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A critical step in quantum compilation is the transformation of a technology-independent quantum
circuit into a technology-dependent form for a targeted device. In addition to mapping quantum gates
into the supported gate set, it is necessary to map pseudo qubits in the technology-independent circuit
into physical qubits of the technology-dependent circuit such that coupling constraints among qubits
acting in multiple-qubit gates are satisfied. It is usually not possible to find such a mapping without
adding SWAP gates into the circuit. To cope with the technical limitations of NISQ-era quantum
devices, it is advantageous to find a mapping that requires as few additional gates as possible. The
large search space of possible mappings makes this task a difficult combinatorial optimization prob-
lem. In this work, we demonstrate how zero-suppressed decision diagrams (ZDDs) can be used for
typical implementation tasks in quantum mapping algorithms. We show how to maximally partition
a quantum circuit into blocks of adjacent gates, and if adjacent gates within a circuit do not share
common mapping permutations, we attempt to combine them using parallelized SWAP operations
represented in a ZDD. Boundaries for the partitions are formed where adjacent gates are unable to
be combined. Within each partition block, ZDDs represent all possible mappings of pseudo qubits to
physical qubits.

1 Introduction

Today’s NISQ-era quantum devices [9] support some given set of single- and two-qubit quantum gates.
While single-qubit operations can be executed on any of the physical qubits, two-qubit quantum gates
can only be performed by a pair of qubits that share a physical connection. The set of permissible qubit
pairs are referred to as the coupling constraints. One task in quantum compilation algorithms is the
mapping of a quantum circuit or algorithm, a sequence of quantum operations, onto the physical qubits
of the device such that all two-qubit operations are executed with respect to device coupling constraints.
This task is not always possible without including additional gates in the circuit.

Finding an optimum solution that minimizes the number of additional gates is “NP-hard” [2]. In
order to efficiently find a solution, several heuristics have been proposed [11, 14, 5, 7]. Past work in
mapping algorithms for quantum circuits are reported in [3, 12] A common bottleneck in these heuristic
methods is due to the large combinational search space resulting in numerous possible ways of mapping
the gates to the device.

In this paper, we discuss how zero-suppressed decision diagrams (ZDDs, [8, 6]) can be used in
mapping algorithms to combat combinational complexity. These data structures were selected because
nearest neighbor couplings within quantum devices make the possible connections between qubits in a
quantum circuit a sparse set, and ZDDs, as compared to other types of decision diagrams, are efficient
at representing sparse sets. We show how to implement two specific problems which appear in several
heuristics: (1) finding a maximal subcircuit partition that can be mapped without adding gates, and (2)
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how to determine and choose among all possible SWAP circuits that can execute in parallel in order
to extend a partition. Once a maximal subcircuit partition is determined, a pseudo to physical qubit
permutation from that partition is used to map the quantum circuit to a technology platform.

Finding maximal partitions for quantum circuit mapping is solved using SAT in [5]. In contrast to
the SAT-based solution that finds one possible mapping, the ZDD-based algorithm generates all possi-
ble mappings for a maximal partition. All solutions are represented implicitly by means of a decision
diagram, which may be used to count all solutions, query some solutions, or compute the solution that
minimizes some linear cost function. All such tasks can be performed in time that is linear with respect
to the size of the ZDD. All possible parallel SWAP operations used to extend the size of a partition are
also stored in a ZDD.

The algorithms reported in this paper are intended to serve as motivating examples to illustrate how
ZDDs may be used as a data structure for implementing a mapping algorithm. These algorithms have
been prototyped and evaluated on a set of benchmarks. Effectiveness of the ZDD mapping algorithms
is determined by using them in a preprocessing step for the publically-available compilers developed for
the IBM and Rigetti quantum devices.

