
Compiling Permutations for Superconducting QPUs
Mathias Soeken Fereshte Mozafari Bruno Schmitt Giovanni De Micheli

Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—In this paper we consider the compilation of quan-
tum state permutations into quantum gates for physical quantum
computers. A sequence of generic single-target gates, which
realize the input permutation, are extracted using a decompo-
sition based reversible logic synthesis algorithm. We present a
compilation algorithm that translates single-target gates into a
quantum circuit composed of the elementary quantum gate sets
that are supported by IBM’s 5-qubit and 16-qubit, and Rigetti’s 8-
qubit and 19-qubit superconducting transmon QPUs. Compared
to generic state-of-the-art compilation techniques, our technique
improves gate volume and gate depth by up to 59% and 53%,
respectively.

I. INTRODUCTION

Quantum computers are physical machines that consist of an
array of qubits (quantum memory), which state can be altered
by means of a set of quantum operations, typically referred to
as quantum gates. The state of an array of n qubits is described
in terms of 2n complex-valued amplitudes. Each amplitude
corresponds to the probability of the quantum state being in
one of the 2n possible Boolean states after measuring all qubits.
A quantum state applied to a subset of qubits in the array of
qubits may change all amplitudes in the quantum state. This is
one of the main reasons for the power of quantum computers,
since the application of an operation to a linear number of
resources (qubits) can simultaneously change an exponential
number of values (amplitudes).

In the last few years several physical implementations of
quantum computers have been demonstrated by, e.g., IBM [1],
Rigetti [2], Google [3], Intel [4], IonQ [5], and Alibaba [6].
The numbers of qubits appears to be the prime distinguishing
property of quantum computers, however, several other factors
significantly affect the quality of a quantum computer. These
include qubit coherence times, coupling restrictions on which
qubits can interact with each other in quantum operations, as
well as the supported quantum gate set. Since the typical use of
a quantum computer is as a compute kernel inside a classical
computation, they are also referred to as quantum processing
units (QPUs).

The interaction of quantum operations with qubits in a
quantum computer is described in terms of quantum algorithms,
also called quantum circuits. High-level quantum algorithms are
technology-independent, allow arbitrary quantum operations,
and do not take architectural constraints into account. Quantum
compilation is the task of translating a high-level quantum
algorithm into a low-level quantum circuit, which is technology-
dependent, i.e., it is described in terms of supported quantum
operations and respects all architectural constraints. It is not
uncommon that several phases of quantum compilation take
place when translating a high-level quantum algorithm into a
low-level quantum circuit [7].

In this paper, we propose an automatic technology-dependent
compilation technique to translate quantum operations that
permute the amplitudes in quantum states. Many quantum
algorithms make use of such permutations, in particular
as a way to implement combinatorial operations [8]. Our
compilation algorithm targets quantum architectures which
gate set supports rotation gates with arbitrary angles, such as
the 8-qubit and 19-qubit superconducting transmon computers
from Rigetti.

The proposed approach utilizes Young-subgroup based
reversible logic synthesis [9], [10], [11], which for a given
permutation for a qubit state over n qubits, finds a sequence of
2n− 1 so-called single-target gates, which describe quantum
operations to alter the quantum state w.r.t. a Boolean function.
We describe a general algorithm to translate a single-target
gate into a quantum circuit composed of Clifford+Rz gates
(details on these operations are provided in the next section).
Finally, we employ an explicit rewiring technique in order to
reduce the number of quantum gates.

In an experimental evaluation, we show that our proposed
approach leads to quantum circuits with lower quantum
gates and lower depth compared to state-of-the-art generic
compilation techniques. For Rigetti QPUs we can reduce gate
count and gate depth up to 59% and 53%, respectively, and
for IBM QPUs we can reduce gate count and gate depth up to
56% and 53%, respectively.

