
Quantum circuits for floating-point arithmetic

Thomas Haener1,3, Mathias Soeken2, Martin Roetteler3, and Krysta M. Svore3

1ETH Zürich, Zürich, Switzerland
2EPFL, Lausanne, Switzerland

3Microsoft, Redmond, WA, USA

Abstract. Quantum algorithms to solve practical problems in quantum
chemistry, materials science, and matrix inversion often involve a signif-
icant amount of arithmetic operations which act on a superposition of
inputs. These have to be compiled to a set of fault-tolerant low-level
operations and throughout this translation process, the compiler aims
to come close to the Pareto-optimal front between the number of re-
quired qubits and the depth of the resulting circuit. In this paper, we
provide quantum circuits for floating-point addition and multiplication
which we find using two vastly different approaches. The first approach is
to automatically generate circuits from classical Verilog implementations
using synthesis tools and the second is to generate and optimize these
circuits by hand. We compare our two approaches and provide evidence
that floating-point arithmetic is a viable candidate for use in quantum
computing, at least for typical scientific applications, where addition op-
erations usually do not dominate the computation. All our circuits were
constructed and tested using the software tools LIQUi|〉 and RevKit.

1 Introduction

Quantum computing shows great promise for solving classically intractable com-
putational problems. The wide range of potential applications includes factor-
ing [1], quantum chemistry [2, 3], and linear systems of equations [4]. Most of
these quantum algorithms invoke subroutines which carry out a classical compu-
tation on a superposition of exponentially many input states. Examples include
modular exponentiation for factoring [1], evaluating orbital functions for quan-
tum chemistry (e.g., linear combinations of Gaussians) [2], and reciprocals for
solving systems of linear equations [4]. While large-scale quantum computers
able to run such algorithms are not yet available, it is nevertheless crucial to an-
alyze the resulting circuits in order to acquire resource estimates. These can then
guide further development of both quantum algorithms and hardware, allowing
for efficient hardware-software co-design.

For instance, recent quantum algorithms to simulate quantum chemistry
models implement time evolution under the electronic structure Hamiltonian
of electrons interacting with nuclei and with each other. Mathematically, this is
described by the Hamiltonian

H = −
∑
i

∇2
i /2−

∑
i,j

Zi

|Ri − rj |
+
∑
j>i

1

|ri − rj |
,

where ∇2
i is the Laplace operator of electron i, the vectors Ri denote the lo-

cations of the nuclei, the scalars Zi denote the charges of the nuclei, and the
ri are vectors describing the locations of the electrons. When calculating the
two-electron integrals of the Hamiltonian H in order to compute the represen-
tation of H in second quantization on-the-fly, expressions such as 1/|ri − rj |
must be evaluated. In recent approaches such as [2] these expressions would
have to be evaluated in superposition, i.e., a quantum circuit is required that
computes for instance x 7→ 1/x, where x is a representation of the underlying
distances. Also the inverse square root operator x 7→ 1/

√
x naturally appears

in these computations as typically a computation of Euclidean distances is in-
volved. Several choices seem possible to represent inputs and outputs to these
operations, including fixed-point and floating-point representations. Here, we fo-
cus on studying the impact of different choices of floating-point representations
on the number of quantum bits (qubits) and number of T -gates that are re-
quired for basic arithmetic operations such as addition and multiplication, from
which then more involved operations such as 1/x and 1/

√
x can be built, e.g.,

via Newton’s method.
Compared to a fixed-point representation, floating-point arithmetic offers

great savings in number of qubits when the required range of values and/or
relative precision is large. Thus, finding good circuits for floating-point arithmetic
could be of tremendous use in many applications of quantum computing.

This paper is organized as follows: After a short introduction to floating-point
arithmetic and quantum circuits in Sect. 2 and Sect. 3, we employ state-of-the-art
synthesis tools to transform classical, non IEEE-compliant Verilog implementa-
tions to optimized reversible circuits and present the results in Sect. 4. We then
introduce our hand-optimized circuits in Sect. 5 and mention advantages and
disadvantages of using an automatic synthesis approach as opposed to optimiz-
ing by hand in Sect. 6. Finally, in Sect. 7, we provide evidence for the viability
of using floating-point arithmetic in quantum computing and give a summary
and outlook in Sect. 8.