2 Preliminaries

2.1 Graphs

An undirected graph G = (V,E) consists of a set of vertices V and a set of edges E ⊆
(V

2

)
= {V ′ ⊆ V |

|V ′|= 2}. Given two undirected graphs G1 = (V1,E1) and G2 = (V2,E2), we say that G1 is a subgraph of
G2, if there exists an injective function ϕ : V1→V2 such that {v,w} ∈ E1 implies { f (v), f (w)} ∈ E2.

Given an ordered sequence S= s1, . . . ,sn, we define an ordered partition S1, . . . ,Sl as a set of nonempty
subsequences Si = sbi ,sbi+1, . . . ,sei such that sb1 = s1, sel = sn, and sbi = sei−1+1 for all 1 < i≤ l.
Example 1. Let S = 3,5,1,2,8,2,3,4. Then S1 = 3,5,1, S2 = 2,8, and S3 = 2,3,4 is an ordered partition
of S.

2.2 Zero-suppressed decision diagrams

Given a set of variables X = {x1, . . . ,xn}, a ZDD [8, 6] is a directed acyclic graph with nonterminal
vertices N and two terminal vertices > and ⊥. Each non-terminal vertex v ∈ N is associated with a
variable V (v) ∈ {1, . . . ,n} and two successor nodes HI(v),LO(v) ∈ N∪{>,⊥}. The nodes on a path to a
terminal node follow a variable order. We have HI(v) ∈ {>,⊥} or V (HI(v))>V (v) for all v.1 The same
applies to LO(v).

Each vertex in the ZDD represents a finite family of finite subsets over X . The terminal node ⊥ rep-
resents the empty family /0 and the terminal node > represents the unit family which is the set containing
the empty set { /0}. Each non-terminal v represents the subset

LO(v)∪{S∪{xV (v)} | S ∈ HI(v)}. (1)

A ZDD is reduced if there are no two vertices that represent the same sets. This implies that in a
reduced ZDD there cannot be a vertex v with HI(v) =⊥, since such a vertex represents the set LO(v). For
the sake of convenience, we use εx to denote the elementary family {{x}} for each x ∈ X . Finally, we use
℘ to refer to the ZDD that represents the universal family of all subsets of X .

1To simplify the presentation in the paper, we assume the variable ordering 1 < 2 < · · ·< n. In practice, any permutation of
this order can be used.
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Figure 1: A ZDD representing the family of sets {{x1,x2},{x1,x3},{x1,x4},{x2,x3},{x2,x4},{x3,x4}}.
All internal non-terminal nodes are annotated with the sets they represent.

We write | f | to denote the number of sets in a family f . We write Z( f ) to denote the number of
nodes, including the terminal nodes, of the reduced ZDD for f .

Example 2. Fig. 1 shows a ZDD for f = {{x1,x2},{x1,x3},{x1,x4},{x2,x3},{x2,x4},{x3,x4}}, i.e., all
two-element subsets of X = {x1,x2,x3,x4}. We have | f |= 6 and Z( f ) = 8. In the general case, the ZDD
f that represents all k-element subsets of a set {x1, . . . ,xn} has Z( f ) = O(kn) nodes, while representing
| f |=

(n
k

)
sets.

Given two ZDDs f and g, the following list of operations is part of what is called a ZDD family
algebra. Each operation can be efficiently implemented using ZDDs.

f ∪g = {α | α ∈ f or α ∈ g} union

f ∩g = {α | α ∈ f and α ∈ g} intersection

f \g = {α | α ∈ f and α /∈ g} difference

f tg = {α ∪β | α ∈ f and β ∈ g} join

f ug = {α ∩β | α ∈ f and β ∈ g} meet

f ↘g = {α ∈ f | β ∈ g implies α 6⊇ β} nonsupersets

Finally, if f represents the family εx′1
∪·· ·∪ εx′l

for some subset {x′1, . . . ,x′l}= X ′ ⊆ X , then(
f
k

)
is the ZDD that represents the family

(X ′
k

)
.

Note that the nonsupersets operation can be described in terms of the others: f ↘ g = f \ ( f t g).
However, it may be more efficient to implement the operation explicitly in a ZDD package. For a detailed
description of how ZDDs are represented in memory and how the ZDD family algebra operations are
implemented, the reader is referred to the literature [6].

