
Scaling-up ESOP Synthesis
for Quantum Compilation

Bruno Schmitt, Mathias Soeken, Giovanni De Micheli
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
{bruno.schmitt, mathias.soeken, giovanni.demicheli}@epfl.ch

Alan Mishchenko
University of California, Berkeley

Berkeley, USA
alanmi@berkeley.edu

Abstract—Today’s rapid advances in quantum computing hard-
ware call for scalable synthesis methods to map combinational
logic represented as multi-level Boolean networks (e.g., an and-
inverter graph, AIG) to quantum circuits. Such synthesis process
must yield reversible logic function since quantum circuits are
reversible. Thus, logic representations using exclusive sum-of-
products (ESOP) are advantageous because of their natural
relation to Toffoli gates, one of the primitives in reversible logic.
This motivates developing effective methods to collapse AIG logic
networks into ESOPs. In this work, we present two state-of-
the-art methods to collapse an AIG into an ESOP expression,
describe their shortcomings and introduce a new approach
based on the divide-and-conquer paradigm. We demonstrate the
effectiveness of our method in collapsing IEEE-compliant half
precision floating point networks. Results show that our method
can collapse designs—which were previously not solvable within
a week—in less than 5 minutes. We also describe a technique
capable of taking advantage of this new method to generate
quantum circuits with up to 50% fewer T gates compared to
state-of-the-art methods.

Index Terms—ESOP, Collapsing, Reversible Logic, Quantum
Computing

I. INTRODUCTION

Quantum circuits are an abstraction for the physical in-
teraction with a quantum computer. They consist of low-
level operations, called quantum gates, that model the state
update of one or multiple qubits [1]. Admissible gates for
today’s quantum computers interact with one or two qubits.
Quantum compilation is the task of translating a quantum
algorithm into a quantum circuit. Quantum algorithms consist
of quantum and classical operations. Depending on the type of
operations, different compilation techniques are applied to find
a quantum circuit. For classical operations, which are the target
of this paper, the compilation typically takes two steps: (i) the
combinational operation is represented in terms of a reversible
logic network, and (ii) the reversible gates in the network are
translated into quantum gates. Toffoli gates are usually used as
gates in the reversible logic networks, and efficient methods
exist for their translation into quantum gates [2], [3].

Due to a natural affinity between exclusive sum-of-products
(ESOP) expressions and Toffoli gates, ESOP-based reversible
logic synthesis [4] has been proven to be highly effective. Given
an ESOP expression for a Boolean function f : Bn → Bm,
one can easily derive a reversible network that acts on n + m

qubits. The number of qubits does not increase when compiling
the reversible network into a quantum circuit.1

We assume that the combinational operations in the quantum
algorithms are expressed in terms of multi-level Boolean gate
level networks. In order to utilize ESOP-based reversible logic
synthesis, it is necessary to convert such networks into two-
level ESOP expressions. The conversion of a Boolean network
into a two-level representation is called collapsing. There are
two state-of-the-art techniques to collapse a multi-level Boolean
network represented as an and-inverter graph (AIG) into a two-
level ESOP expression: the AIG extract method and the BDD
extract method [5]. To illustrate the difference, consider the
simple AIG shown in Fig. 1a.

x1 x2 x3

fa)

∧
4

∧
5

∧
6

∧
7

∧
8

∧
9

b) e1 = x1 e2 = x2 e3 = x3

e4 = x2x̄3

e5 = x̄2x3

e6 = x2x̄3 ⊕ x̄2x3

e7 = x̄1x2x̄3 ⊕ x̄1x̄2x3

e8 = x1 ⊕ x1x2x̄3 ⊕ x1x̄2x3

f = x̄1x2x̄3 ⊕ x̄1x̄2x3 ⊕ x1x2x̄3 ⊕ x1x̄2x3 ⊕ x1

c)

f

x1

x2

x3

T

f = x1 ⊕ x2 ⊕ x3

Fig. 1. In this figure, for the interest of space, we omit the ∧ operator
when forming cubes, e.g., x2 ∧ x̄3 = x2x̄3. a) An AIG which implements
f = x1⊕x2⊕x3. b) The result of AIG extract. c) The result of BDD extract.

