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Abstract—Hierarchical reversible logic synthesis can find quan-
tum circuits for large combinational functions. The price for a
better scalability compared to functional synthesis approaches
is the requirement for many additional qubits to store tempo-
rary results of the hierarchical input representation. However,
implementing a quantum circuit with large number of qubits
is a major hurdle. In this paper, we demonstrate and establish
how reversible pebble games can be used to reduce the number
of stored temporary results, thereby reducing the qubit count.
Our proposed algorithm can be constrained with number of
qubits, which is aimed to meet. Experimental studies show
that the qubit count can be significantly reduced (by up to
63.2%) compared to the state-of-the-art algorithms, at the cost
of additional gate count.

I. INTRODUCTION

The race for establishing quantum supremacy [1] is at its
height right now. Researchers across the world are identifying
applications, which can achieve at least super-polynomial
speed-up for a quantum computer over the best possible
classical one. In parallel, by extending the limits of classical
computing systems, up to 56 qubit quantum circuit is recently
simulated on a supercomputer [2]. Though this limit is sur-
passed by the recent quantum processor from Google with
72 qubits [3], yet it is not sufficient to establish quantum
supremacy due to the error that builds up during the quantum
computation [4]. To tackle this challenge, while on the one
hand, it is imperative to physically implement multi-qubit
gates with low error rates; on the other hand, it is important
to map quantum algorithms to a compact circuit for achieving
the quantum supremacy with as low resources as possible.

The challenge of synthesizing an algorithm on to a set of
quantum gates gave rise to the domain of quantum/reversible
logic synthesis, with a growing body of techniques that achieve
excellent scalability, efficient circuit construction in terms
of T-count, T-depth and qubit count. Hierarchical reversible
logic synthesis (LHRS) represent the state-of-the-art synthesis
technique for large combinational functions [5], [6]. While
this technique present a good balance between the scalability,
T-count and T-depth, it does not particularly emphasize the
optimization of qubit count, which, we argue as the dominant
problem towards the practical realisation of the first batch of
quantum algorithms. This is the main focus of our work.

Optimisation of qubit count is a well-studied problem. First,
there have been numerous studies on minimising the ancilla
qubits [7], leading towards the ancilla-free, scalable synthe-

sis approaches [8]. Second, by taking cue from Bennett’s
reversible pebble game1 [10], [11], several heuristics have
been proposed to include the “uncompute” stage [12], [13],
[14]. However, none of these works presented a pebble game
heuristic integrated with a quantum logic synthesis flow, which
is also observed here [15]. The work closest to ours is by
Parent et al. [12] that implemented pebbling strategies and
games to demonstrate trade-off between qubit count and circuit
depth. This work, however, does not explicitly address the
problem of circuit synthesis. Further, the pebbling strategy
needs to be closely integrated with the overall synthesis
technique, which we undertook here. Our contributions are
noted as following.
• A synthesis algorithm to map from LUT network to single

target gates, using reversible pebble game, to reduce
number of qubits has been proposed.

• Two optimisations have been proposed to lower the
number of single target gates in the synthesized circuit.

• A thorough benchmarking for large combinational cir-
cuits that validate the presented heuristics has been un-
dertaken. Compared to the state-of-the-art techniques, we
could significantly reduce the qubit count.

II. PRELIMINARIES

A. Boolean Logic Network

A Boolean logic network is a DAG, with inputs, outputs and
gates represented as vertices while edges connect gates to the
inputs, outputs and other gates. A Boolean logic network N
can be formally defined as a three tuple, N = 〈V,E, F 〉
where 〈V,E〉 is a DAG and F is the mapping function.
The vertex set V is the union of primary inputs P , primary
outputs O and gates G, V = P ∪ O ∪ G. The edge set
E is a set of ordered tuples (vi, vj), such that i 6= j and
vi, vj ∈ V . Corresponding to each vertex, the in-degree
δ−(v) and out-degree δ+(v) of a vertex v can be defined as
δ−(v) = |(v, v′)| and δ+(v) = |(v′′, v)| where {v, v′, v′′} ∈ V
and {(v, v′), (v′′, v)} ∈ E. Each gate g ∈ G represents
a Boolean function F (g) : Bδ−(g) → B. The cone of a
vertex v is the set of all vertices in G, that have a path
to the vertex v. A Boolean network N is termed as k-
feasible, if δ−(v) ≤ k, ∀v ∈ V . Such k-feasible networks