2.3 Physical Quantum Architectures

2.3.1 Rigetti

Rigetti has developed quantum machines based on solid-state, superconducting circuit technology. The
company has also developed a Python library pyQuil as well as a software development kit (SDK) called
Forest that can be used to write quantum algorithms, interact with quantum processing units (QPUs)
and simulate quantum computing. The quantum instruction language Quil is used to specify algorithms
for the Rigetti QPUs [13]. Within the SDK, it is possible to create custom architectures that can be
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Figure 2: Simple circuit and device

targeted by the Rigetti compiler. To implement an algorithm on the Rigetti QPUs, complex gates must
be decomposed into the native gate set of Rz(θ),Rx(

kπ

2 ) where k is an integer value, and the two-qubit
operator CZ. As an additional constraint, CZ operations are limited with respect to where they may be
placed on the device due to the constraints among qubits. The Rigetti compiler may be used to transform
technology-independent circuits into forms that have the appropriate gate library and connections for
QPU execution. This compiler performs mapping and minimization procedures, but the resulting circuits
may not necessarily be the optimum solution.

2.3.2 IBM

IBM has also developed quantum computers based on solid-state, superconducting circuit technology.
The Python SDK Qiskit is their tool for performing quantum information processing (QIP) with their
platform. Quantum assembly language, or QASM, is used to specify quantum logic for execution on the
IBM quantum machines [4]. In order for a quantum circuit to be executable on a real machine, the QASM
specification must not only obey coupling map constrictions but also contain operators within the gate
set of Rz(θ), Rx(φ), Rx(γ), and the two-qubit operator CX . The compiler contained in the Qiskit SDK
may be used for transforming circuits into a technology-ready form, but as with the Rigetti compiler,
solutions may not be optimum. Qiskit allows for compilation to custom architectures so that devices
outside of the existing IBM machines may be targeted.

3 Problem formulation

In this paper, we model the quantum circuit that is to be mapped to a quantum device as a set of pseudo
qubits V = {v1, . . . ,vn} and an ordered sequence of two-qubit gates G = g1, . . . ,gk, with gi ∈

(V
2

)
. We can

safely ignore the one-qubit gates in the circuit, since the coupling constraints of the device do not affect
their mapping. Also note that we do not take the direction of a gate (e.g., the position of control and
target in a CX) into account as unidirectional gates may be reversed, as seen in [11], with single qubit
operations.

Example 3. Fig. 2(a) shows a quantum circuit on four pseudo qubits V = {a,b,c,d} and three two-qubit
gates g1 = {a,b}, g2 = {b,c}, and g3 = {b,d}.
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A quantum device is modeled by an undirected graph (P,E), where P = {p1, . . . , pm} is a set of
physical qubits and an edge {p,q} ∈ E ⊆

(P
2

)
states that a 2-qubit operation can be executed using the

two physical qubits p and q.

Example 4. Fig. 2(b) shows a simple four-qubit quantum device with physical qubits P = {A,B,C,D}
and a ring topology, i.e., edges E = {{A,B},{B,C},{C,D},{D,A}}.

The goal is to find a mapping ϕ : V → P of pseudo qubits into physical ones, such that all two-qubit
operations in the circuit are executed on adjacent qubits according to the device’s coupling constraints.
It may not be possible to find such mapping for the input circuit. For example, there exists no such
mapping for the example circuit, since the pseudo qubit b interacts with three other qubits. However, by
adding SWAP gates to reorder pseudo qubits, a mapping can be achieved. A SWAP gate is a two-qubit
operation that can either be implemented with CX or single-qubit rotations and CZ.

Example 5. By adding a SWAP gate after the second gate of the circuit in Fig. 2(a), one must update
all successive gates in order to retain the functionality. However, the transformed circuit can now be
mapped to the quantum device by mapping a 7→ A, b 7→ B, c 7→C, and d 7→ D.