The method AIG extract collapses all nodes of the AIG into
ESOPs in a topological order; Fig. 1b shows the result of its
application. Without going into details, one can already see that
size explosion is the main drawback of directly collapsing AIG
nodes into ESOP expressions. This problem can be mitigated
by means of some ESOP optimization techniques, but these
are most often not sufficient.

The alternative method BDD extract is presented in Fig. 1c,
which shows the BDD computed from the AIG, and an ESOP

1In the special case where n > 2, m = 1, and the size of f ’s ON-set is odd,
all current mapping algorithms for Toffoli gates will require one additional
qubit.



extracted from the BDD. For this case and for the majority of
our benchmarks, BDD extract performs much better than AIG
extract in both runtime and quality of results. Unfortunately,
BDD extract does not come without its own shortcoming:
the lack of scalability of the BDD construction process. For
some circuits, BDD construction suffers from the BDD memory
explosion problem—the BDD size is exponential in the number
of input variables.

Both state-of-the-art techniques lack the necessary scalability
to cope with the increasing complexity of the logic functions
used on quantum computers. Therefore, in this paper, we
present the results of research directed towards the development
of a new ESOP extraction tool:

• We revisit both the AIG and BDD extract methods and
propose ways to improve them (Section III).

• We introduce a divide-and-conquer collapsing method,
called DC extract (Section IV), that overcomes scalability
limitations of the state-of-the-art approaches.

• We apply the new collapsing method for an ESOP-based
reversible logic synthesis technique, allowing us to find
quantum circuits with up to 50% reduced quantum gate
cost (Section V).

The experimental results in Section VI confirm the effective-
ness of the proposed method. Specifically, we show that we
are able to collapse AIGs that previous methods were unable
to. This opens up the possibility of a qubit-optimal quantum
network realization of these circuits, which is crucial due to
the severe resource limits imposed by today’s and near-term
quantum hardware.

II. PRELIMINARIES

A Boolean variable x is a variable that takes one of the
two values from the domain B = {false, true}, or {0, 1}. A
positive literal is the Boolean variable x and a negative literal
is its complement x̄. The Boolean AND of k literals is a cube,
or product, i.e., c = l1 ∧ · · · ∧ lk (we may omit the symbol ∧
in forming cubes, e.g., l1 ∧ · · · ∧ lk = l1 · · · lk). If a variable
is not represented by a positive literal or a negative literal in a
cube, then its value is said to be a don’t care literal. A minterm
is a cube, in which every variable is represented by either a
negative or positive literal. A cube with k don’t care literal
values covers 2k minterms.

The distance of two cubes is the number of variables for
which the corresponding literals have different sets of value,
i.e given three cubes: c1 = x1x2, c2 = x̄1 and c3 = x̄1x2, the
distance of c1 and c2 is two, while the distance between c1

and c3 is one.
A multiple-output Boolean function f : Bn → Bm maps

n Boolean input variables to m Boolean output values. We
can represent f as a m-tuple of n-variable Boolean functions
(f1, . . . , fm). The support of f is the subset of variables that
influence the output value of the function f . Unless stated
otherwise, we assume that a Boolean function is completely
specified. The cofactors are derived from the function by
substituting constant values for the input variables. For example,
Boole’s expansion of a function f , often called Shannon’s
expansion, where fx̄i = f(xi = 0) and fxi = f(xi = 1)

are the negative and positive cofactors of the function f with
respect to variable xi, respectively.

Any Boolean function can be represented as a two-level
ESOP, which is a Boolean XOR of cubes (i.e., f = c1 ⊕
c2 ⊕ · · · ⊕ cj). Using the fundamental property of the XOR
operation, the two following propositions can be proven:

Proposition 1. Two identical cubes, i.e., distance-0 cubes,
can be added to any ESOP without changing the function
represented by it.

Proposition 2. The XOR of two distance-1 cubes can be
represented by a single cube.