II. PRELIMINARIES

A. Boolean functions and spectral techniques
A Boolean function is a mapping f : Bn → B where

B = {0, 1}. One way to represent a Boolean function
f(x1, . . . , xn) is in terms of its truth table, a column vector f =
(f0, . . . , f2n−1)T where each entry f(bn...b1)2 = f(b1, . . . , bn)
corresponds to an assignment of inputs to f . Note that we use
f both to refer to the function and to its truth table.

Example 1: The majority-of-three function f =
〈x1x2x3〉 = x1x2 ∨ x1x3 ∨ x2x3 has the truth table f =
(0, 0, 0, 1, 0, 1, 1, 1)T .

The {−1, 1} encoding of a truth table is a column vector
f̂ = (f̂2n−1, . . . , f̂0)

T where f̂i = 1− 2fi for 0 ≤ i < 2n. In
other words, f̂i = −1, if fi = 1, and f̂i = 1, if fi = 0.

Example 2: For f = 〈x1x2x3〉 from the previous example,
we have f̂ = (1, 1, 1,−1, 1,−1,−1,−1)T .

The recursive Hadamard matrix is

Hn =

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
, andH0 = 1. (1)

Then for an n-variable Boolean function f , the vector s = Hnf̂
is called the Rademacher-Walsh spectrum of f . We will refer
to s as spectrum in the remainder of the paper.

Example 3: For f = 〈x1x2x3〉, the spectrum is s =
(0, 4, 4, 0, 4, 0, 0,−4)T .

B. Qubits and quantum gates
A quantum computer consists of an array of qubits, which

in contrast to classical bits, can be in a superposition state and
can be entangled [12]. Formally, a qubit is in a quantum state
that is a column vector |ϕ〉 =

(
α
β

)
of two complex numbers

α and β, called amplitudes, such that |α|2 + |β|2 = 1. The
squared amplitudes |α|2 and |β|2 indicate the probability that
the quantum state will collapse to the classical state |0〉 =

(
1
0

)
or |1〉 =

(
0
1

)
after the qubit is measured. A quantum state

can be transformed into another quantum state by applying
quantum gates, which are represented by 2×2 unitary matrices.

Example 4: The Hadamard gate H = 1√
2

(
1 1
1 −1

)
transforms

the classical quantum state |0〉 into the state 1√
2

(
1
1

)
, which is

in the perfect superposition between 0 and 1.
Since single qubit states correspond to points on the Bloch

sphere [12], quantum operations on a single qubit correspond to
rotations. Besides the H operation, we will consider x-rotations
Rx(θ) =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
and z-rotations Rz(θ) =

(
1 0
0 eiθ

)
with continuous angles θ ∈ R. Commonly used rotations
are I = Rx(0) = Rz(0), X = Rx(π), Z = Rz(π), V =
Rx(

π
2), S = Rz(

π
2), and T = Rz(

π
4), as well as their complex

conjugates V †, S†, and T † obtained by negating the angle.
Quantum states over n qubits are represented by a column

vector of 2n complex values αx with x ∈ Bn such that∑
x∈Bn |αx|2 = 1. Each squared amplitude |αx|2 indicate

the probability that after measurement the n qubits are
in classical states x. Quantum states can be combined by
applying the Kronecker product to produce larger ones, e.g.,(
1
0

)
⊗ 1√

2

(
1
1

)
= 1√

2

(
1
1
0
0

)
, which represents a 2-qubit state

that is in the perfect superposition between the classical states
00 and 01. On the contrary, larger states cannot always be
represented in terms of smaller ones. For example, there are
no two independent qubit states |ϕ1〉 and |ϕ2〉 such that

|ϕ1〉 ⊗ |ϕ2〉 = 1√
2

(
1
0
0
1

)
, the state that is in the perfect

superposition between the classical states 00 and 11. This
phenomena is called entanglement.