The aim is to use a small number of SWAP gates when transforming an initial circuit to a circuit that
can be mapped into a target device. Finding the globally optimum mapping and a transformed circuit
using the fewest number of SWAP gates is a computationally complex and time-consuming task [2].

To address the problem of finding maximal partitions for a circuit using ZDDs, we use partitions
where

• there exists a subgraph isomorphism of (V,G j) to (P,E) for 1≤ j ≤ l,

• there exists no subgraph isomorphism of (V,G j ∪{gb j+1}) to (P,E) for 1≤ j < l.

Each partition has an associated set of mappings of pseudo to physical qubits Φ j = {ϕ : V 7→ P}
where ϕ is a subgraph isomorphism of (V,G j) to (P,E). If partition G j cannot be extended, SWAP
operations are inserted to merge the last gate of the partition, gi with the adjacent gate in the circuit.
These swapping operations, referred to as layers, exchange information on the adjacent physical qubits
of the device and are executable in parallel within a single time cycle. The best SWAP layer is chosen
according to a scoring metric. Once selected, the SWAP layer merges the gate gi with gi+1 by inserting
SWAP gates before gi+1, extending G j.

Ideally, a single partition will cover the entire circuit, providing a set of mappings that assign pseudo
qubits to physical qubits on the device. In the case that multiple partitions exist that are maximally sized
with inserted SWAP layers, a mapping for the circuit is selected using the largest partition.

4 Finding maximal partitions

In this section, we describe how to use ZDDs and ZDD operations to find a maximal partition that starts
in some gate gi. The ZDDs are defined over the nm variables vp for each v ∈ V and each p ∈ P. Each
ZDD represents a family of finite subsets, and each subset α represents a partial mapping ϕ : V → P,
where ϕ(v) = p, if and only if vp ∈ α where α is a mapping.

Example 6. The ZDD f = {{aA,bB,cC,dD}} represents a family of a single mapping that maps a 7→ A,
b 7→ B, c 7→C, and d 7→ D.
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First, we define some general sets, which are used throughout the following operations. It is sufficient
to initialize these sets once at the beginning of the algorithm. The set

from(v) =
⋃
p∈P

εvp (2)

contains all singleton mappings v 7→ p for some v ∈V . Analogously, the set

to(p) =
⋃
v∈V

εvp (3)

contains all singleton mappings v 7→ p for some p ∈ P.
Example 7. For the example circuit and device we have from(a) = {{aA},{aB},{aC},{aD}} and
to(A) = {{aA},{bA},{cA},{dA}}.

Using this set, we can define two other helpful sets, valid and bad, using the ZDD family algebra
operations. The set valid contains all two-element partial mappings that are feasible with respect to the
coupling constraints of the device:

valid =
⋃

{p,q}∈E

to(p)t to(q) (4)

The set bad contains all two element sets of illegal partial mappings, because they either contain an
element with two images or two elements which map to the same image:

bad =
⋃
v∈V

(
from(v)

2

)
∪
⋃
p∈P

(
to(p)

2

)
(5)

Lemma 1. β ∈ bad if and only if either β = {vp,vq} and p 6= q or β = {pv, pw} and v 6= w, for all
v,w ∈V and all p,q ∈ P.

Proof. First, note that
from(v)t from(v) =

⋃
p∈P

⋃
q∈P

{{vp,vq}}.

From the resulting set, we can remove the cases in which p = q by subtracting from(v). The same
argument applies to (to(p)t to(p))\ to(p).