We also recall here the three basic expansions: f = xifxi
⊕

x̄ifx̄i
, f = fx̄i

⊕ x̄i
∂f
∂x and f = fxi

⊕ x̄i
∂f
∂x where ∂f

∂x = fx̄i
⊕

fxi
. These are called Shannon expansion, the positive Davio

expansion, and the negative Davio expansion, respectively.
A Boolean network is a directed acyclic graph where nodes

represent logic gates or primary inputs/primary outputs, and
edges represent wires that form the interconnections among
the gates. An AIG [6] is a homogeneous Boolean network in
which the logic gates are two-input ANDs and the edges can
be either regular or complemented.

A BDD [7] is a graph-based representation of a function
that is based on the Shannon decomposition. Applying this
decomposition recursively allows dividing the function into
many smaller sub-functions. BDDs make use of the fact that
for many functions of practical interest, smaller sub-functions
occur repeatedly and need to be represented only once. BDDs
are ordered in the sense that the Shannon decomposition is
applied with respect to some given variable ordering which
also has an effect on the BDD’s number of nodes. Improving
the variable ordering for BDDs is NP-complete [8] and many
heuristics have been presented that aim at finding a good
ordering.

III. STATE-OF-THE-ART COLLAPSING

In this section, we describe both the AIG and BDD extract
methods [5], [9]. We present some of their implementation
details and their respective shortcomings. We also discuss some
initial ideas to improve on the state-of-the-art techniques that
did not lead to sufficient improvements. These failed attempts
further affirm the inability of the two approaches to cope with
the complexity of large benchmarks.

We shall limit the following discussion for the cases where
we are dealing with AIGs, but these technique can be easily
extended to deal with more generic Boolean networks.

A. AIG extract

This method computes an ESOP expression for each node in
an AIG in a topological order. First, each input variables xi is
assigned the trivial ESOP expression xi. The ESOP expression
of each subsequent node is computed by conjoining the ESOP
expressions of its previous nodes:

ei =

{
xi if 1 ≤ i ≤ n

ej(i) ∧ ek(i) if n + 1 ≤ i ≤ n + r
(1)



where r is the number of nodes, j(i) and k(i) identify the two
inputs of node i, 1 ≤ j(i) < i and 1 ≤ k(i) < i. Extra care
must be taken when a node depends on the complementation
of its prior one.

As illustrated by Fig. 1, the number of product terms in the
resulting ESOP expression of each node is the product of the
number of terms of its inputs. Hence, the direct implementation
of this technique is highly limited in both scalability and quality
of results. Therefore, in the following we discuss improvements
over this naı̈ve implementation.

Improving performance by using ESOP minimization:
Over the years, several ESOP minimization strategies have
been created, however none of them could be fully applied
after collapsing each node without paying a large runtime
penalty. To solve this problem, our implementation uses a
greedy, low effort minimization strategy while constructing
the ESOP expression of each node. The strategy is based on
propositions 1 and 2 and is greedy in the sense that whenever
a new cube is to be added to the resulting expression, it first
tries to find another cube which is either distance-0 or distance-
1, if this search is successful, then it transforms both cubes
accordingly. With this improvement the size of the resulting
ESOP of a node is only the product of the number of terms of
its children in the worst case. Empirical observations indicate
that most of the time the size is about the same as the size of
its fanins’ largest ESOP.

B. BDD extract

The method BDD extract first expresses the AIG in terms
of a BDD by translating each node into a BDD in topological
order. From the BDD a special case of an ESOP expression, a
Pseudo-Kronecker expression, is extracted using the algorithm
presented in [10]. A detailed discussion of the algorithm is
given in [9].

The algorithm traverses the BDD twice. During the first pass,
the best expansion is found for each node and saved in a hash
table. Three possible canonical expansions (Shannon, positive
Davio, or negative Davio) are considered and their costs are
evaluated by the number of cubes they add to the solution.
During the second pass, in each node the best expansion is
chosen and, depending on the expansion, one literal is added
to an array of the variable values representing the current
cube. When the traversing procedure reaches the bottom of the
diagram, it uses all the variable values collected to generate a
cube and add it to the resulting ESOP expression.