1The irreversibility-space trade-off in the pebble game is also useful in
other domains, such as, register allocation stage of compiler [9].
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Fig. 1: A 3-feasible network with five inputs and two outputs.

are also referred as k-LUT network (LUT stands for Look-
Up Table). Homogeneous Boolean networks such as And-
Inverter Graph [16] and Majority-Inverter Graphs [17], can
be transformed into k-feasible networks by means of LUT
mapping algorithms [18], [19].

Example 1. Figure 1 shows a 3-feasible network. The vertex
set is V = P ∪ O ∪ G where P = {p1, p2, . . . , p5},
O = {o1, o2} and G = {x1, x2, . . . , x10}.
cone(o1) = {x1, x2, . . . , x8}. cone(o2) = {x4, x9, x10}

B. Reversible Logic Network

A reversible logic network realizes a reversible function
by means of a cascade of reversible gates. In this pa-
per, we consider generic single target gate (STG). A STG
Tc ({x1, x2, . . . , xk}, xk+1) has k control lines x1, . . . , xk, a
single target line xk+1 and a control function c : Bk+1 → B.
The gate realizes a reversible function f : Bk+1 → Bk+1 with
xi 7−→ xi, ∀i ≤ k and xk+1 7−→ xk+1 ⊕ c(x1, . . . , xk).

C. Mapping to Quantum Circuit

An elementary method to map a LUT network to reversible
circuit is by means of using a STG for each LUT in the
topological ordering. The target for the STG is chosen to
be an ancilla line initialized to ‘0’. The circuit should not
have any garbage lines to allow implementation on a quantum
computer. This constraint arises due to the fact that result of
the calculation is entangled with the intermediate results and
thus they cannot be discarded and reused without damaging
the results they are entangled with [20]. To disentangle the
qubits and revert the targets to their initial state (constant 0),
the STGs for the LUTs computing the intermediate results
should be applied in the reverse topological order.

A STG can be computed on a free qubit (constant 0), if
all its predecessors have been computed. Also, the qubit with
the result of the STG can be returned to state 0, only when
all the predecessors are in computed state. This is the primary
constraint on compute and uncompute of STG. We express the
possible operations using the following notations:
• PI(x, q) for primary input x ∈ P and qubit q: This

assigns input x to qubit q in the circuit.
• COMP(g, q) for gate g ∈ G and qubit q: This applies a sin-

gle target gate TF (g)(m(j)|j ∈ δ−, q) and sets m(g)← q.
• UCOMP(g, q) for gate g ∈ G and qubit q: This acts same

as COMP(g, q) but sets m(g)← 0. We represent this using
gψ in the circuit diagrams.

• PO(x, q) for primary output x ∈ O and qubit q: This
assigns output x to qubit q in the circuit.

Example 2. The second dashed box in Figure 2 shows
the circuit of mapping the cone of output o2 using STGs.
Each of the primary input is mapped to a unique qubit.
Nodes x4 and x9 are computed first. This is followed by
computing the node x10, which is the output o2. Then the
intermediate nodes are uncomputed (represented by xψi ). The
entire circuit can be expressed in terms of operations as
follows : PI(p1, q1), PI(p2, q2), PI(p3, q3), COMP(x4, q4),
COMP(x9, q5), COMP(x10, q6), UCOMP(x9, q5), UCOMP(x4, q4),
PO(o2, q6).

A STG (Tc({x1, x2, . . . , xk}, xk+1)) can be decomposed
into a cascade of multi-control Toffoli gates (a special STG
with control function as either 1,i.e., tautology or a single
product term).

Tc1(X1, xk+1) ◦ Tc1(X1, xk+1) ◦ . . . ◦ Tc1(X1, xk+1)

Individual Toffoli gates can be mapped to the fault tolerant
Clifford+T gate library for native implementation of a quantum
computer. The Clifford+T gate library consists of the reversible
CNOT gates, the Hadamard gate and the T-gate. Since the T-
gate has considerable higher implementation cost compared
to the other gates, the cost of the other gates are customarily
neglected [21]. Multiple techniques exist in literature for map-
ping multi-control Toffoli gates into Clifford+T circuits [22].