Quantum gates that act on n qubits are represented in terms
of 2n × 2n unitary matrices. We are considering 3 two-qubit
gates in this paper, controlled-X (CNOT), controlled-Z (CZ),
and SWAP, which are defined as

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

,
and SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. (2)

C. Quantum gate libraries and quantum architectures
Rigetti quantum computers: The 8 qubit QPU (called Agave)

and 19 qubit QPU (called Acorn) from Rigetti natively supports
four X-rotations {Rx(kπ2) | k ∈ Z} = {I, V,X, V †}, arbitrary

H

X

Y

V

S

T

T †

V †

S†

Rx(π)

Rz(
π
2
)

Rz(π)

CNOT CNOT CZ SWAP

Fig. 1. Quantum gates in a quantum circuit. Single-qubit gates are drawn as
box with their name inside, two-qubit gates have a special symbolic notation.

Z-rotations Rz(θ) for any θ ∈ R and CZ gates. Other gates
that were mentioned in the previous section can be represented
in terms of this library. The Hadamard gate H can be expressed
in terms of three rotations:

H = V S V = S V S = V † S† V † = S† V † S†

The CNOT gate can be expressed in terms of a CZ gate and
rotations, using 6 gates and a depth of 5:

x1

x2
=

S† V

Z

V † S

x1

x2 ⊕ x1

Finally, the SWAP gate can be expressed in terms of three CZ
gates and rotations, using 14 gates and a depth of 10:

x1

x2
= =

S† V

S

V † Z

V V †

V

S†

V † S

x2

x1

The topology of the 8 qubit quantum computer is the
undirected 8-cycle

1 0 7

2 6

3 4 5

, (3)

while the topology of the 19 qubit computer is according to
the following undirected graph:

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

(4)

IBM quantum computers: The IBM quantum computers
natively support the U gate, U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ),
which is parameterized over 3 continuous variables, and the
CNOT gate. As the algorithm described in this paper maps
permutations to an intermediate representation containing of
CNOT, Hadamard, and arbitrary Z rotations, it is helpful to
point out the following identities:

H = U(π2 , 0, π) and Rz(θ) = U(θ, 0, 0) (5)

The coupling constraints in an IBM architecture also imply
a direction of a CNOT gate, i.e., for two adjacent qubits the
target of a CNOT gate can only be applied to one of the qubits.
The following circuit identity can be used to turn the direction
of a CNOT gate:

x1

x2
=

H

H

H

H

x1 ⊕ x2
x2 (6)

The same identity can be used to implement a SWAP operation:

x1

x2
=

H

H

H

H

x2

x1 (7)

In our experiments we evaluate our algorithm on the three
available cloud-based IBM quantum computers ibmqx2 (also
called IBM Q 5 Yorktown), ibmqx4 (also called IBM Q 5
Tenerife), each of which have 5 qubits, and ibmqx5 (also
called IBM Q 16 Rueschlikon), which has 16 qubits. The
coupling constraints for ibmqx2 and ibmqx4 are defined be
the two directed graphs

0 2 3

1

4

and 0 2 3

1

4

, (8)

respectively. For ibmqx5, the coupling constraints are as
follows:

1 2 3 4 5 6 7 8

0 15 14 13 12 11 10 9
(9)

D. Single-target gates

A single-target gate with control function f(x1, . . . , xn−1)
and target qubit xn is an abstract quantum operation acting on
n qubits that maps

Uf : |x1 . . . xn−1〉|xn〉 7→|x1 . . . xn−1〉|xn⊕f(x1, . . . , xn−1〉.
(10)

In other words, it inverts the value of the target qubits xn, if and
only if the control function evaluates to true for the values of the
control qubits x1, . . . , xn−1. Well-known instances of single-
target gates are the X gate for which n = 1 and f = 1, the
CNOT gate for which n = 2 and f = x1, or the Toffoli gate for
which n = 3 and f = x1x2. Several pictorial representations
for single-target are used in the literature. In the remainder of
the paper we use one of the following two:

x1...
xn−1

xn

f
=

f

x1...
xn−1

xn ⊕ f(x1, . . . , xn−1) (11)

Single-target gates describe complex operations and cannot
generally be implemented natively on quantum computer. How-
ever, they provide a convenient intermediate representations
when mapping complex functionality, such as permutations,
into quantum gates.