2 Floating-point addition and multiplication

In a floating-point representation, every number x is approximated using three
registers: 1 sign bit xS , M bits for the (non-negative) mantissa xM (a number
in [1, 2)), and E bits for the exponent xE . Then,

x ≈ (−1)xSxM · 2xE

and because xM ∈ [1, 2), its highest bit is always 1 and therefore it need not
be stored explicitly. This format allows to represent a much larger range of
values with a given number of bits than a fixed-point representation. Yet, basic
arithmetic operations require more gates due to the extra steps involved to align
and re-normalize intermediate results. In particular, adding two floating-point
numbers x = (xS , xM , xE) and y = (yS , yM , yE) involves the following steps:

1. If xE < yE , swap the two floating-point numbers.
2. Compute two’s complement from sign bits and mantissas (including the im-

plicit leading 1).
3. Align the two results according to the difference in exponents ∆E = xE−yE

(only if |∆E | < M , else the addition will have no effect).
4. Add mantissas in two’s complement.
5. Translate from two’s complement to sign bit and mantissa.
6. If adding the two mantissas caused an overflow, right-shift the result by 1

and increment the exponent.
7. Determine the position of the first 1. Left-shift the mantissa by that amount

and then update the exponent accordingly.
8. When copying out the result, check if there was over/underflow in the expo-

nent and output infinity or 0, respectively.

Multiplying two floating-point numbers x and y, on the other hand, is much
simpler because there is only one renormalization step involved. In summary, it
requires the following steps:

1. Determine result exponent rE = xE + yE .
2. Multiply mantissas (including the implicit leading 1) into a 2M -bit register.
3. If there was overflow, right-shift by 1 and increment the result exponent.
4. If xE < 0 and yE < 0 but rE > 0, output 0.
5. If xE ≥ 0 and yE ≥ 0 but rE < 0, output infinity.
6. Determine the sign bit of the result.

While both floating-point operations are more expensive than their fixed-point
analog, the overhead is much more prominent for addition. This fact will have
important consequences for our discussion about the practicality of floating-point
representations in quantum computing, which we will present in Sect. 7.

3 Quantum circuits

Programs which run on a quantum computer can be described using quantum
circuit diagrams, similar to the one depicted in Fig. 1b. Each line represents a
qubit and the program is executed from left to right. Because the time evolution
of a closed quantum system is described by a unitary operator, every quantum
instruction must be reversible (note that this does not include measurement). In
particular, executing classical functions on a quantum computer requires map-
ping all classical non-reversible gates to Toffoli gates (doubly-controlled NOTs)
acting on quantum bits. Furthermore, intermediate results need to be stored
in temporary work qubits (ancilla qubits) in order to render the computation
reversible.

Once the program has been compiled for a certain hardware architecture, the
resulting instructions can be executed on the target device. However, physical
implementations of qubits are far from perfect and the resulting noise would
corrupt the output of any quantum program of nontrivial size. This problem

y2y1

x3x2x1 x4 x5

1

3

2

5

4

(a) LUT network

x1
x2
x3
x4
x5

0
0
0
0

1

2

4
5

4

2
3

1

x1
x2
x3
x4
x5

0
y1
0
y2

(b) Reversible network

Fig. 1. Translation of LUT networks into reversible networks with single-target gates

can be remedied by employing quantum error correction which encodes a single
logical qubit using many physical ones and thereby reduces the effects of noise on
the computation. In order to use quantum error correction, however, all quantum
operations need to be mapped to a discrete gate set. One such set of operations
is called Clifford+T , where the T -gate is usually the most expensive quantum
operation. There are several proposals to implement a T -gate, and all of them
feature a large overhead in terms of physical qubits. By, e.g., having many T -gate
factories available, the runtime of a quantum program can be estimated from the
T -depth. To estimate the overhead in T -gate factories, also the number of T -gates
which must be executed in parallel is an important measure. In combination with
the number of logical qubits, these measures typically allow for a good estimate
of the overall cost. We therefore provide these measures for all our circuits. In
addition, we provide the circuit size [5]

KQ = T -depth ·#Qubits ,

which can be used to compare different implementations.