III. QUBIT COUNT OPTIMIZATION

This section presents a method to derive the upper bound on
the number of qubits required for mapping a LUT network.
An introduction to reversible pebble games, followed by a
detailed example is presented. We then proceed to explain
the proposed heuristic for reversible pebble games and two
effective optimizations for the same.

A. Upper bound on the number of qubits

Given a LUT network with multiple outputs, the cone of
each output can be considered separately as an LUT network.
For each of the output, the output cone can be computed,
followed by immediately uncomputing the intermediate results
in the cone. This approach can be used to obtain an upper
bound Nnaive on the number of qubits required for computing
a LUT network.

Lemma III.1. A LUT graph with Ni inputs, No outputs and
Nc = max(cone(ni)), for 1 ≤ i ≤ m, can be computed with
at most Nnaive = Ni +No +Nc − 1 qubits.

Example 3. For the DAG shown in Figure 1, Ni = 5, No = 2
and Nc = max(8, 3) = 8. Therefore, the upper bound on the
number of qubits required to map the graph is Nnaive = 14.

B. Reversible Pebble Game

Bennett introduced the reversible pebble games [11] in the
context of reversible computation, which is the exact problem
we are addressing in this paper. Given a DAG G with a
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Fig. 2: Mapping of the DAG shown in the Figure 1, using reversible pebble game. The rectangles denote the input lines of the
STG, while the ⊕ denotes the target line of the STG.

unique sink node s, the reversible pebble games starts with
no pebbles on G and terminates with a pebble (only) on the
sink s. Placing and removal of pebble on a node is governed
by the following two rules: (1) To pebble a node v, all the
predecessors of v must be pebbled. (2) To unpebble a node v,
all the predecessors of v must be pebbled. In the context of
computing a LUT network, the LUT network is the DAG while
the pebbles represents qubits. Pebbling a node is equivalent
to computing a node while either “unpebbling a node” or
“unpebble operation” is same as uncompute operation of a
node. The minimum number of pebbles required to pebble
a DAG using reversible pebble game by Bennett is termed
as the reversible pebble number of the graph. Determining
the reversible number of a given DAG with a unique sink
node (single output) is PSPACE-complete [23].

Example 4. Figure 2 shows the circuit mapped using re-
versible pebble games for the DAG in Figure 1. We assume
that 10 qubits are available for mapping. 5 of the qubits
are used for mapping each of the primary inputs p1, . . . , p5.
We consider mapping the output cone o1 first, followed by
o2. Nodes x1, x2 are computed, followed by computing their
successor x5. Then node x3 is computed, followed by x6. At
this point, none of the qubits are free for mapping rest of the
nodes. We uncompute x1 (represented by xψ1 in the circuit) and
use the free qubit to compute x4. Similarly, x2 is uncomputed
and x7 is computed on that qubit. The qubit for x3 is now
uncomputed to map x8 (which drives the output o2).

Now, we begin freeing the allocated qubits in this cone.
Node x7 is uncomputed. Since the predecessor x3 of node
x6 is not in computed state, x6 cannot be uncomputed. This
is due to rule (2) of pebble game. Therefore, x3 is computed.
This is followed by uncompute of x6 and x3. For uncomputing
x5, predecessors x1 and x2 are computed. Then, x5, x1 and
x2 are uncomputed. Finally x4 is uncomputed. This completes
computation of cone o1.

Computation of cone o2 is trivial since there are only 3
qubits to map and 4 qubits are available for mapping. Prede-
cessors x4 and x9 are computed, followed by compute of node
x10. Then, intermediate nodes x9 and x4 are uncomputed.

C. Reversible Pebble Game Heuristic

The procedure takes a LUT-network N = 〈V,E, F 〉 and
number of available qubits QA as input. The procedure returns
the number of qubits required QR and the corresponding
sequence of operations S to realize the LUT network. Since
the procedure is a heuristic, QR can be greater that QA if the
heuristic cannot find a feasible sequence using QA available
qubits.