III. PROPOSED COMPILATION ALGORITHM

Fig. 2 provides a birds-eye overview of our proposed
algorithm. The algorithm takes as input a permutation over
2n elements, the gate library, and coupling constraints of the
target quantum computer. It returns a quantum circuit composed
of gates from the gate library, which respects the coupling
constraints. The algorithm essentially contains the following 3
steps:

1) Map the input permutation into a reversible circuit
compose of 2n− 1 single-target gates.

2) Map each single-target gate into a circuit over the gate
set {CNOT, Rz(θ), H}.

3) Map the resulting quantum circuit into a circuit com-
posed of gate library gates, which respects the coupling
constraints.

For the first step, we employ the decomposition-based re-
versible synthesis algorithm using Young-subgroups presented
in [10]. Fig. 2 illustrates this step for the permutation
[0, 2, 3, 5, 7, 1, 4, 6], which can be realized using a reversible
circuit consisting of five single-target gates with control
functions f1, . . . , f5.

The second step encompasses the main contribution of this
paper. Each single-target gate is decomposed into a circuit
structure composed of H gates, CNOT gates, and Rz gates.
The step is illustrated for the first single-target gate with control
function f1 in Fig. 2(b). Hadamard gates are inserted at the
beginning and at the end of the circuit on the target qubit
of the single-target gate. CNOT gates are used to create all
linear combinations of the inputs. In Fig. 2(b) these linear
combinations are written under each CNOT gate. To each
of these linear combinations one Rz gate is applied, whose
rotation angle corresponds to the spectral coefficients of the
function x3 ∧ f1(x1, x2). For example, the first CNOT gate
creates the linear combination x2 ⊕ x3, which corresponds to
the spectral coefficient s6. The rotation angle is θ6 = πs6

23 . Note
that Rz(0) gates may be omitted which in turn can cause further
reduction of CNOT gates. We make use of the GRAYSYNTH
algorithm [13] to find a network with possibly few CNOT
gates for generating required linear combinations.

By performing the second step for each single-target gate,
one obtains a quantum circuit that can be passed as input to
a quantum compiler. However, the compiler of the quantum
computer still needs to apply changes to accommodate for the
supported gate library and coupling constraints. For example,
in case of the Rigetti 8-qubit computer, the H and CNOT gates
need to be translated into Rx, Rz and CZ gates; also, there are
no three qubits that permit pairwise interaction and therefore
some SWAP gates need to be inserted. We extended the existing
GRAYSYNTH algorithm by heuristics to further minimize the
number of CNOTs, thereby reducing the possibility of violating
coupling constraints. For example, special strategies can be
used when the spectrum has no zero coefficients and therefore
CNOTs for all linear combinations need to be generated.

For the third step, we make use of the quantum gate
compilers shipped with the software development kits from
Rigetti and IBM.

IV. COMPILING SINGLE-TARGET GATES

In this section, we describe the second step of the algorithm
that was presented in the previous section. Before delving
into the details on how to compile single-target gates, we
briefly review a well-known identity for Toffoli gates, i.e., a
single target gate acting on three qubits with control function
f = x1x2. For compiling Toffoli gates into quantum gates, it

x1

x2

x3

[0
,2
,3
,5
,

7
,1
,4
,6
]

=

f1 f2 f3 f4 f5

y1

y2

y3

(a) Step 1: map permutation into se-
quence of single-target gates using
Young-subgroup based synthesis [10].

x1

x2

x3

f1

=

H

x2⊕x3

Rz(θ6)

x1⊕x2⊕x3

Rz(θ7)

x1⊕x3

Rz(θ3)

ĝ = x3 ∧ f1(x2, x3) −→ s = H3ĝ −→ θi =
πsi
23

x3

Rz(θ2)

x1⊕x3

Rz(θ5)

x3

Rz(θ4)

Rz(θ1)

H

x1

x2

x3 ⊕ f1(x1, x2)

(b) Step 2: each single-target gate is translated into a regular circuit structure composed of H gates,
CNOT gates, and Rz gates. The angles for the Rz gates can be obtained from the control function of
the single-target gate.