Implementing BDD extract is quite straightforward by means
of a BDD package such as CUDD [11]. The main drawback of
this method is the lack of scalability of the BDD construction,
which bounds its performance. The BDD construction process
can suffer from a poor selection of variables order, which can
be mitigated by allowing BDD dynamic variable reordering.
For some circuits, however, regardless of reordering being
used, the BDD construction suffers from the BDD memory
explosion problem—the BDD size is exponential in the number
of input variables—and therefore the naı̈ve implementation is
impractical.

IV. DIVIDE-AND-CONQUER EXTRACTION

The main technical contribution of this paper is the intro-
duction of a divide-and-conquer collapsing method. This new
approach is based on a simple and natural idea: divide the
given problem into small-enough subproblems; solve these
subproblems independently, then combine these solutions to
arrive at a final solution.

A. The set of single-cube cofactors

In the following we discuss a useful relation for the coming
discussion.

Lemma 1. Any Boolean function f can be written as

f = f ∧ p1 ⊕ f ∧ p2 ⊕ · · · ⊕ f ∧ pi ⊕ · · · ⊕ f ∧ pN (2)

for N Boolean functions pN over the same support as f , if

p1 ⊕ p2 ⊕ · · · ⊕ pi ⊕ · · · ⊕ pN = 1.

Proof: By factoring f in the right-hand-side of (2) becomes
f(p1 ⊕ · · · ⊕ pN ).

The careful selection of a set P = {p1, p2, . . . , pi, . . . , pN}
is a key component of our method because it directly affects
its effectiveness. Indeed, we need to choose P in such a way
that makes easier to collapse all individual f ∧ pi. This might
sound counter-intuitive at first, but if we limit our choices for
pi so that P is a set of single-cube cofactors of f , then the
variables present in pi can be ignored when collapsing f ∧ pi.

In practice, our implementation represents f as an AIG and
pi as cube; f ∧ pi is represented as a tuple (fi, pi), where fi
is the original AIG f with the variables present in pi being
assigned constant values in accordance to their polarity in the
cube. These constant values simplify the AIG through constant
propagation.

After dividing the problem, we use BDD extract to collapse
these fi AIGs into ESOP ei. Finally, we can combine our
results in two different ways: one will leave the cofactors
multiplying the intermediate ESOPs, while the other will
expand the multiplications. The following example illustrates
our method.

Example 1. Let f be a 3-variable Boolean function. Using
Lemma 1, we can represent the function as

f = f ∧ p1 ⊕ f ∧ p2 ⊕ f ∧ p3 ⊕ f ∧ p4

with p1 = x1∧x2, p2 = x̄1∧x2, p3 = x1∧x̄2 and p4 = x̄1∧x̄2.
With f given as an AIG, we can divide our problem by creating
the four tuples (f1, p1), (f2, p2), (f3, p3), (f4, p4). We solve it
by collapsing the simplified fi separately, where i = {1, 2, 3, 4},
thus generating: (e1, p1), (e2, p2), (e3, p3), (e4, p4). Finally,
we can report the combined solution either as:

f = e1 ∧ p1 ⊕ e2 ∧ p2 ⊕ e3 ∧ p3 ⊕ e4 ∧ p4

or as an expanded ESOP expression, with the multiplications
ei ∧ pi carried out.



B. Selection heuristics

The efficiency of our method is intimately related to the
selection of variables to cofactor. Therefore, in this section,
we define different heuristics to select the variables.