Algorithm 1 presents the reversible pebble game heuristic
in detail. The output cones are ordered in decreasing order
of the size of their cones. Each cone is computed, followed
by immediate uncompute of all the nodes, except the output
node for that cone. The ELIGIBLE procedure returns True for
a node, if all the successors of that node are in computed state.

TABLE I: Sub-functions of reversible pebble game heuristic.

Function Definition

level(n)

{
0, n ∈ P
maxni∈δ−(n)(level(ni) + 1), n /∈ P

pending(n) |ni|, ni /∈ computedV , ni ∈ δ−(n)
contrib(n)

∑
no∈δ+(n)

1
pending(n0)

succDep(n) = True no ∈ computed, ∀no ∈ δ+(n)
succUComp(n) = True no /∈ computedV , ∀no ∈ δ+(n)

Algorithm 2 describes the computation of an output cone.
Some of the functions used are summarily defined in Table I.
Initially, the nodes (fanIn) in the cone with only primary
inputs as predecessors are eligible for computation. We de-
termine the order of computation between eligible nodes as
follows. If a node in a level l in the graph is eligible for
compute, then it must be computed before any node at a lower
level l − 1. If there are multiple such eligible nodes, then we
choose the node that would contribute most towards making
its successor eligible for computing. We retrieve the top node
for the priority queue, get a qubit to compute this node on,
map this node’s computation to the qubit, update the priority
queue and finally add all the uncomputed successors of this
node to the priority queue.

One of the key challenges is to find a free qubit (constant 0)
for performing the computation, which is defined in the
GETQUBIT procedure. If there is an available qubit (stored
in stack A), then it can be used. Otherwise, we search



Algorithm 1 Reversible Pebble Game Heuristic
1: procedure PEBBLE(N ,QA)
. Logic Network N = 〈V = (P ∪O ∪G), E, F 〉
. QA=Available qubits

2: Initialize empty stack A.
3: for i in range(1, QA) do
4: A.push(i);
5: end for
6: QR = QA
7: Initialize empty queue S
8: for ni ∈ PI do
9: q = GETQUBIT(ni,PI);

10: S.push back(PI(ni,q))
11: end for
12: Initialize empty set ComputedV
13: Sort O in descending order of cone(no), for no ∈ O
14: for no ∈ PO do
15: computed = COMPUTEOUTPUT(no);
16: UNCOMPUTEOUTPUT(no, computed);
17: S.push back(PO(no,map[no]));
18: end for

. Synthesis sequence S, number of required qubits QR
19: return S, QR;
20: end procedure
21: procedure ELIGIBLE(node)
22: if n ∈ computed, ∀n ∈ δ−(node) then
23: return True;
24: else
25: return False;
26: end if
27: end procedure
28: procedure GETQUBIT(out,type)
29: if !A.empty() then
30: q = A.pop();
31: return q
32: end if

. Iterate over eligible nodes in topological order (higher level considered
first)

33: l = maxn∈cone(out)(level(n));
34: while l > 0 do
35: N = None
36: E = {n} | ELIGIBLE(n), level(n)=l ,n /∈ predDep
37: if !E.empty() then
38: if type == COMP then
39: if ∃n ∈ E | succUComp(n), succDep(n) then
40: N = n;
41: else if ∃n ∈ E | succDep(n) then
42: N = n;
43: end if
44: else if type == UCOMP then
45: N = n|n ∈ E;
46: end if
47: if N != None then
48: q = map[N ]
49: computedV .remove(n)
50: S.push back(UCOMP(N ,q))
51: return q
52: end if
53: end if
54: l = l − 1;
55: end while

. No eligible nodes present with all successors computed at least once.
56: QR = QR + 1; . New qubit allocated
57: return QR;
58: end procedure

topologically (from higher to lower) for eligible qubits which
are not part of the current dependency (predDep). During
compute, these include just the predecessors of the node
under consideration. Out of these eligible nodes, we should
not uncompute a node for which a successor has not been
computed even once (defined as succDep function) — this
guarantees progress of the algorithm. Moreover, it is intuitive
to choose a node with all its successors uncomputed (specified
by succUComp function) over a node that still has computed
successors, since this increases the chances of more eligible