Fig. 2. Birds-eye overview of the proposed compilation algorithm.

is often first mapped into a doubly-controlled Z gate using
Hadamard gates:

x1

x2

x3

=

H H

x1

x2

x3 ⊕ x1x2 (12)

The unitary operation of the doubly-controlled Z gate is
diag(1, 1, 1, 1, 1, 1, 1,−1).

The following theorem generalizes this decomposition for
single-target gates of arbitrary size.

Theorem 1: Let Uf be the unitary matrix realized by a single-
target gate acting on xn with control function f(x1, . . . , xn−1).
Then

Uf = (I2n−1 ⊗H) · diag(ĝ0, . . . , ĝ2n−1) · (I2n−1 ⊗H), (13)

where ĝi are the truth table entries of the function g = xn ∧ f
in {−1, 1} coding. The following circuit illustrates the decom-
position:

x1
...

xn−1

xn

f
=

H d
ia
g
(ĝ

0
,
.
.
.
,
ĝ
2
n
−

1
)

H

x1
...

xn−1

xn ⊕ f(x1, . . . , xn−1) (14)

Proof: We evaluate the effect of applying the right-
hand side of (13) to the quantum state |x〉|xn〉, where
|x〉 = |x1 . . . xn−1〉. Applying (I2n−1 ⊗H) to |x〉|xn〉 yields

|ϕ1〉 =
1√
2
|x〉(|0〉+ (−1)xn |1〉).

Now note that diag(g0, . . . , g2n−1) maps a state |x〉|xn〉 to
(−1)xn∧f(x)|x〉|xn〉. When making a case distinction on xn,
one can see that the operation maps |x〉|0〉 to |x〉|0〉, and |x〉|1〉
to (−1)f(x)|x〉|1〉. Therefore, applying the diagonal matrix to
|ϕ1〉 yields

|ϕ2〉 =
1√
2
|x〉(|0〉+ (−1)f(x)(−1)xn |1〉)

=
1√
2
|x〉(|0〉+ (−1)f(x)⊕xn |1〉).

Finally, (I2n−1 ⊗H)|ϕ2〉 = |x〉|xn ⊕ f(x)〉 = Uf |x〉|xn〉.

Welch et al. have shown in [14] that the matrix
diag(ĝ0, . . . , ĝ2n−1) is equivalent to the unitary operation that
maps |x〉 to

eiπs(x)/2
n

|x〉, (15)

where s(x) =
∑
y∈Bn sy|y〉〈x|.

Schuch and Siewert have shown in [15] that a unitary
mapping as in (15) can be implemented by a quantum circuit
on n qubits that uses only CNOT and Rz gates. The CNOT
gates are used to generate the linear combinations |y〉〈x| on
some qubit to which then the phase gate Rz

(πsy
2n

)
is applied.

Note that only those linear combinations need to be generated
for which sy 6= 0. In [13], Amy et al. presented an algorithm
called GRAYSYNTH that finds a circuit which minimizes the
number of CNOT gates.

V. REWIRING OPTIMIZATIONS

The algorithm to compile single-target gates as described in
the previous section does not take into account the coupling
constraints of the quantum computer. In this section, we
describe three modifications to the algorithm that take the
coupling constraints into account.

First, in order to find a good CNOT network to create
linear combinations for the non-zero spectral coefficients,
GRAYSYNTH uses a heuristic to minimize the number of
CNOT gates. Often the algorithm has multiple choices and we
use the coupling constraints as a tie breaker in such cases.

Second, in the case of spectra with no zero coefficients, all
linear combinations of qubits are required. In this case, we
employ dedicated algorithms to generate CNOT sequences for
all linear combinations instead of using GRAYSYNTH. Since
all spectral coefficients are not zero, the sequence of CNOT
gates depends only on the number of variables in the function.
As a consequence, we can precompute circuit structures that
minimize the number of CNOTs as well as violations of
coupling constraints of the quantum computer.