4 Automatic circuit synthesis

In this section, we present cost estimates for both floating-point addition and
multiplication based on reversible networks that are obtained from the LUT-
based hierarchical synthesis approach (LHRS, [6]). LHRS reads as input a clas-
sical gate-level logic network, e.g., provided as Verilog file. It then uses LUT
mapping techniques (e.g., [7–9]) from conventional logic synthesis algorithms to
map the gate-level netlist into a LUT network composed of k-input LUT gates,
which can realize any k-input Boolean function. An example for a LUT network
where k = 2 is illustrated in Fig. 1a. Such a network is translated into a reversible
network composed of single-target gates. Single-target gates are generalized re-
versible gates in which the value of a target line is inverted if a given Boolean
control function evaluates to true on the control line values of the gate. Fig. 1b
depicts one possible result of such a translation. Intermediate values are stored
on ancillae, which are initialized 0 and need to be restored to their initial value
after computation. The order in which the LUTs are traversed in this transla-
tion affects the number of required ancillae, because an early uncomputation of

Table 1. Resource counts for the automatically generated circuits.

Design Width Qubits T -count Runtime

Adder 16 76 112,059,924 143.49
Adder 16 100 40,915 2.28
Adder 32 239 79,415 24.22
Adder 64 538 165,509 2.05

Mult 16 81 3,195,745 3276.00
Mult 32 351 1,110,133 238.82
Mult 64 1675 7,709,931 3318.67

ancilla allows to reuse them for other intermediate values. The aim is to find
a reversible network with as few ancillae as possible. In the reversible network
each single-target gates is mapped to a Clifford+T network. For this purpose,
different algorithms have been proposed [10, 6].

To obtain circuits using LHRS we first optimized existing IP blocks for
floating-point addition and multiplication for gate count and mapped them into
AND-inverter graphs (AIGs), which are logic networks that are composed of
AND gates and inverters. We configured the IP blocks in a way that their func-
tionality is as close to the functionality of the hand-optimized circuits. That is,
the IP blocks are not IEEE compliant and rounding is always closest to zero.
The obtained AIG representation is used as starting point for the initial k-LUT
mapping. As value for k, we used the smallest value such that the number of
required qubits does not exceed the number of qubits obtained from the hand-
optimized circuits. To find that value, one can run LHRS without mapping the
single-target gates into Clifford+T networks. This step is typically quite fast,
and the runtime required for it can be neglected.

For each single-target gate, we used all available mappers and compared the
quality of the resulting Clifford+T networks, then taking the best one. A plot of
the parameters of several solutions for the case of 16-bit floating-point adders is
shown in Fig. 2. These circuits, as well as the circuits in Table 1 which improve
over some of the results obtained in [6] were generated using RevKit, which
has implementations of direct XMG-based synthesis (DXS, [11]), circuit-based
synthesis (CBS, [12]), and LHRS.

5 Hand-optimized circuits

In this section, we present hand-optimized circuits for both floating-point addi-
tion and multiplication. We detail the individual circuit components and provide
resource estimates in order to compare to the synthesis approach discussed in
Sect. 4.

104 105 106 107 108

T-count

100

200

300

400

500

Q
ub

its

DXS
CBS
LHRS
Hand-optimized

Fig. 2. Plot of characteristics of different implementations of 16-bit floating-point im-
plementations, based on resource counts provided in [6]. Each point corresponds to the
number of qubits and number of T -gates for a particular circuit generated via different
circuit synthesis methods, including LHRS. The data point for the hand-crafted circuit
is located in the bottom left corner.

5.1 Basic building blocks

Our hand-generated floating-point circuits consist of a series of basic building
blocks. We use the integer adder from Ref. [13] and construct an integer multi-
plier from it using the standard shift-and-add approach. To compare two n-bit
numbers, we perform a subtraction using one extra qubit (i.e., on n + 1 bits),
followed by an addition without this extra qubit, which holds the result of the
comparison. If the comparison involves a classically-known constant, we use the
CARRY circuit from Ref. [14].

The only floating-point-specific blocks are the ones used to determine the
location of the first one in a bit-string, and to shift the mantissa by an amount
s (specified in an input register). More specifically, the first circuit achieves the
mapping

|x〉 |0〉 F7→ |x〉 |blog2(x)c〉 ,

where x is interpreted as a positive integer. The shift circuits S± perform the
mapping

|s〉 |x〉 S
±

7→ |s〉
∣∣2±sx

〉
.

In this case, x is a 2M -bit register, where the first/last M bits are guaranteed
to be zero, and s is a log2M -bit register representing the shift.

|s〉

|x〉

Fig. 3. Implementation of a shift circuit for an 8-bit number x. The shift s must be
such that the top, i.e., least-significant s bits of x are 0. Variations of this circuit are
required to enable shifts in both directions and to ensure that the sign bit is copied
when right-shifting a negative number in two’s complement.

