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Abstract—Quantum memory management is becoming a
pressing problem, especially given the recent research effort to
develop new and more complex quantum algorithms. The only
existing automatic method for quantum states clean-up relies
on the availability of many extra resources. In this work, we
propose an automatic tool for quantum memory management. We
show how this problem exactly matches the reversible pebbling
game. Based on that, we develop a SAT-based algorithm that
returns a valid clean-up strategy, taking the limitations of the
quantum hardware into account. The developed tool empowers
the designer with the flexibility required to explore the trade-off
between memory resources and number of operations. We present
two show-cases to prove the validity of our approach. First, we
apply the algorithm to straight-line programs, widely used in
cryptographic applications. Second, we perform a comparison
with the existing approach, showing an average improvement of
52.77%.

I. INTRODUCTION
The prospective of experimenting with a practical quantum

computer is closing up thanks to the recent developments in
hardware technology [1], [2]. Driven by the revolutionary po-
tential capabilities of quantum computing, research is extremely
active both in academic and in industrial environments. The
race is on to develop quantum algorithms capable of proving
quantum supremacy, which is the ability to solve problems that
cannot be solved classically [3], [4], [5].

A large part of the design of quantum algorithms is still
performed manually, despite the emergence of several automatic
methods for both synthesis [6], [7] and optimization [8],
[9], [10] of quantum circuits. Most manual and automatic
approaches for quantum circuit synthesis decompose large
functionality into smaller parts in order to deal with complexity.
Each part requires some resources in terms of qubits and
quantum operations. Most of the parts of a large function are
used to compute intermediate values, which are stored on qubits.
However, the final circuit must not emit any of those values.
Otherwise, the computed results may entangle with intermediate
values and compromise the overall quantum algorithm. Since
quantum operations are reversible, intermediate results can be
“uncomputed” by performing the same operations that computed
them, in reverse order. Fig. 1 illustrates a small example. The
composition of the two functions f and g generates an unknown
state that can be uncomputed by performing f in reverse order.

There are many possible ways to recombine parts of a
decomposition, each of which resulting in different accumu-
lated costs for number of qubits and number of quantum
operations. The requirement that all intermediate results must
be uncomputed makes finding a good strategy particularly
difficult in quantum computing. Consequently, effective memory
management, which guarantees erasure of intermediate results,
is crucial in quantum circuit synthesis.

The problem of finding a strategy to uncompute intermediate
states for a fixed number of qubits corresponds to solving
the reversible pebbling game. The reversible pebbling game
problem has been introduced by Bennett in [11], in the context
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Fig. 1. An example of mapping two parts into quantum circuit; (a) does
not uncompute the first part, leading to an unknown garbage state, (b) does
uncompute the first part by computing it again in reverse order.

of exploring space/time trade-off in reversible computation.
Input is a Directed Acyclic Graph (DAG), in which each node
corresponds to one part of the decomposed computation, and
edges define data dependencies. Also, nodes can be pebbled,
meaning that the computed value is available on some resource,
in our case on a qubit. The game consists of placing pebbles
on the graph nodes. Initially no node is pebbled. A pebble can
be placed on a node if all its children are pebbled, and the
same condition is required to remove a pebble from a node.
The game is concluded if all the outputs are pebbled and all the
other nodes are unpebbled. Solving the problem returns a valid
clean-up strategy. The problem complexity has been studied
in [12] where the authors prove that it is PSPACE-complete,
as the non-reversible pebbling game. An explicit asymptotic
expression for the best time-space product is given in [13],
while the asymptotic behavior on trees is studied in [14].

We propose a solution to the reversible pebbling game that
casts the problem as a satisfiability problem. We show how
the method is capable of exploring the trade-off between space
(qubits) and time (operations). In our experimental evaluation,
we showcase several examples how our approach can be used
to find memory management strategies both for manual and
automatic synthesis approaches.

II. PRELIMINARIES
A. Quantum memory management

Our approach abstracts from the actual quantum operations
that are being performed, and therefore the interested reader is
referred to the literature for a detailed background on quantum
computing [15].