Algorithm 2 Computing an output cone
59: procedure COMPUTEOUTPUT(out)
60: fanIn = {n} such that nf ∈ P , ∀nf ∈ δ−(n) and n ∈ cone(out)
61: pendingQ = prioQ()
62: for n ∈ fanIn do
63: priority = COMPUTEPRIORITY(n)
64: pendingQ.insert((n,priority))
65: end for
66: computed = list()
67: while out /∈ computed do
68: node = pendingQ.pop()
69: Initialize empty set predDep
70: for ni ∈ δ−(node) do
71: predDep.insert(ni);
72: end for
73: q = GETQUBIT(out,COMP)
74: map[node] = q
75: computed.add(node)
76: computedV .add(node)
77: S.push back(COMP(node,qubit))
78: UPDATEQUEUE(pendingQ);
79: for no ∈ δ+(n) do
80: if no /∈ computed and ELIGIBLE(no) then
81: pendingQ.insert((no, COMPUTEPRIORITY(no)))
82: end if
83: end for
84: end while
85: return computed
86: end procedure
87: procedure COMPUTEPRIORITY(node)

. Higher level/contribution of node indicates higher priority.
88: return (level(node), contrib(node))
89: end procedure

nodes to be freed for reuse in the future. Finally, if a node N
eligible for uncompute is found, the qubit is freed, the node is
removed from the computed node set and an uncompute step
is added to the sequence S. However, it can happen that none
of the computed nodes are eligible to be uncomputed. In that
case, a new qubit is added.

The order of computation of a node for the first time,
stored in the list computed, that is the input parameter to the
UNCOMPUTEOUTPUT procedure. The nodes are uncomputed
in the reverse order of compute. If the node is already
uncomputed, then nothing needs to be done. However, if it
is computed but not eligible, then its predecessors have to be
computed first. Then, the node is uncomputed and the frees
qubit q is added to free qubit stack A. Also, the node is
removed from the computed node set computedV .

D. Optimizations

We present two optimizations based on the outputs returned
by the heuristic — number of qubits required QR and the
sequence of the operations S.

1) Iterate Heuristic O1: The number of required qubits QR
can be higher than that the number of available qubits QA.
When there are no free qubits, the heuristic aggressively tries
to unpebble the graph. This leads to additional COMP/UCOMP
operations. Specifically, let us consider the case when QA <<
QR < Nnaive. Some of these steps can be avoided by running
a second round of the heuristic with QA = QR as input. This
results in considerable reduction in the number of operations,
without any significant increase in number of qubits.

2) Optimize Sequence O2: The output of the sequence of
step S can be optimized by eliminating redundant operations.
Let S[i] denote the ith operation in the sequence. Two oper-



Algorithm 3 Uncomputing an output cone.
90: procedure UNCOMPUTEOUTPUT(out, computed)

. Store reversed computed list in rComputed, except the output node
91: Initialize an empty list rComputed
92: for i ∈ range(1, len(computed)− 1) do
93: rComputed.push back(computed[len(computed)− i− 2])
94: end for
95: while !rComputed.empty() do
96: n = rComputed[1];
97: rComputed.delete(1);
98: if n /∈ computedV then
99: continue;
100: else if !ELIGIBLE(n) then
101: Initialize empty set predDep
102: COMPUTEPRED(n);
103: end if
104: q = map[n]
105: A.push(q)
106: S.push back(UCOMP(n,q))
107: computedV .remove(n)
108: end while
109: end procedure
104: procedure COMPUTEPRED(n)
105: for ni ∈ δ−(n) do
106: predDep.insert(ni);
107: end for
108: for ni ∈ δ−1(n)) do
109: if ni ∈ computedV then
110: continue;
111: else if ! ELIGIBLE(ni) then
112: COMPUTEPRED(ni)
113: end if
114: q = GETQUBIT(ni,UCOMP)
115: map[ni] = q
116: S.push back(COMP(ni,q))
117: computedV .insert(n);
118: end for
119: end procedure

ations S[i] and S[i + 1] on a node n|n ∈ G are redundant
iff
• S[i] =COMP(n,q) , S[i+ 1] =UCOMP(n,q)
• S[i] =UCOMP(n,q) , S[i+ 1] =COMP(n,q)