First, it is helpful to present a concept which aids the
visualization of how both heuristics behave. Hence, in the
context of this work, we define a cofactoring diagram as a
directed acyclic graph with a single root node and 2n leaves,
where n is he number of cofactored variables. Each leaf is
associated with a cube c which contains the literals of the
cofactored variables. Each intermediate node is associated
with a variable and has two out-going edges, representing
the positive and negative cofactors. Examples of such diagrams
can be seen in Fig. 2. We tested the following two heuristics
for picking the variables:

Fixed variable selection: This heuristic chooses variables
to cofactor using only one criteria: the combined size, in number
of nodes, of the resulting AIGs. The idea is to minimize
this number as much as possible. The first variable is chosen
by temporarily cofactoring all variables, one at a time, and
choosing one with minimal combined size. The two resulting
AIGs (equivalent to the positive and negative cofactors) are
used as starting point for the selection of the second variable,
which, in turn, temporarily cofactor all remaining variables,
one at a time, from the two AIGs and apply the same criteria
do select a variable. This process continues until the desired
number of variables is cofactored. Fig. 2a illustrates the implicit
cofactor diagram generated by this process.

Free variable selection: This heuristic selects variables
using the same criteria as the previous one. The difference
is the recursive way it chooses them. After selecting the first
variable, the two resulting AIGs are used as two different
starting points for the selection of the second one. In practice
this means that the variable selected as second cofactor in one
branch might be different from the variable selected in the
other. Fig. 2b illustrates this.

a)

x1x2 x1x̄2 x̄1x2 x̄1x̄2

b)

x1x2 x1x̄2 x̄1x3 x̄1x̄3

x1

x2 x2

x1

x2 x3

Fig. 2. Implicit cofactor diagrams generated by: a) Fixed variable selection
heuristic, b) Free variable selection heuristic.

V. APPLICATION: REVERSIBLE CIRCUITS

ESOP-based logic synthesis is heavily used in reversible
logic synthesis, due to natural correspondence of product terms
in an ESOP expressions and Toffoli gates. A reversible Toffoli
gate acts on a number of variables (that represent qubits). Let X
be the set of variables in the quantum circuit. Then a (multiple-
controlled mixed-polarity) Toffoli gate has a (possibly empty)
set of control lines, which are literals over X and one target

line which is a variable in X that is not a control line. The
Toffoli gate will invert the variable assigned to the target line,
if, and only if, the polarity of all inputs to the control lines
match the polarities specified for the gate. Fig. 3 illustrates
one Toffoli gate that acts on 5 qubits.

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5 ⊕ x1x̄2x3x̄4

Fig. 3. Example Toffoli gate

By concatenating Toffoli gates that act on the same target
line, one can build up an ESOP expression on the target line.
Vice versa, given an ESOP expression, one can easily extract
a sequence of Toffoli gates with control lines according to the
literals in the product terms. When considering multiple-output
functions, the resulting quantum circuit requires n + m qubits
where m is the number of outputs.

Example 2. Assume f = x̄1x̄2x3x4x5 ⊕ x̄1x2x3x̄4 ⊕
x̄1x2x4x5⊕x1x̄2x4x5⊕x1x2x3⊕x1x2x3x4. Then a quantum
circuit composed of Toffoli gates to realize f is depicted in
Fig. 4.

x1

x2

x3

x4

x5

0

x1

x2

x3

x4

x5

f

Fig. 4. Example of a synthesized reversible circuit.

Toffoli gates are an intermediate representation. They are
mapped into quantum gate library using an additional step (see,
e.g., [3]). A universal fault-tolerant quantum gate library is
the Clifford+T gate set [12]. The cost model for quantum
operations is non-trivial, but a good heuristic will try to
minimize both the number of Toffoli gates and the number
of controls in Toffoli gates, which corresponds, respectively,
to the number of product terms in the ESOP expressions and
the number of literals in the product terms. The cost of a
Toffoli gate is typically measured in the number of T gates it
requires in its mapping to a sequence of quantum operations,
since the T gate is considered the most expensive gate in the
Clifford+T quantum gate library [13]. Table I gives the costs
of implementing multiple-controlled Toffoli gates, according
to [3]. The circuit in Fig. 4 has a cost of 143 T gates.