The problem of quantum memory management is crucial
in quantum circuit design, as all the garbage states need to be
carefully cleaned up.

Consider the example of a quantum algorithm that per-
forms the following mapping: |x1〉|x2〉|x3〉|x4〉|0〉|0〉 7→
|x1〉|x2〉|x3〉|x4〉|y1〉|y2〉 where

z1 = A(x2, x3) z2 = C(z1, x3) z3 = B(x3, x4)

z4 = D(z3, x3) y1 = E(z2, z4) y2 = F (x1, z1)

with A,B,C,D,E, F being some generic 2-input Boolean
operations and z1, z2, z3, z4 the intermediate results. Such
computation corresponds to the DAG in Fig. 2. In order to build
the quantum circuit to perform our computation we exploit the



A B

E

C DF

y2

y1

x3x2x1 x4

Fig. 2. Example of a DAG
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Fig. 3. Three different uncomputing strategies

direct correspondence between each node in the graph and a
reversible single-target gate.

Definition 1 (Single-target gate): A single-target gate Gc

is a reversible gate characterized by a control function c, by a
set of control qubits q1, . . . , qk and by a target qubit qt. The
gate inverts the value of the target line if c(q1, . . . , qk) evaluates
to true, i.e.,

Gc : |q1〉 . . . |qk〉|qt〉 7→ |q1〉 . . . |qk〉|qt ⊕ c(q1, . . . , qk)〉

Different reversible circuits resulting from this translation are
shown in Fig. 3. When two identical gates are performed twice
on the same target, the value on the line is uncomputed, and
comes back to its original state. Qubits initialized to |0〉, called
ancillae, are used to store the intermediate results and must
be restored after the computation. Once the results y1 and y2
have been computed, all the intermediate values z1, z2, z3, z4
must be cleaned up.

A simple solution is the one proposed in Fig. 3(a), which is
referred to as the Bennett [11] strategy. It consists of computing
all the operations in a bottom-up order, and then uncomputing
the intermediate results in a top-down fashion, so that all the
nodes have their inputs available. This strategy always leads to
the minimum number of gates, and to the maximum number
of qubits. The order in which the DAG is converted into a
reversible circuit can have a significant effect on how the
memory is managed. In the example strategy in Fig. 3(b) it is
shown how, only by changing the order of the operations, it
is possible to save one qubit, without increasing the duration
of the computation. Finally, by allowing an increase in the
number of gates, we can further reduce the number of ancillae
to 4. In this case some functions are computed several times,
see Fig. 3(c). In Fig. 3 ancillae are colored red during the time
they are storing an intermediate result. The first two strategies
store values for a long time during which they are not needed,
whereas the last strategy makes a good usage of fewer memory.
We cannot state that the last method performs better than
the first one, as that would depend from the actual hardware
constraints. What we achieve in this work is to empower the
designer with the ability to choose whether exchange memory
for time and vice versa.

B. Reversible pebbling game
The problem of finding the best uncomputing strategy is

equivalent to the reversible pebbling game problem. In the
remainder we use independently pebbling and uncomputing
strategy.

Definition 2 (Reversible pebbling configuration): A
reversible pebbling configuration of a DAG G = (V,E) is the
set P ⊆ V of all the pebbled vertices.

Definition 3 (Reversible pebbling strategy): A reversible
pebbling strategy of a DAG G is a sequence of reversible
pebbling configurations P = (P1, ..., Pm) such that P1 = {}
and Pm = O, where O is the set of all sinks of G. For each
1 < i ≤ m, we have Pi = Pi−1 ∪ {v} or Pi = Pi−1/{v} and
Pi 6= Pi−1. All in-neighbors of v are in Pi−1.

III. SAT-ENCODING
In this work we aim at finding a good pebbling strategy

while constraining the maximum number of pebbles per step.
Problem 1: Given a DAG and a number of pebbles, find a

valid pebbling strategy using the minimum number of steps.
As we use a SAT solver [16] to extract our solution, we have
to decompose this problem into many SAT problems.

Problem 2: Given a DAG and K pebbles, does a valid
pebbling strategy with K steps exist?
The solver can either find a solution and return a pebbling
strategy, or state that no solution exists. In this case we increase
the number of steps to K + 1 until a satisfying solution is
found.