5.2 Implementation

A straight-forward implementation of these shift circuits S± would, for every
m ∈ {0, ...,M − 1}, copy out the M -bit value x shifted by m bits into a new
2M -bit register, conditional on s being equal to m.

To save M qubits, x can first be padded with M bits to the left/right.
This allows exchanging the copy-operations above with swaps: For each m ∈
{1, ...,M − 1}, the bits of x can be swapped m bits to the left/right, starting at
the left-/right-most bit. Yet, this approach requires M(M − 1) Fredkin gates.

A more efficient implementation can be obtained by swapping the bits of x
to the left/right by 2k, conditional on the k-th bit of the shift-register |s〉 and
repeating this for every k ∈ {0, ..., log2M − 1}. An example circuit for a 3-bit
shift register and an 8-bit x-register is depicted in Fig. 3. In general, this circuit
requires O(M log2M) Fredkin gates for a log2M -sized shift-register.

Finding the first one, i.e., implementing the F operation mentioned above,
can be achieved using a circuit similar to the one in Fig. 4, which depicts an
example for 8 bits. The flag f being 1 indicates that the first 1 in the bit-
representation of x has not yet been found. For every bit xi of x (starting with
bit-index i = 0), the position register is initialized to i if the flag is 1 and xi = 1
(i.e., it is the first 1). Then, the flag-bit is flipped conditional on the position
register being equal to the current i (note that only positive controls need to be
placed on the position register).

All of the required components were implemented and thoroughly tested
using a reversible simulator extension to LIQUi |〉 [15]. The high-level overview
circuits for both floating-point addition and multiplication are depicted in Fig. 5

|f〉

|p〉

|x〉

Fig. 4. Circuit for finding the first one in the bit-representation of x. The flag f (which
is initially set to 1 using the first NOT gate) is toggled to 0 as soon as the first 1 has
been found. The position of the first one is stored in the p-register, consisting of 3 bits
in this example.

|0〉
|Ex〉
|Ey〉
|Mx〉
|My〉
|0〉
|Sx〉
|Sy〉
|0〉
|0〉

m

CMP

2’s

2’s

−

SHIFT

< m

+
2’s cSHIFT1

+1
+

RN

|SzEzMz〉

Fig. 5. High-level overview of the floating-point addition circuit. First, the inputs are
sorted by the exponent (comparison followed by controlled swaps). Then, the second
mantissa is shifted by the difference of the exponents before it is added to the first
mantissa and converted back from two’s complement (taking the pseudo-sign bit as
the new sign bit). If there was a final carry in the addition, the result is shifted by 1 bit
and the exponent is incremented by 1. The final RN gate renormalizes the intermediate
result using the first-ones circuit (see Fig. 4) followed by shifting the mantissa (see
Fig. 3) by the output of the first-ones circuit and copies out the resulting floating-
point representation, taking care of zero and infinity outcomes.

|Mx〉
|My〉

|0〉⊗2m
|0〉

|Ex〉
|Ey〉
|0〉

|Sx〉
|Sy〉
|0〉

|output〉

MUL cshift1

+
cCOPY

|M ′z〉

|E′z〉

|S′z〉
|SzEzMz〉

Fig. 6. High-level overview of the floating-point multiplication circuit. After multiply-
ing the input mantissas Mx and My into a new register of 2m qubits (m denotes the
number of mantissa bits), it is right-shifted by one if the resulting mantissa Mx ·My ≥ 2.
The exponent is updated accordingly (using a CNOT), followed by an addition of both
input exponents Ex and Ey into E′

z (if Mx ·My 6= 0). The final step denoted by cCOPY
consists of conditionally copying out of the resulting exponent, mantissa and sign bit
to take care of special cases such as over- and underflows in computing the resulting
exponent which turn to infinity and zero outcomes, respectively.

and Fig. 6 and the resource counts which resulted from the implementation in
LIQUi |〉 can be found in Table 2.

6 Advantages and disadvantages of automatic circuit
synthesis

The results in the previous sections showed that the cost resulting from the hand-
crafted floating-point addition and multiplication circuits are clearly much lower
than the cost resulting from the automatic synthesis tool. The main reason for
this discrepancy is that the synthesis algorithm is agnostic to the type of design.
The synthesis approach does not use the fact that a floating-point operation
contains a characteristic structure, as it is exploited in finding the hand-crafted
designs. It also highly depends on the logic network that is input to the synthesis
algorithm. In our case, this has been optimized in order to reduce the area (in
terms of number of gates) in conventional circuits. The relation of this objective
to the number of qubits and T -count is not fully understood—finding a corre-
lation and deriving a corresponding cost function from it will significant boost
the effectiveness of the automatic synthesis approach.