Corollary 1. A set α represents a partial mapping if and only if there exists no β ∈ bad such that β ⊆ α .
Last, we define the set map(i) which represents all possible mappings of the pseudo qubits in gate

gi = {v,w}:
map(i) = (from(v)t from(w))∩ valid (6)

In other words, we first join all possible mappings of v with all possible mappings of w, before we
restrict the result two-element subsets to those which are valid with respect to the target device.
Example 8. Gate g1 = {a,b} can be mapped in eight different ways:

map(1) = {{aA,bB},{aB,bC},{aC,bD},{aD,bA}
{aB,bA},{aC,bB},{aD,bC},{aA,bD}}

Also gate g2 = {b,c} can be mapped in eight different ways:

map(2) = {{bA,cB},{bB,cC},{bC,cD},{bD,cA}
{bB,cA},{bC,cB},{bD,cC},{bA,cD}}
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Data: Gate sequence g1, . . . ,gk, and device (P,E)
Result: partitions G j with begin and end indexes b j,e j; all possible mappings Φ j

Set j← 1, b j← 1, m← map(1);
for i = 2, . . . ,k do

Set m′← (mtmap(i))↘bad;
if m′ = /0 then

for layer in layers do
calculate scores;

end
if max score 6= 0 then

insert SWAP circuit;
update topology;
Set m(max score)′← (mtmap(i))↘bad;
Set m← m′;

else
Set e j← i−1, Φ j← m;
Set j← j+1, b j← i, m← map(i);

end
else

Set m← m′;
end

end
Set e j← k, Φ j← m;

Algorithm 1: Find maximal partitions

Finally, the possible mappings of two consecutive gates gi and gi+1 can be computed using

(map(i)tmap(i+1))↘bad. (7)

Example 9. Recall the two families map(1) and map(2) from the previous example. Joining them leads
to a family with up to 64 subsets, out of which many do not represent legal partial mappings such as
{aA,bB,bA,cB}. These can be removed using the restriction to bad, resulting a family consisting of the
only eight legal partial mappings:

{{aA,bB,cC},{aB,bC,cD},{aC,bD,cA},
{aD,bA,cB},{aA,bD,cC},{aB,bA,cD},

{aC,bB,cA},{aD,bC,cB}}

In some instances, Eqn. 7 results in the empty set, /0, whenever the mappings of two consecutive gates
are combined. In this case, SWAP procedures must be performed on physical qubits in order to exchange
pseudo qubit information and extend the partition G j. Acceptable SWAP operations are determined by
the topology of the device, and the sets of operations that can be executed simultaneously within a time
cycle are desired. ZDDs are used to create a set of all “good” SWAP circuits, which are those that interact
with at least one qubit in the image of ϕ and the depth of the circuit is one, i.e., a SWAP circuit may
only contain multiple SWAP gates as long as qubits between gates are not shared. The ZDDs for this
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task differ from those used to enumerate all mappings, and they do not share any variables. The SWAP
circuit ZDDs are defined over the |E| variables e for each e ∈ E since SWAP gates can only be placed
on certain edges connecting physical qubits according to the quantum device operational characteristics.
We initialize the ZDD base with the following ZDDs. For each p ∈ P, the ZDD

edges(p) =
⋃
{εe | e ∈ E s.t. p ∈ e} (8)

contains all SWAPs that interact with qubit p.
All possible subsets of SWAP gates that can be executed in parallel (i.e., in depth 1) are described by

the ZDD

layers =℘↘
⋃
p∈P

(
edges(p)

2

)
. (9)

Example 10. The set of SWAP gates that can be parallelized for the topology in Fig. 2(b) can be deter-
mined using Eqn. 9. First, the set of edges for all physical qubits p in P must be defined:

edges(A) = {{AB},{AD}},

edges(B) = {{AB},{BC}},

edges(C) = {{BC},{CD}},

edges(D) = {{CD},{AD}}.

Next, a set must be created that consists of the union of all of the
(N

k

)
operations where N = edges(p)

and k = 2: ⋃
p∈P

(
edges(p)

2

)
= {{AB,AD},{AB,BC},{BC,CD},{CD,AD}}.

