit gates,” Physical
Review A, vol. 71, no. 5, p. 052330, 2005.

[4] P. Kaye and M. Mosca, “Quantum networks for generating arbitrary
quantum states,” arXiv preprint quant-ph/0407102, pp. 1–3, 2004.

[5] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa,
“Transformation of quantum states using uniformly controlled rotations,”
arXiv preprint quant-ph/0407010, 2004.

[6] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum-
logic circuits,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 25, no. 6, pp. 1000–1010, 2006.

[7] P. Niemann, R. Datta, and R. Wille, “Logic synthesis for quantum state
generation,” in 2016 IEEE 46th International Symposium on Multiple-
Valued Logic (ISMVL). IEEE, 2016, pp. 247–252.

[8] M.-X. Luo, S.-Y. Ma, Y. Deng, and X. Wang, “Deterministic generations
of quantum state with no more than six qubits,” Quantum Information
Processing, vol. 14, no. 3, pp. 901–920, 2015.

[9] N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk search
algorithm,” Physical Review A, vol. 67, no. 5, p. 052307, 2003.

[10] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two
inequivalent ways,” Physical Review A, vol. 62, no. 6, p. 062314, 2000.

[11] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond
Bell’s theorem,” in Bell’s theorem, quantum theory and conceptions of
the universe. Springer, 1989, pp. 69–72.

[12] E. D’Hondt and P. Panangaden, “The computational power of the W
and GHZ states,” arXiv preprint quant-ph/0412177, 2004.

[13] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691, 1986.

[14] B. Schumacher, “Quantum coding,” Physical Review A, vol. 51, no. 4,
p. 2738, 1995.

[15] R. P. Feynman, “Quantum mechanical computers,” Foundations of
physics, vol. 16, no. 6, pp. 507–531, 1986.

[16] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[17] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, “Quantum
circuits for isometries,” Physical Review A, vol. 93, no. 3, p. 032318,
2016.

[18] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Proceedings of the 46th Annual Design Automation
Conference. ACM, 2009, pp. 270–275.

[19] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quan-
tum circuits for general multiqubit gates,” Physical Review Letters,
vol. 93, no. 13, p. 130502, 2004.

[20] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Physical Review
A, vol. 93, no. 2, p. 022311, 2016.

[21] M. Soeken, F. Mozafari, B. Schmitt, and G. De Micheli, “Compiling
permutations for superconducting qpus,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
1349–1354.

[22] G. A. Héctor Abraham, Ismail Yunus Akhalwaya and et al., “QisKit:
An open-source framework for quantum computing,” 2019.