If the ESOP expression is generated from the proposed DC
extract algorithm, we can cluster product terms that have the
same cofactor and use an additional helper qubit, called ancilla,
to store the cofactor values. Fig. 5 illustrates this procedure.
The top-most qubit is the ancilla that is being initialized to 0



TABLE I
THE COSTS OF MULTIPLE-CONTROLLED TOFFOLI GATES IN NUMBER OF T

GATES.

# Controls 0 1 2 3 4 5
# T gates 0 0 7 16 24 31

and then computes all cofactors x1x2, x̄1x2, x̄1x̄2, and x1x̄2.
By computing the cofactors in a Gray code order [14], the
transition from one cofactor to another can be done using a
single CNOT gate, a gate with a single control line. In general,
if the cofactors have k literals, we can transition from one
cofactor to another using a single (k − 1)-controlled Toffoli
gate, since the distance of two cofactors in Gray code order is 1.
In order to exploit this property, DC extract must use the fixed
variable selection heuristic. The circuit in Fig. 5 implements
the same function; while, at the expense of using one more
qubit, it has a cost of 109 T-gates.

0

x1

x2

x3

x4

x5

0

x1x2 x̄1x2 x̄1x̄2 x1x̄2 0

x1

x2

x3

x4

x5

f

Fig. 5. A new realization of the circuit in Fig. 4 with a lower cost in number
of T gates.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

We implemented the algorithm described in Section IV in
C++ using both CUDD and ABC [16] as external static libraries.
ABC is an open-source tool, designed for logic synthesis,
technology mapping, and formal verification for logic circuits,
we use it to manipulate AIGs through its AIG package GIA
and to check the results for equivalence. The CUDD package
is used to manipulate BDDs.

To evaluate our method, we use a set of Verilog netlists of
several IEEE-compliant arithmetic floating point designs in half
(16-bit) precision. For synthesis all Verilog files were translated
into AIGs and optimized for size using ABC’s resyn2 script.
The collapsing of the these function is used as an example to
illustrate the strength of this method in finding a good ESOP
representation which is a good starting point for a quantum
logic synthesis flow.

All experiments were run on an Intel(R) Xeon(R) CPU
E5-2690 v4 at 2.60GHz. The reported runtimes and peak
memory usage were obtained using the GNU 1.7 version of
the command time.

B. Collapsing floating-point benchmarks

The results of collapsing for each benchmark are reported
in Table II. The first column identifies each benchmark by
its name. The second column give the number of inputs and

outputs (i/o). The remaining columns reports the results of
using different techniques for collapsing in terms of ESOP
number of cubes (# terms), time and peak memory usage
(mem).

Both state-of-the-art methods failed to collapse the whole
set of benchmarks. In this experiment the timeout was set to
one week. Note that AIG extract has the worst runtime and
quality of result for all benchmarks. BDD extract, run with
dynamic variable reordering, improve these results and is able to
collapse an additional benchmark. DC extract was configured
to cofactor cubes with 2, 4, and 8 variables using the free
variable selection heuristic. The improvement is remarkable;
when cubes of 8 variables are cofactored, not only were all
benchmarks successfully collapsed, but also fp and, fp div and
fp sub were processed within four minutes and using much less
memory—when compared with the other runs of DC extract.
Note fp mult runs out of memory (OOM) for in the other runs
of DC extract.

Finally, in order to evaluate the impact of cofactoring
without taking into account the variable selection heuristics,
we implemented a random variable selection procedure which
behaves in a similar way as the free variable selection heuristic,
but instead of trying to minimize the size of the resulting AIGs
at each recursion step, it randomly selects one of the remaining
variables. We used this heuristic to collapse each benchmark a
hundred times. Not surprisingly, the results shown in Table III
indicate the need to carefully select the variables.

C. ESOP-based reversible logic synthesis

We implemented the synthesis method described in Section V
as a standalone tool capable of using the cofactored results of
DC extract to synthesize reversible circuits. Table IV shows
the results in terms of the number of qubits (q) and T gates
(T ). In the case of our technique, we also report the number of
cofactored variables (v). The first column name the benchmarks.
The next column presents the results obtained by directly
mapping product terms into multiple-controlled Toffoli gates
when the benchmark is collapsed without cofactoring, followed
by the results of optimizing the direct mapping by means of
[15], an approach which cofactors Toffoli gates that share the
same controls and stores the cofactor on an ancilla qubit. The
third column corresponds to results obtained when using the
synthesis method of Section V. As these experimental results
show, our method of deriving the cofactors more explicitly,
when compared to [15], leads to circuits with fewer quantum
gates.