Following the definition of a reversible pebbling game given
in Section II-B, we first declare our set of variables, and then
we impose satisfiability constraints.

Variables: The input DAG G = (V,E) has some nodes
which compute an output value and we refer to them as a set
O ⊆ V . Note that the primary inputs are not nodes in the DAG.
We also define C(v) = {w | w → v} as all children of a node
v. Problem 2 is encoded in terms of the pebble state variables
pv,i. For v ∈ V and 0 ≤ i ≤ K, those are Boolean variables
that evaluate to true if the node v is pebbled at time i. Note
that the SAT formula encodes K + 1 pebble configurations



with K steps describing the transition from one configuration
to the other.

Clauses: The following set of clauses describes the
reversible pebbling problem.
Initial and final clauses At time 0 all the nodes are unpebbled
and at time K all the outputs need to be pebbled and all the
intermediate results unpebbled∧

v∈V
p̄v,0 ∧

∧
v∈O

pv,K ∧
∧
v 6∈O

p̄v,K

Move clauses If a node is pebbled or unpebbled at time i + 1,
then all its children are pebbled at time i and time i + 1:

K∧
i=1

∧
(v,w)∈E

((pv,i ⊕ pv,i+1)→ (pw,i ∧ pw,i+1))

Cardinality clauses At each step, at most P pebbles are used:

K∧
i=0

(
∑
v∈V

pv,i ≤ P )

IV. APPLICATIONS AND RESULTS
In this section we illustrate the validity of our proposed

approach by show-casing several examples in which large
computations are expressed in terms of a sequence of smaller
ones. In order to optimally exploit qubit resources, a high-
quality quantum memory management is required that can be
addressed using our SAT-based reversible pebble game solver.
Our algorithm uses at its core the open source SAT solver
Z3 [16].

Straight-line programs: We apply our method to the
synthesis of straight-line programs used in cryptographic
applications. Those programs are combinations of modular
arithmetic operations as addition, subtraction, multiplication,
and squaring. We assume that for each operation a quantum
implementation exists, and will have a given cost in terms
of quantum gates and ancillae. We can estimate the cost of
an algorithm implementation in terms of number of different
operations, according to the resources available. We choose a
straight-line program that implements the addition between two
points of an Edward curve in projective coordinates from [17].
We pebble the resulting DAG using different number of pebbles.
Fig. 4 visualizes the pebbling strategies obtained with 24, 20,
16, 12, and 10 pebbles. In each case, we obtain a different
number of operations, as reported in Fig. 4. For example the first
implementation performs a total of 74 operations: 28 additions,
20 subtractions, 15 squaring and 11 multiplication. We can
see how the tool manages to fit the desired computation into
limited number of qubits, by increasing the number of required
steps. As a consequence, the last implementation has an higher
cost in terms of operations: 110 in total. The overall cost of the
algorithm on different hardware can be evaluated having some
estimates of the real cost of each operation. On the top of each
grid, we show the dynamic change in the memory employed
during the computation. A flat dynamic suggests that a constant
number of qubits is used through the whole computation. A
solution with a lower peak requires less qubits.

Comparison with Bennett strategy: The second show-
case wants to test the program on the mapping of a design
with limited number of qubits. We consider an operator called
H (different from the Hadamard gate) that is used internally
to the algorithm that computes the doubling of two points

TABLE I. COMPARISON

Bennett Pebbling strategy
pi po nodes P K P K runtime %P ×K

b2_m3 8 8 74 66 124 30 186 0.17 54.55 1.5
b3_m4 12 12 59 47 82 20 117 121.37 57.45 1.43
b4_m5 16 16 203 187 358 83 778 55.75 55.61 2.17
b5_m7 20 20 256 236 452 106 888 31.15 55.08 1.96
b6_m7 24 24 310 286 548 130 1132 35.72 54.55 2.07
b8_m7 32 32 422 390 748 187 1884 11.59 52.05 2.52
b10_m7 40 40 535 495 950 264 2938 28.66 46.67 3.09
b12_m7 48 48 646 598 1148 331 4228 56.33 44.65 3.68
b16_m23 64 64 881 817 1570 480 6218 133.45 41.25 3.96