Finally, the nonsupersets operation is implemented between the tautology, or universal family of all
subsets for the physical qubit edges. The set ℘ is defined as

℘= { /0,{AB},{BC},{CD},{AD},{AB,BC},{AB,CD},{AB,AD},{BC,CD},{BC,AD},
{CD,AD},{AB,BC,CD},{AB,BC,AD},{AB,CD,AD},{BC,CD,AD},{AB,BC,CD,AD}},

allowing the layers for the device in 2(b) to be calculated as

layers = { /0,{AB},{BC},{CD},{AD},{AB,CD},{BC,AD}}.

Not all combinations of SWAP gates in layers may be useful for extending a partition of gates. For
example, some SWAP circuits may allow the partition G j to extend further and have greater depth while
others provide more mapping options within Φ j. As a result, a scoring function is calculated for each
member of layers to determine the optimal SWAP decision to extend a circuit partition. The function of

score = (Aα +Bβ )
γ

C
(10)

is used to select the optimal SWAP circuit where α is depth weight, β is map weight, γ is SWAP weight, A
is depth count, B is map count, and C is SWAP count. In Eqn. 10, SWAP count has an inverse relationship
with a layer’s score as lower overall gate counts, or volume, in a technology-mapped implementation are
preferred. The parameter γ , however, can be adjusted to make the cost of an additional SWAP operations
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less severe. The weights of this function can be tuned to prioritize the growth of the partition with respect
to either gate coverage or available mappings if a layer in layers is implemented. In the case that score
for each layer is zero, a new partition must be created for the circuit.

Algorithm 1 implements ZDD data structures and the aforementioned ZDD operations to compute
maximal partitions of quantum circuits starting from the first gate. A counter j indicates the current
partition number as the algorithm parses through the operators in the network. In m, a set of mappings
are stored and updated as the current partition increases in size. These maps are eventually stored in Φ j.
For each gate i we try to extend m by adding the gate using map(i), and storing the resulting mappings in
m′. If m′ is empty, layers will be used to determine if a SWAP operation can be implemented in order to
increase the current partition. The scores for all of the sets in layers are calculated, and the SWAP circuit
with the largest score is used to extend the partition. After the SWAP is implemented, the topology of
the device is updated, maximum score m′ is calculated, and m is updated with m′. If the maximum score
is zero, then the then the current partition ends at i−1, and a new partition j+1 starts at gate i.

5 ZDD mapping in the Quantum Compilation Flow

The algorithm discussed in the previous section implements the mapping of pseudo qubits in a quantum
circuit specification to physical qubits on a real device. While the mapping procedure is essential for for
quantum compilation, additional optimization steps can further improve the technology-mapped logic.
For this reason, we propose the incorporation of the ZDD mapping techniques into a larger logic syn-
thesis flow. In this procedure, mapping would occur after a circuit has been decomposed into one- and
two-qubit operators and before a specification is compiled by a device’s custom compilation tool. Com-
pleting synthesis with available compilation tools allows the opportunity to take advantage of existing
optimization algorithms while the operators of the of a circuit are transformed into a platform’s native
gate library. It should be noted that although the ZDD mapping algorithm was evaluated using super-
conducting qubits as a target platform, the techniques described here are applicable to other quantum
technologies that have coupling restrictions.

6 Experimental Results

The ZDD quantum mapping algorithm was developed in C++ and was incorporated in the tweedledum
logic synthesis library found in reference [10]. A subset of benchmarks from [1] were selected to evaluate
the methods described in this work. These benchmarks contain a variety of arithmetic and quantum
algorithms that are originally specified with a gate set that contains physically unrealizable multi-qubit
gates. Thus, the specifications are transformed into the Clifford+T library of single- and two-qubit gates
using the “phasefold” pass of the Feynman toolkit [1] . After this procedure, the benchmarks are in a
technology-independent form that can be mapped to a target quantum device.