Finally, in the last column are the results of [5], which is
a complete synthesis flow for quantum—hence our methods
should not be viewed as substitute for it, but as a complement.
Nevertheless, for the unitary operators benchmarks, we are
able to achieve an improvement of up to 50% when compared
to [5]. However, the results for the binary operators, namely
fp add, fp sub, fp div, and fp cmp, have very large T gate
count. The problem lies with the large size of their ESOP
expressions, which, to our knowledge, cannot be handled by
any state-of-the-art ESOP optimization tool. Consequently, we
did not use the direct method nor [15] to synthesize them.



TABLE II
RUNTIME OF AIG, BDD AND DC EXTRACT FOR THE HALF PRECISION (16-BIT) ARITHMETIC FLOATING POINT DESIGNS.

AIG extract BDD extract DC extract (2 cofactored vars) DC extract (4 cofactored vars) DC extract (8 cofactored vars)

name i / o # terms time (s) mem (Mb) # terms time (s) mem (Mb) # terms time (s) mem (Mb) # terms time (s) mem (Mb) # terms time (s) mem (Mb)

fp add 32 / 16 TO TO 16762634 27289.42 80190.32 17352120 10423.72 17077.70 14600025 134.81 1789.19
fp cmp 32 / 04 TO 184363 0.80 16.86 184347 0.58 16.48 184353 0.54 17.22 184687 0.71 16.57
fp div 32 / 16 TO TO 29504220 4246.47 6397.96 30650976 1594.69 4618.52 30110188 242.20 2478.21
fp exp 16 / 16 291726 14697.99 825.28 11470 282.24 156.88 11214 90.81 74.28 11087 21.59 47.43 11266 5.96 21.72
fp invsqrt 16 / 16 15907 74.05 35.12 2213 2.00 18.70 2238 1.50 15.54 2925 1.38 13.55 5188 0.93 18.80
fp ln 16 / 16 49240 6.40 10.21 16724 1.87 74.55 16301 1.14 23.48 16600 1.09 14.26 24684 0.65 14.59
fp log2 16 / 16 30476 3.04 7.61 10816 0.60 17.84 10822 0.41 14.79 11502 0.28 13.04 18833 0.45 14.57
fp mult 32 / 32 TO TO OOM OOM 94869392 62811.34 120460.29
fp recip 16 / 16 17478 3.89 8.11 3483 0.39 13.20 3576 0.23 12.79 3619 0.21 12.82 7346 0.79 18.47
fp sincos 17 / 16 35992 10.03 11.08 5901 0.79 18.97 6285 0.57 18.95 6127 0.28 15.55 8949 0.39 13.51
fp sqrt 16 / 16 19150 8.91 7.26 1963 0.16 12.01 2058 0.14 13.07 2218 0.10 12.47 3968 0.25 13.61
fp square 16 / 16 7256 0.23 2.66 2683 0.02 12.01 2731 0.02 12.44 2853 0.06 12.37 6834 0.23 13.25
fp sub 32 / 16 TO TO 16801296 30392.64 115557.24 16988606 7211.76 16467.87 14502087 134.65 1784.04

TABLE III
RUNTIME OF DC EXTRACT FOR THE HALF PRECISION ARITHMETIC

FLOATING POINT DESIGNS WHEN CHOOSING COFACTORS RANDOMLY.