The redundant operations are repeatedly eliminated, till no
further elimination is feasible. The LUT networks enforce
sharing of logic to minimize the number of nodes in the
network, which results in plenty of overlap between cones
of the individual outputs. Also, the priority of nodes for
computation remains similar, across output cones. Thus, the
uncomputation order of multiple nodes for a cone is exactly
reverse of the order of computation for these nodes in a
different cone, with these nodes common to the cones. This
enables the effectiveness of the optimization O2.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We have implemented Reversible Pebble Game Heuris-
tic (RPGH) as part of the lhrs command in the reversible
logic synthesis framework RevKit [24]. The experiments were
performed on the EPFL benchmarks2, along with their best
LUT mapping results ( bl suffix). lhrs first derives a LUT net-
work from an And Inverter graph (AIG) which is then mapped
into a circuit of STGs using RPGH. We set the number of
available qubits QA = 0.8(maxnv∈V (cone(nv)) +No) +Ni)
for each benchmark and use it as input to RPGH. The synthesis
results of RPGH are presented in Table II. #LUT denotes
the number of LUTs for the given cut size (k). QR and

2https://lsi.epfl.ch/benchmarks

#STG denote number of qubits and single target gates in
the synthesized circuit obtained using RPGH respectively.
We compare our results with the existing implementation
results (#Qorig, #STGorig) of LHRS, available in RevKit.
The RPGH algorithm manages to reduce (denoted by ∆%)
the number of qubits for all the benchmarks, which is the
primary goal of this paper. Naturally, the number of single-
target gates (denoted by α) significantly increases using the
proposed algorithm, that leads to increased quantum costs (see,
e.g., [25]).

To obtain a Clifford+T quantum circuit from the STG
mapped circuit, each single-target gate has to be mapped
into a Clifford+T quantum circuit. The RPGH algorithm is
compatible to all varieties of STG to Clifford+T mapping al-
gorithms (e.g., [26]). As a representative example, we show the
results of mapping the synthesized STG circuit to Clifford+T
circuit using various algorithms for the sin benchmark in
Table III. The T-count of the synthesized circuits are reported,
along with the qubit and STG count. Any improvement in the
mapping algorithm of single-target gates to quantum circuits
would directly benefit our algorithm, for reducing T-count. For
k = 6 as an example, we can see that using the direct+def
mapping script results in lower T-count than mindb+def wo4
script while having the same qubit count.

By partitioning the logic network into LUTs with a greater
number of inputs (k), the number of LUTs in the LUT network
is lesser. Since the RPGH algorithm uses the LUT network as
input and each LUT gets mapped to an STG, a smaller network
helps RPGH to map the network using smaller number of
qubits, with lower number of STGs. However, since a k-input
LUT would map to a k-input STG, using a greater cut size
results in an STG with greater number of inputs and thus
has a higher quantum cost when mapped using the Clifford+T
library.

Finally, we demonstrate the space (QR) and time (T-count)
trade-off feasible by using RPGH in Table IV. By varying
ϕ from 0.3 to 0.8, we vary the input number of qubits QA
to RPGH. The RPGH algorithm maps the circuit with QR
qubits, which is close to the input QA. This demonstrates the
effectiveness of the algorithm in using reversible pebbles game
to meet input qubit constraint. Using a lower number of qubits
for mapping leads to a higher T-count and vice-versa. Similar
results are observed for other benchmarks as well, but not
reported due to lack of space. To the best of our knowledge, the
proposed RPGH algorithm is the first one to permit a constraint
on number of qubits as an input for quantum logic synthesis.

V. CONCLUSION

Implementation of scalable quantum circuits is among the
most significant scientific challenges of current times. Existing
design automation flows for quantum circuits tend to empha-
size on the number of gates and logical depth. In contrast, we
draw attention to the reversible pebble game, which presents
an opportunity to reduce the qubits. In this paper, for the
first time, we present a heuristic for lowering the qubits
integrated within a scalable, hierarchical logic synthesis flow.