Third, we allow rewirings after each single-target gate.
Formally, instead of implementing Uf as in (10), we find
a circuit for UπUf , where Uπ : |x1 . . . xn〉 7→ |xπ(1) . . . xπ(n)〉
for some permutation π ∈ Sn (i.e., over n elements). The
unitary transformation Uπ can be realized without any gates,

pyQuil
compiler

Qiskit
compiler

pyQuil
compiler

Qiskit
compiler

Benchmark

Decomposition-based
synthesis

Rigetti
quantum
circuit

IBM
quantum
circuit

Rigetti
quantum
circuit

IBM
quantum
circuit

State-of-the-art Proposed

permutation

single-target gate circuit

Clifford+T Clifford+Rz

Fig. 3. Compilation flows for experimental results

simply by rewiring the qubits. The following example illustrates
this:

x1

x2

x3

f1

x1

x2

x3 ⊕ f1(x1, x2)

f2

y1

y2

y3

=

x1

x2

x3

f1 f2

y1

y2

y3

The highlighted gate on the left-hand side implements Uf1
while the highlighted gate on the right-hand side implements
U[3,1,2]Uf1 . The implementation of the latter may require fewer
gates.

VI. EXPERIMENTAL RESULTS

We implemented the proposed algorithm and the state-of-
the-art algorithm in C++ into RevKit [16]1 using the quantum
compilation framework tweedledum.2 The scripts to regenerate
the experimental results are available on Github.3

Benchmarks: We use the benchmark families TOF(n),
PRIME(n), and HWB(n) to evaluate our proposed approach,
where n indicates that the benchmark describes a permuta-
tion over 2n elements. The benchmark TOF(n) describes a
multiple-controlled Toffoli gate with n− 1 control lines acting
on the least-significant qubit; it represents the single transpo-
sition (2n−2, 2n−1). Such gates play, e.g., an important role
in the Grover search quantum algorithm [17]. The benchmark
PRIME(n) represents the permutation that maps 0 to 0, and
then maps the successive numbers first to all primes and then
to all non-primes smaller than 2n in increasing order. For
example, PRIME(3) = [0, 2, 3, 5, 7, 1, 4, 6], the permutation
used in the example in Fig. 2. Finally, the benchmark HWB(n)
maps x to x�r νx, i.e., x is left-shift-rotated by the number
of 1s in x. For example, HWB(3) = [0, 2, 4, 5, 1, 6, 3, 7].

1see github.com/msoeken/cirkit
2see github.com/boschmitt/tweedledum
3see github.com/lsils/benchmarks-date2019-permutations

Methodology: Fig. 3 shows the flow for obtaining the
results. Input is a benchmark generated from the benchmark
families described in the previous section. This permutation
is decomposed into a sequence of single-target gates using
the algorithm described in [10]. Then each single-target gate
is mapped into a Clifford+T circuit using a state-of-the-art
compilation flow or into a Clifford+Rz circuit using our
proposed flow. In the state-of-the-art synthesis flow, we first
use ESOP-based (exclusive sum-of-products) synthesis to map
each single-target gate into a sequence of multiple-controlled
mixed-polarity Toffoli gates, which are single-target gates in
which the control function is a product term (conjunction of
literals). Multiple-controlled Toffoli gates with more than four
controls are decomposed into Toffoli gates with at most four
controls using the decomposition described in [18]; this may
introduce one additional helper qubit called ancilla. Finally,
each remaining multiple-controlled Toffoli gate is decomposed
into a Clifford+T circuit as described in [19].

The circuits generated by the state-of-the-art and proposed
compilation approach are then compiled into architecture aware
circuits for both Riggeti and IBM quantum computers using
the compilers provided in their software development kits. For
Rigetti we use architecture configurations for Agave 8Q and
Acorn 19Q, for IBM we use architecture configurations for
both 5-qubit and the 16-qubit quantum computers.