A ring topology was chosen as the target device during synthesis. Each benchmark was targeted to a
device that contained n physical qubits where n is the number of pseudo qubits in a quantum algorithm.
In these devices, all qubits are connected to their two adjacent neighbors, as seen in Fig. 2(b), and the
connections are bidirectional with respect to the placement of the two-qubit CX gate. Once the circuit and
topology are selected, Algorithm 1 is applied to map the pseudo qubits in the design to physical qubits.
The scoring operation of Eqn. 10 that chooses between the SWAP circuits in layers to extend the partition
used zero, one, and one for the depth, map, and SWAP weights, respectively. If the benchmark can be
covered by an entire partition during the application of Algorithm 1, then the resulting specification is
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in a fully technology-mapped form and therefore compatible with the available connections of the target
device. If multiple partitions are needed for a benchmark, the resulting specification is mapped using a
permutation of the largest partition, making additional SWAP operations required for the design to be
fully compatible with the target technology. This additional circuit modification is accomplished by the
custom compilers that are provided with the Rigetti and IBM SDKs. Compiling the ZDD mapped circuits
into the selected device topology with the available Rigetti and IBM compilers is the final procedure in
the mapping flow. This step also ensures that all gates are translated into gates from the target device.
Note that such a translation cannot lead to any further violations of the coupling constraints. After the
final compilation step, the circuits are ready for execution on their respective platform since they are in a
technology-mapped and optimized form. Details about the benchmarks along with experimental results
of the mapping and compilation procedures can be found in Table 1.

In Table 1, details about depth, volume, and two-qubit gate count have been included for the ZDD
mapped and compiled circuits. Information about circuits that were only ZDD mapped without compi-
lation is also shown. The benchmarks were compiled with and without preprocessing the circuit with
the ZDD mapper. Circuits that improved in metrics for a particular device and benchmark whenever
ZDD mapping was implemented are emphasized. On average, benchmarks mapped to a Rigetti ring
topology saw a decrease of around 10% with respect to depth, volume, and two-qubit gate count when-
ever ZDD mapping was included in technology-dependent logic synthesis flow before compilation. The
IBM-compiled circuits, however, only saw an average decrease of 2.3% in depth, volume, and two-qubit
gate count whenever ZDD mapping was used. Individual improvements in circuit metrics of up to ap-
proximately a 50% decrease was seen in volume on the Rigetti devices and up to approximately a 44%
decrease was seen in depth on the IBM devices. These findings demonstrate the potential that ZDD map-
ping techniques have with respect to finding more optimal solutions whenever generating technology-
dependent forms of quantum circuits.

7 Conclusion

We present a method for mapping quantum logic circuits to actual devices using ZDDs. The required
operations and algorithm are described, and the implementation is developed and tested in a quantum
compilation flow that targets devices meant for the Rigetti and IBM families of superconducting quantum
computers. When experimental results are evaluated, it is observed that incorporating ZDD mapping into
quantum logic synthesis in many cases allowed for more optimal circuits to be found in their technology-
dependent form. These results suggest that the ZDD may be a useful tool for quantum compilation that
should be continued to be investigated in the future.

Acknowledgements. The author thanks Alan Mishchenko for helpful discussion and comments. This
work was supported by the Swiss National Science Foundation in the project "Technology-dependent
Optimization in Quantum Compilation" (IZSEZ0_184016).

A Implementation of ZDD operations

In [6, Ex. 7.1.4-207], Knuth describes the implementation of a ZDD operation f § k, which is similar to
the operation

( f
k

)
, which is used in this paper. No description of an implementation for

( f
k

)
was found in

the literature, and therefore we report our implementation here, in a similar style Knuth used to describe
the implementation of f § k.
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Table 1: Depth, volume, and two-qubit metrics of benchmarks after zdd mapping, IBM compiling, and
Rigetti compiling. Values that decreased whenever ZDD mapping was implemented before compilation
have been emphasized.