TABLE II: Synthesis results on the EPFL arithmetic benchmarks. ∆% =
(#Qorig−#Q)∗100

#Qorig
, α = #STG

#STGorig
.

k=6 k=10 k=16
Benchmark Ni/No #LUT QR (∆%) #STG(α) #LUT QR (∆%) #STG(α) #LUT QR (∆%) #STG(α)

adder 256/129 249 386 (23.6) 14916 (40.4) 234 386 (21.2) 11608 (34.2) 207 386 (16.6) 6823 (23.9)
adder bl 256/129 192 386 (13.8) 8190 (32.1) 189 386 (13.3) 7688 (30.9) 187 386 (12.9) 7206 (29.4)

bar 135/128 512 276 (52.7) 11932 (13.3) 512 276 (52.7) 11932 (13.3) 510 275 (52.7) 11736 (13.2)
bar bl 135/128 768 309 (63.2) 16782 (11.9) 668 286 (61.4) 12056 (10) 523 271 (54.5) 5788 (6.3)

div 128/128 23863 10273 (17.1) 2409454 (50.6) 23321 9954 (17.4) 2345136 (50.4) 22910 9691 (18.1) 2295414 (50.2)
div bl 128/128 3271 3087 (9.2) 634450 (98.9) 3098 3091 (4.2) 597723 (98.5) 2889 2604 (13.7) 548925 (97.2)

log2 32/32 7579 6100 (19.9) 523327 (34.6) 2843 2347 (18.4) 185672 (32.8) 2283 1925 (16.8) 143166 (31.6)
log2 bl 32/32 6595 5309 (19.9) 460563 (35) 3006 2440 (19.7) 203898 (34.1) 2022 1670 (18.7) 136675 (34.1)

max 512/130 721 1092 (11.4) 177191 (135.1) 389 825 (8.4) 73812 (113.9) 284 746 (6.3) 44152 (100.8)
max bl 512/130 524 934 (9.8) 113126 (123.2) 328 777 (7.5) 55765 (106) 213 695 (4.1) 23467 (79.3)

multiplier 128/128 5678 4678 (19.4) 770713 (68.6) 2977 2515 (19) 378558 (65) 2724 2315 (18.8) 343227 (64.5)
multiplier bl 128/128 4923 4068 (19.4) 666365 (68.6) 3291 2766 (19.1) 428239 (66.4) 2426 2079 (18.5) 306224 (64.8)

sin 24/25 1444 1181 (19.6) 73093 (25.5) 690 580 (18.8) 31165 (23) 494 433 (16.4) 21330 (22.1)
sin bl 24/25 1262 1028 (19.5) 63825 (25.5) 534 453 (18.8) 24563 (23.6) 391 339 (18.3) 17511 (23.1)

sqrt 128/64 8084 6647 (19.1) 367572 (22.8) 7764 6391 (19) 346197 (22.4) 7688 6330 (19) 337900 (22.1)
sqrt bl 128/64 3076 2640 (17.6) 138108 (22.7) 2746 2377 (17.3) 120951 (22.3) 2500 2181 (17) 106640 (21.6)
square 64/128 3992 3266 (19.5) 526175 (67) 3289 2714 (19.1) 424555 (65.8) 2598 2166 (18.7) 331977 (65.5)

square bl 64/128 3244 2669 (19.3) 422177 (66.4) 2816 2333 (19) 360257 (65.4) 2232 1877 (18.3) 282087 (65)

TABLE III: T-count of synthesized circuit using various STG
to Clifford+T mapping algorithms [26] for sin benchmark.

Mapping direct mindb
Script def def wo4 def def wo4

k QR #STG T-count T-count T-count T-count
6 1181 73093 2331631 2318301 2927440 2850017

10 580 31165 9091604 9123544 14631353 14632203
16 433 21330 93594652 94909560 43922561 43949572

TABLE IV: Qubit count (QR) and T-count of synthesized
circuit for varying number of available qubits [QA =
0.8(maxnv∈V (cone(nv)) + No) + Ni)=ϕ(1421 + 25) + 24]
for sin benchmark with cut size k = 6.

ϕ 0.3 0.4 0.5 0.6 0.7 0.8
QA 458 603 747 892 1037 1181
QR 590 604 747 896 1037 1181

T-count 3415534 3413100 3288854 3147188 2634309 2331631

This reduces the number of qubits by up to 62.3% compared
to the baseline, state-of-the-art synthesis techniques.
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