Nevertheless, automatic synthesis has clear advantages already in its current
implementation:

Design Width Qubits T -count T -depth

Adder 16 76 4,704 1,386
Adder 32 140 11,144 3,138
Adder 64 268 26,348 7,224

Mult 16 81 6,328 2,580
Mult 32 158 26,642 11,154
Mult 64 315 122,752 52,116

Table 2. Resource counts for the hand-optimized circuits. Each Toffoli gate was de-
composed using 7 T-gates [16] in T -depth 3, providing an upper-bound on the actual
T-count [17].

1. One can apply automatic synthesis to various designs and get immediate
results. In contrast, to derive a high-quality hand-crafted design can require
several months.

2. Automatic synthesis can find various different implementations of the same
design by adjusting the synthesis parameters. This allows for design space
exploration. Depending on the targeted quantum platform or the context of
the design inside a quantum algorithm, one can address different objectives.

3. One may be able to find a design that requires fewer qubits. Reducing the
number of quantum operations, e.g., T gates, in post-synthesis optimization
algorithms is much easier than reducing the number of qubits. Automatic
synthesis techniques can in principle find quantum circuits without any an-
cilla qubits (except to store the result of the outputs). For example, the
16-bit variants of the floating-point adder and multiplier would require only
48 qubits. Although such a circuit is likely to have a very large number
of quantum operations, the circuit provides a good starting point for post-
synthesis optimization.

7 Practicality of floating-point arithmetic for quantum
computing

While the automatic synthesis approach in its current implementation produces
very large circuits, floating-point arithmetic for quantum computing is still a
viable option, at least when using hand-optimized circuits. Most likely, there
are still further improvements possible also in our hand-optimized design: While
it features a much lower circuit width than previous adders such as the 32-bit
floating-point adder presented in Ref. [18], the T -depth of our design is larger.
Specifically, our design requires 1/6 of the number of qubits of the adder in
Ref. [18] and features a size of

KQ = T -depth ·#Qubits

≤ 439,320 ,

which is still a 39.3% improvement over the KQ = 723,301 reported in Ref. [18],
despite the much larger T -depth.

Furthermore, we argue that exchanging fixed-point arithmetic in a given
computation by floating-point arithmetic will result in a circuit of similar cost:
While the resource requirements of floating-point addition are much larger than
for fixed-point numbers, it is important to note that the cost of floating-point
multiplication is very similar to performing it in a fixed-point representation,
and given that multiplication in both representations is more expensive than
addition, the measure of choice should actually be the cost of multiplication.
Furthermore, most applications feature similar numbers of additions and multi-
plications and often, they can even be combined into a single fused multiply-add
instruction which is true, e.g., when evaluating polynomials using the Horner
scheme [19]. This means that the overhead of using floating-point arithmetic for
applications where multiplications and additions are balanced or where multi-
plication even dominate is actually much less than what is generally expected.
The KQ ratio between a 32-bit floating-point multiplier and a 24-bit fixed-point
multiplier (where we require intermediate results to be computed for the full 2M
bits) is

KQmul
float

KQmul
fixed

=
11,154 · 158

10,656 · 5 · 24
≈ 1.38 ,

which clearly shows that the circuit sizes are similar, even for such an unfair
comparison: While the chosen bit-sizes guarantee the same absolute precision if
no exponent is used, the floating-point multiplier can deal with a much wider
range of values at constant relative error. Considering a scientific application with
roughly equal numbers of additions and multiplications will cause a deviation
from the calculated overhead above by at most another factor of two, since
additions require less resources regardless of the chosen representation.

Therefore, we conclude that the cost of using floating-point arithmetic is
not only manageable, but that it actually incurs almost no overhead for typical
scientific applications. For many quantum algorithms, the extra range and con-
stant relative error offered by a floating-point representation are well worth an
increase in circuit size of 2-3×.