Tables I and II show the experimental results after compila-
tion for the Rigetti and IBM quantum computers, respectively.
The table shows the input permutation and the number of
variables. For each quantum computer, it shows the number
of gates and the gate depth after compilation using the state-
of-the-art and the proposed approach. Note that gate count
and volume for the Rigetti computers (R gates and R depth)
and the IBM computers (I gates and I depth) are not directly
comparable due to differences in the underlying gate sets and
device technologies. In the columns for the proposed approach
also the improvement in percentage is listed. The runtime in
all cases is a few seconds and negligible. As can be seen, our
proposed approach is particularly powerful when the number
of variables is larger than 3, because only then the proposed
algorithm can exploit the smaller rotation angles in the Rz gates.
Also, the proposed algorithm does not need any ancilla. As a
result, benchmarks such as TOF(5), PRIME(5), and HWB(5)
can be compiled for a 5-qubit quantum computer using the
proposed approach, while the state-of-the-art approach cannot
generate compatible circuits (see cells marked N/A). Further,
for the experiments on the IBM quantum computer, it can
be seen that more improvement is possible for the smaller
quantum computers, indicating that our proposed algorithm
better addresses the coupling constraints.

VII. CONCLUSIONS

We presented a compilation algorithm to realize permuta-
tions in terms of quantum circuits for Rigetti’s and IBM’s
superconducting computers. Contrary to the state-of-the-art
approaches, our approach better utilizes the gate set offered by
the respective quantum computers and optimizes with respect to
the quantum computers’ architectures. In future work, we plan
to fully integrate the mapping into our compilation approach.

TABLE I
EXPERIMENTAL RESULTS AFTER COMPILATION FOR RIGETTI COMPUTERS

Rigetti Agave 8Q Rigetti Acorn 19Q
Permutation SOTA Proposed SOTA Proposed

vars R gates R depth R gates impr. R depth impr. R gates R depth R gates imp. R depth impr.

TOF(3) 3 47 32 48 -2.13% 35 -9.38% 47 32 47 0.00% 37 -15.62%
TOF(4) 4 222 99 187 15.77% 107 -8.08% 194 93 142 26.80% 90 3.23%
TOF(5) 5 374 176 484 -29.41% 256 -45.45% 237 117 308 -29.96% 160 -36.75%
TOF(6) 6 883 471 957 -8.38% 491 -4.25% 1311 692 645 50.80% 325 53.03%
PRIME(3) 3 119 79 136 -14.29% 106 -34.18% 120 79 136 -13.33% 104 -31.65%
PRIME(4) 4 1212 614 664 45.21% 396 35.50% 953 573 674 29.28% 407 28.97%
PRIME(5) 5 5163 2338 2609 49.47% 1420 39.26% 4339 2178 1867 56.97% 1083 50.28%
HWB(4) 4 1217 691 995 18.24% 545 21.13% 1290 688 957 25.81% 525 23.69%
HWB(5) 5 6825 3213 3503 48.67% 1782 44.54% 6228 3046 2545 59.14% 1528 49.84%

TABLE II
EXPERIMENTAL RESULTS AFTER COMPILATION FOR IBM COMPUTERS

IBM Q 5 Yorktown IBM Q 5 Tenerife IBM Q 16 Rueschlikon
Permutation SOTA Proposed SOTA Proposed SOTA Proposed

vars I gates I depth I gates impr. I depth impr. I gates I depth I gates impr. I depth impr. I gates I depth I gates impr. I depth impr.