c17 5 2 12 7 12 4 12 0.01 42.86 1
c432 36 7 208 172 337 60 685 23.70 65.12 2.03
c499 41 32 219 178 324 77 610 60.08 56.74 1.88
c880 60 26 334 274 522 82 1280 43.52 70.07 2.45
c1355 41 32 219 178 324 77 594 2.63 56.74 1.83
c1908 33 25 220 187 349 70 875 57.97 62.57 2.51
c2670 157 63 554 397 731 160 1948 47.94 59.7 2.66
c3540 50 22 856 806 1590 416 5434 111.20 48.39 3.42
c5315 178 123 1257 1079 2035 498 7635 118.38 53.85 3.75
c6288 32 32 1011 979 1926 640 10232 101.31 34.63 5.31
c7552 207 108 1151 944 1780 540 7757 124.1 42.8 4.36

Average percentage reduction of pebbles = 52.77
Average multiplicative factor for the number of steps = 2.68

referred before [17]. This operator is a composition of modular
additions (+) and modular subtraction (−); it has a, b, c, d as
inputs and four outputs x, y, z, t, where:

t1 = a+ b t2 = c+ d t3 = a− b t4 = c− d

x = t1 + t2 y = t1 − t2 z = t3 + t4 t = t3 − t4

Experiments reported in Table IV show a comparison with the
Bennett pebbling method. The different designs correspond to
the H operator with different bitwidths and modulus. We also
report our results for the well known ISCAS benchmark. The
graph representation for the function has been extracted from an
XOR-majority graph using the open source tool mockturtle [18].
A method to use XOR-majority graphs into quantum circuits
using a naive quantum memory management strategy was
presented in [19]. The number of pebbles corresponds to the
minimum one for which the solver could find a solution within
2 minutes. Even with this restricted timeout the algorithm
finds a solution for a significantly reduced number of pebbles.
The average percentage reduction is 52.77%. As the pebbles
are reduced, the number of steps increase with respect to
the Bennett method. In average the number of steps for the
constrained design is 2.68× the one of the naive strategy. With
the increase of the size of the DAG, we see a fewer pebble
reduction. The reason is in the timeout chosen, as the solver
takes more time for large designs: the number of variables of
the SAT problem is proportional to n2 where n is the number
of nodes of the DAG. Also increasing the number of nodes,
more steps seems to be required. This is also dependent on
the timeout. In fact the algorithm is capable of finding many
solutions with different number of pebbles but same number
of steps. Nevertheless more constrained solutions require more
time to be resolved.

V. CONCLUSION
We developed a SAT-based algorithm for quantum memory

management. We show how the clean-up problem corresponds
to the reversible pebbling game problem. Consequently, our
algorithm solves instances of the reversible pebbling game
to explore the trade-off between memory and number of
operations. Finding an efficient pebbling strategy is crucial in
quantum algorithm development, where often small manually
optimized circuits are cascaded together. Our tool can enable
computations in a constrained system, when this would not



Fig. 4. Example of how the tool can be used to map a computation into a given number of ancillae: respectively 24 (Add:28, Sub:20, Sqrt:15, Mult:11), 20
(Add:36, Sub:32, Sqrt:21, Mult:9), 16 (Add:28, Sub:24, Sqrt:17, Mult:13) , 12 (Add:24, Sub:34, Sqrt:19, Mult:13) and 10 (Add:34, Sub:38, Sqrt:25, Mult:13).

be possible using the strategies in the literature. We have
shown two different show-cases to demonstrate the efficiency
of our method. In general, it can be used in cryptographic
applications to synthesize straight-line programs, but also in
any hierarchical synthesis automatic method. It can be used
to estimate the cost of performing an algorithm on a given
hardware in terms of number of operations. Our experiments
show that we are capable of finding solutions with an average
reduction in number of ancillae required of 52.77% with a
timeout of 2 minutes. Finally, the tool could be used by a
designer to map a required computation into the available
hardware.
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