8 Summary and outlook

Given the strict requirements of the IEEE standard, it is expected that IEEE-
compliant floating-point arithmetic features large overheads compared to fixed-
point arithmetic. Furthermore, even when considering non IEEE-compliant blocks,
the number of gates obtained from circuit synthesis is much larger than what
would be expected from a fixed-point implementation. Yet, in combination with
manual circuit optimization, relaxing the requirements allows for significant sav-
ings in both width and size of the circuit, rendering the use of floating-point
arithmetic for future quantum devices much more practical. Furthermore, since

the cost of multiplying fixed-point numbers is very similar to floating-point mul-
tiplication, using floating-point arithmetic in typical scientific applications will
incur an overhead in the circuit size KQ of only 2-3×.

One reason for the large discrepancy between our two approaches—manual
optimization and automatic circuit synthesis—is that the objective function used
in the optimization process for classical computing is very different from the one
used in quantum computing: In classical computing, the most costly resource
is time, while bits are essentially free. Circuits resulting from an optimization
procedure aiming to minimize the cost function for classical computing are thus
highly parallel, but they also require more bits. In quantum computing, on the
other hand, both circuit depth and width (i.e., number of bits) are precious
resources [5]. This makes introducing parallelism harder and an optimization
procedure would generate vastly different circuits featuring less parallelism and
fewer bits.

While the hand-optimized circuits require fewer qubits and T -gates, it is very
likely that some of the subroutines may still be further optimized using methods
from the automatic synthesis approach. Furthermore, the interplay among differ-
ent components in the hand-written circuit may benefit from such a procedure.
We aim to investigate this combination of approaches in future work.

References

1. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on, pages 124–134. IEEE, 1994.

2. Ryan Babbush, Dominic W. Berry, Ian D. Kivlichan, Annie Y. Wei, Peter J.
Love, and Alán Aspuru-Guzik. Exponentially more precise quantum simulation
of fermions in second quantization. New Journal of Physics, 18(3):033032, 2016.

3. Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and
Matthias Troyer. Elucidating reaction mechanisms on quantum computers.
arXiv:1605.03590, 2016.

4. Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Physical review letters, 103(15):150502, 2009.

5. Andrew M. Steane. Overhead and noise threshold of fault-tolerant quantum error
correction. Physical Review A, 68(4):042322, 2003.

6. Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli. Hier-
archical reversible logic synthesis using LUTs. In Design Automation Conference,
pages 78:1–78:6. ACM, 2017.

7. Jason Cong and Yuzheng Ding. FlowMap: an optimal technology mapping algo-
rithm for delay optimization in lookup-table based FPGA designs. IEEE Trans.
on CAD of Integrated Circuits and Systems, 13(1):1–12, 1994.

8. Deming Chen and Jason Cong. DAOmap: a depth-optimal area optimization map-
ping algorithm for FPGA designs. In Int’l Conf. on Computer-Aided Design, pages
752–759, 2004.

9. Sayak Ray, Alan Mishchenko, Niklas Eén, Robert K. Brayton, Stephen Jang, and
Chao Chen. Mapping into LUT structures. In Design, Automation and Test in
Europe, pages 1579–1584, 2012.

10. Nabila Abdessaied, Mathias Soeken, and Rolf Drechsler. Technology mapping for
single target gate based circuits using Boolean functional decomposition. In Int’l
Conf. on Reversible Computation, pages 219–232, 2015.

11. Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli. De-
sign automation and design space exploration for quantum computers. In Design,
Automation and Test in Europe, pages 470–475. IEEE, 2017.

12. Mathias Soeken and Anupam Chattopadhyay. Unlocking efficiency and scalability
of reversible logic synthesis using conventional logic synthesis. In Design Automa-
tion Conference, pages 149:1–149:6, 2016.

13. Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum addition
circuits and unbounded fan-out. arXiv preprint arXiv:0910.2530, 2009.

14. Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n+
2 qubits with Toffoli based modular multiplication. Quantum Information and
Computation, 17(7 & 8), 2017.

15. Dave Wecker and Krysta M. Svore. LIQUi|〉: A software design architecture and
domain-specific language for quantum computing. arXiv, 1402.4467, 2014.

16. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

17. Cody Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys-
ical Review A, 87(2):022328, 2013.

18. Trung Duc Nguyen and Rodney Van Meter. A resource-efficient design for a re-
versible floating point adder in quantum computing. ACM Journal on Emerging
Technologies in Computing Systems, 11(2):13:1–13:18, 2014.

19. Donald E Knuth. Evaluation of polynomials by computer. Communications of the
ACM, 5(12):595–599, 1962.