DC extract (8 random cofactored vars)

name min max avg stdev

fp add 98.88 4515.3 976.63 1355.33
fp cmp 0.55 0.94 0.71 0.16
fp div 202.08 425.5 265.17 80.97
fp exp 5.58 7.4 6.27 0.50
fp invsqrt 1.18 1.79 1.51 0.25
fp ln 0.65 1.11 1.00 0.18
fp log2 0.55 1.02 0.91 0.19
fp mult — — — —
fp recip 0.78 1.3 1.17 0.18
fp sincos 0.42 0.95 0.77 0.17
fp sqrt 0.32 0.81 0.70 0.20
fp square 0.3 0.66 0.50 0.15
fp sub 150.61 2586.4 822.07 715.83

TABLE IV
SYNTHESIS RESULTS IN NUMBER OF QUBITS (q) AND T GATES (T ).

name

fp add
fp cmp
fp div
fp exp
fp invsqrt
fp ln
fp log2
fp mult
fp recip
fp sincos
fp sqrt
fp square
fp sub

Direct map

q T

32 784887
32 136023
32 969757
32 623948

32 170245
33 376733
32 122793
32 129797

[15]

q T

33 752558
33 129692
33 931516
33 566315

33 150448
34 326403
33 106216
33 126803

Our method

v q T

10 49 1.44 109

8 37 18296672
12 49 2.84 109

9 33 344603
7 33 101204
7 33 585468
7 33 400281

4 33 136137
6 34 191136
2 33 58184
5 33 108935
9 49 1.47 109

[5]

q T

156 33521
40 30426

144 589721
32 1193083
32 169282
32 1623461
32 850331

267 141657
32 198167
34 452129
32 133489
32 165545

156 33626

VII. CONCLUSION AND FUTURE WORK

We presented a new collapsing method that outperforms
existing state-of-the-art methods. Improved scalability and the
effectiveness in collapsing all half precision (16 bits) floating
point arithmetic benchmarks are the main advantages. Using
these results as starting point, design flows for the synthesis of
reversible logic in quantum computers, such as [5], would be

able to map these circuits into qubit-optimum quantum circuits
of 48 qubits or less—an important step towards the goal of
quantum advantage [17].

ACKNOWLEDGEMENTS

The co-author affiliated with UC Berkeley was supported in
part by SRC Contracts 2710.001 and 2867.001.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical Review A, vol. 52, no. 5, p. 3457,
1995.

[3] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Physical Review A,
vol. 93, p. 022311, 2016.

[4] A. Mishchenko and M. A. Perkowski, “Logic syntheis of reversible wave
cascades,” in Int’l Workshop on Logic and Synthesis, 2002.

[5] M. Soeken, M. Roetteler, N. Wiebe, and G. D. Micheli, “Logic Synthesis
for Quantum Computing,” arXiv preprint arXiv:1706.02721v1, 2017.

[6] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 21, no. 12,
pp. 1377–1394, 2002.

[7] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[8] B. Bollig and I. Wegener, “Improving the variable ordering of obdds is
np-complete,” IEEE Trans. Comput., vol. 45, no. 9, pp. 993–1002, Sep.
1996.

[9] R. Drechsler, “Preudo-Kronecker expressions for symmetric functions,”
IEEE Trans. on Computers, vol. 48, no. 9, pp. 987–990, 1999.

[10] A. Mishchenko and M. A. Perkowski, “Fast heuristic minimization of
exclusive-sum-of-products,” in Reed-Muller Workshop, 2001.

[11] F. Somenzi, “CUDD: Colorado university decision diagram package,”
1996.

[12] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. E. Wright, and C. Monroe, “Experimental comparison
of two quantum computing architectures,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3305–3310, 2017.

[13] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 32, no. 6, pp.
818–830, 2013.

[14] F. Gray, “Pulse code communication,” March 1953, uS Patent 2,632,058.
[15] D. M. Miller, R. Wille, and R. Drechsler, “Reducing reversible circuit

cost by adding lines,” Multiple-Valued Logic and Soft Computing, vol. 19,
no. 1–3, pp. 185–201, 2012.

[16] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Computer Aided Verification, 2010, pp. 24–40.

[17] A. W. Harrow and A. Montanaro, “Quantum computational supremacy,”
Nature, vol. 549, no. 7671, pp. 203–209, 2017.