Benchmark No. Original ZDD Original Rigetti Original IBM ZDD Mapped/ ZDD Mapped/
Name Qubits Mapped Compiled Compiled Rigetti Compiled IBM Compiled

barenco_tof_3 5 depth: 64 118 62 98 (-16.95%) 84 (+35.48%)
vol.: 95 446 180 221 (-50.45%) 165 (-8.33%)

2q gates: 73 68 67 58 (-14.71%) 63 (-5.97%)
barenco_tof_4 7 depth: 94 230 131 155 (-32.6%) 130 (-0.76%)

vol: 190 763 462 449 (-41.15%) 335 (-27.49%)
2q gates: 152 123 177 117 (-4.88%) 132 (-25.42%)

barenco_tof_5 9 depth: 94 231 121 155 (-32.9%) 130 (+7.44%)
vol.: 285 1136 528 682 (-39.96%) 505 (-4.36%)

2q gates: 231 184 201 177 (-3.8%) 201 (+0%)
gf2∧4_mult 12 depth: 46 337 251 361 (+7.12%) 354 (+41.03%)

vol: 232 2319 1450 2593 (+11.82%) 1511 (+4.21%)
2q gates: 145 363 557 430 (+18.46%) 587 (+5.39%)

gf2∧5_mult 15 depth: 64 422 259 504 (+19.43%) 342 (+32.05%)
vol: 363 3747 2212 4510 (+20.36%) 2351 (+6.28%)

2q gates: 230 596 842 775 (+30.03 %) 910 (+8.07%)
grover_5 9 depth: 210 968 989 872 (-9.92%) 552 (-44.19%)

vol: 777 4857 2909 4484 (-7.68%) 2590 (-10.97%)
2q gates: 441 781 1096 739 (-5.38%) 1011 (-7.76%)

hwb6 7 depth: 113 449 269 432 (-3.79%) 290 (+7.81 %)
vol: 303 2032 1049 2027 (-0.25%) 1101 (+4.96%)

2q gates: 185 332 404 338 (+1.81%) 422 (+4.46%)
mod_mult _55 9 depth: 49 189 123 177 (-6.35 %) 144 (+17.07 %)

vol: 155 978 500 850 (-13.09 %) 469 (-6.2%)
2q gates: 88 151 193 143 (-5.3 %) 176 (-8.81%)

mod_5 _4 5 depth: 60 115 94 95 (-17.4%) 92 (-2.13%)
vol: 121 459 229 308 (-32.9%) 239 (+4.37%)

2q gates: 98 73 88 79 (+8.21%) 92 (+4.55%)
qft _4 5 depth: 142 162 155 137 (-15.43%) 105 (-32.26%)

vol: 247 447 322 433 (-3.13%) 293 (-9.01%)
2q gates: 120 79 126 92 (+16.46%) 114 (-9.52%)

tof_3 5 depth: 39 98 62 72 (-26.53%) 61 (-1.61%)
vol.: 75 309 145 195 (-36.89%) 135 (-6.9%)

2q gates: 54 47 53 45 (-4.26%) 52 (-1.89%)
tof _4 7 depth: 46 117 98 88 (-24.79%) 62 (-36.73%)

vol: 125 505 326 327 (-35.25%) 218(-33.12%)
2q gates: 92 80 121 75 (-6.25%) 84 (-30.58%)

tof _5 9 depth: 46 118 68 89 (-24.58%) 62 (-8.82%)
vol: 175 707 335 459 (-35.08%) 308 (-8.06%)

2q gates: 130 112 132 106 (-5.36%) 118 (-10.61%)
vbe _adder _3 10 depth: 67 216 165 197 (-8.8%) 232 (+40.61%)

vol: 162 1244 765 1131 (-9.08%) 835 (+9.15%)
2q gates: 122 190 294 195 (+2.63%) 329 (+11.9%)
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CHOOSE( f ,k) = “If k = 1, return f . If f = /0 and k > 0, return /0. If f = /0 and k = 0, return { /0}. If( f
k

)
= r is in the cache, return r. Otherwise set r← CHOOSE( fl,k). If k > 0, set q← CHOOSE( fl,k−1)

and r← ZUNIQUE( fv,r,q). Put
( f

k

)
= r in the cache, and return r.”
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