TOF(3) 3 17 13 15 11.76% 12 7.69% 16 13 18 -12.50% 13 0.00% 48 32 41 14.58% 27 15.62%
TOF(4) 4 46 34 61 -32.61% 41 -20.59% 113 69 74 34.51% 49 28.99% 122 75 124 -1.64% 72 4.00%
TOF(5) 5 N/A 132 89 N/A 136 100 222 124 262 -18.02% 152 -22.58%
TOF(6) 6 N/A N/A N/A N/A 590 304 562 4.75% 341 -12.17%
PRIME(3) 3 47 37 47 40 -8.11% 45 36 48 -6.67% 40 -11.11% 84 64 97 -15.48% 70 -9.38%
PRIME(4) 4 363 255 271 25.34% 174 31.76% 465 321 347 25.38% 229 28.66% 630 383 454 27.94% 275 28.20%
PRIME(5) 5 N/A 852 574 N/A 786 558 2827 1566 1635 42.16% 979 37.48%
PRIME(6) 6 N/A N/A N/A N/A 11448 5985 4924 56.99% 2802 53.18%
HWB(4) 4 464 299 340 26.72% 223 25.42% 535 327 407 23.93% 257 21.41% 818 507 583 28.73% 336 33.73%
HWB(5) 5 N/A 854 582 N/A 1046 670 4254 2364 2096 50.73% 1211 48.77%

This allows us to drop the dependency to the quantum computer
specific compiler from the compilation flow in Fig. 3. Also,
we like to extend our approach to address multi-target gates.

Acknowledgments: We wish to thank Eric Peterson and Ryan
Karle from Rigetti and Andrew Cross and Ali Javadi-Abhari
from IBM for providing support in using their toolchains.
This research was supported by the Swiss National Science
Foundation (200021-169084 MAJesty) and by the European Re-
search Council in the project H2020-ERC-2014-ADG 669354
CyberCare.

REFERENCES

[1] IBM, “IBM builds its most powerful universal quantum computing
processors,” 2017, press release by IBM, posted online May 17, 2017.

[2] J. S. Otterbach et al., “Unsupervised machine learning on a hybrid
quantum computer,” arXiv preprint arXiv:1712.05771, 2017.

[3] Google, “A preview of Bristlecone, Google’s new quantum processor,”
2018, article on Google AI Blog, posted online March 5, 2018.

[4] Intel, “The future of quantum computing is counted in qubits,” 2018,
press release by Intel, posted online May 2, 2018.

[5] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath,
and C. Monroe, “Complete 3-qubit Grover search on a programmable
quantum computer,” Nature Communications, vol. 8, no. 1918, pp. 1–9,
2017.

[6] Alibaba, “Alibaba Cloud and CAS launch one of the world’s most
powerful public quantum computing services,” 2018, press release by
Alibaba Cloud, posted online March 1, 2018.

[7] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages
and compiler design for realistic quantum hardware,” Nature, vol. 549,
no. 7671, pp. 180–187, 2017.

[8] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve,
and I. L. Chuang, “Experimental realization of an order-finding algorithm
with an NMR quantum computer,” Physical Review Letters, vol. 85,
no. 25, pp. 5452–5455, 2000.

[9] M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible
circuits - a survey,” ACM Computing Surveys, vol. 45, no. 2, pp. 21:1–
21:34, 2013.

[10] A. De Vos and Y. Van Rentergem, “Young subgroups for reversible
computers,” Advances in Mathematics of Communications, vol. 2, no. 2,
pp. 183–200, 2008.

[11] D. Deutsch, “Quantum computational networks,” Proc. R. Soc. Lond.,
vol. A 425, pp. 73–90, 1989.

[12] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[13] M. Amy, P. Azimzadeh, and M. Mosca, “On the CNOT-complexity of
CNOT-phase circuits,” arXiv preprint arXiv:1712.01859, 2017.

[14] J. Welch, D. Greenbaum, S. Mostame, and A. Aspuru-Guzik, “Efficient
quantum circuits for diagonal unitaries without ancillas,” New Journal
of Physics, vol. 16, no. 033040, pp. 1–15, 2014.

[15] N. Schuch and J. Siewert, “Programmable networks for quantum
algorithms,” Physical Review Letters, vol. 91, no. 027902, 2003.

[16] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” Multiple-Valued Logic and Soft Computing,
vol. 18, no. 1, pp. 55–65, 2012.

[17] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Symposium on Theory and Computing, 1996, pp. 212–219.

[18] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical Review A, vol. 52, no. 5, p. 3457,
1995.

[19] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Physical Review A,
vol. 93, p. 022311, 2016.

