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Abstract—The spectral representation and classification of 2-
valued and multiple-valued functions has been previously studied
and found to be useful in logic design and testing for conven-
tional circuits. Spectral techniques also have potential applica-
tion for reversible and quantum circuits. This paper addresses
the classification of ternary functions into spectral translation
equivalence classes. An efficient algorithm is presented that
determines the spectral translations to map a given function to
the representative function for the equivalence class containing
the given function. Using this algorithm we show that the 2-
variable ternary functions partition into 11 equivalence classes.
While the number of spectral equivalence classes for ternary
functions with 3 or more variables is very large, prohibiting full
enumeration, we determine a lower bound of 167,275 classes for
3 variables. The algorithm can be used for a significant number
of variables to quickly determine if two functions fall within the
same equivalence class and, if they do, to find a sequence of
spectral translations to map one to the other. Generalization of
the approach to higher radix functions is briefly discussed.

I. INTRODUCTION

The classification of 2-valued functions has been well
studied beginning with NPN classification [1] which partitions
functions into equivalence classes based on negation of vari-
ables, permutation of variables, and negation of the function.
Spectral techniques have also been used for 2-valued function
classification [2]–[5] where two spectral translations augment
the NPN operations. Using the spectral approach the set of all
n-variable 2-valued functions is partitioned into significantly
fewer equivalence classes. These classification schemes have
been employed in logic design, technology mapping, testing
and other applications.

Karpovsky [6] provided a comprehensive development of
the extension of spectral techniques to multiple-valued func-
tions including spectral translations (see also [7]). Hurst [2]
and Moraga [8] considered the application of spectral tech-
niques to the classification of multiple-valued functions with
particular emphasis on ternary functions.

In this paper, we consider the spectral classification of
ternary functions. The principal contributions are the introduc-
tion of an ordering of ternary functions that allows us to define
a unique representative function for a spectral equivalence
class, and based on that concept, a novel algorithm to map a
function to the representative function for the equivalence class
containing the given function. Using this algorithm we identify
11 spectral equivalence classes for 2-variable ternary functions

and estimate the number of spectral equivalence classes for 3-
variable ternary functions to be at least 167,275.

Our approach has two important aspects. First, even though
the number of equivalence classes grows very large for ternary
functions and tabulating them is impractical except for n < 3,
the presented algorithm can be used to identify if two functions
are in the same class, i.e., they can be translated to the same
representative function. Second, the algorithm identifies the
sequence of translations to map a function to the representative
function and since the translations are all invertible, our
algorithm can identify a single sequence of translations to map
one function to another in the same equivalence class, even
for larger n.

Function classification is an interesting problem in its own
right because it increases the understanding of functions and
their interrelations. In addition because spectral translations
and spectral equivalence is mod r sum based (XOR in the 2-
valued case), the presented algorithm has potential applications
in cryptography [9]–[11], reversible circuits [12], quantum
computation [13] and arithmetic verification [14].

The rest of the paper is organized as follows. Section
II provides the necessary background on ternary functions
and their spectra. Spectral translations are defined and the
idea of function classification is discussed in Section III
including the concepts of function ordering and representative
functions for spectral equivalence classes. Our new algorithm
is presented in Section IV and experimental results are given in
Section V. Section VI concludes the paper with observations
and discussion of future work including a brief description
of the challenge of extending the approach to higher radix
functions.

II. TERNARY FUNCTIONS AND THEIR SPECTRA

An n-input ternary function f(x1, x2, . . . , xn) is a mapping
f : {0, 1, 2}n → {0, 1, 2}. Such an f can be represented
by a value (column) vector, denoted F , with 3n entries.
In this work, we use a function coding where 0, 1 and 2
are represented by a0 = 1, a1 and a2, respectively, where
a = 1

2 (−1 +
√
3i), i =

√
−1. Note that a2 = 1

2 (−1 −
√
3i),

the complex conjugate of a.
In the developments below, it will be seen that all values

encountered take the form x0 + x1a + x2a
2 where the xi

are nonnegative integers. For convenience, we shall denote



x0 + x1a+ x2a
2 by the ordered triple [x0, x1, x2]. Since a+

a2 = −1, it follows that 1+a+a2 = 0 so we have the notion
that any value x0+x1a+x2a

2 can be reduced so that at least
one xi = 0. Reduction involves finding the minimum of the
xi and subtracting that value from each of the xi.

It follows directly from the definition of a, that ap = aq , if
q = p mod 3. Since a0 = 1 we need therefore only consider
multiplication by a and by a2.

The following operations are used below:
• addition: [x0, x1, x2]+[y0, y1, y2] = [x0+y0, x1+y1, x2+

y2] which must be reduced as described above
• multiplication by a: a× [x0, x1, x2] = [x2, x0, x1]
• multiplication by a2: a2 × [x0, x1, x2] = [x1, x2, x0]
• complex conjugate: [x0, x1, x2] = [x0, x2, x1]
• magnitude: ‖[x0, x1, x2]‖ = [x0, x1, x2] × [x0, x1, x2] =

x2
0 + x2

1 + x2
2 − x0x1 − x0x2 − x1x2

• greater than: [x0, x1, x2] > [y0, y1, y2] if for the lowest i
such that xi 6= yi, xi > yi.

The approach just described has significant computational
advantage since, as noted above, complex numbers are rep-
resented by a triple of nonnegative integers. The rounding
errors associated with other approaches, e.g., floating-point,
are thereby avoided.

Definition 1: The Chrestenson spectrum, also known as the
Vilenkin-Chrestenson spectrum, [6], [15], [16] of a ternary
function is given by

S = CnF, (1)

where the transform matrix Cn is defined by

Cn =

Cn−1 Cn−1 Cn−1

Cn−1 a2Cn−1 aCn−1

Cn−1 aCn−1 a2Cn−1

 , C1 =

1 1 1
1 a2 a
1 a a2

 .

For example for n = 2,

C2 =



1 1 1 1 1 1 1 1 1
1 a2 a 1 a2 a 1 a2 a
1 a a2 1 a a2 1 a a2

1 1 1 a2 a2 a2 a a a
1 a2 a a2 a 1 a 1 a2

1 a a2 a2 1 a a a2 1
1 1 1 a a a a2 a2 a2

1 a2 a a 1 a2 a2 a 1
1 a a2 a a2 1 a2 1 a


.

It is readily verified that (Cn)−1 = 1
3n (C

n)∗ where *
denotes conjugate transpose (note that Cn is symmetric so
* in this case is simply the conjugate). As a consequence we
observe that the Chrestenson spectrum of a ternary function is
unique.

As an example of computing a spectrum, the function
f(x1, x2) shown in Table I is represented by the vector F of
complex numbers. The spectrum computed using (1) is given
by S in Table I. Note that due to the recursive structure of
Cn, the matrix multiplication can be implemented as a fast
transform [17]. The matrix multiplication has time complexity
O(32n) whereas for the fast transform it is O(n3n).

x2 x1 f F p S
0 0 0 [1,0,0] 0 [0,4,2]
0 1 1 [0,1,0] 1 [5,0,1]
0 2 2 [0,0,1] 2 [0,1,2]
1 0 1 [0,1,0] 3 [2,0,1]
1 1 1 [0,1,0] 4 [5,0,1]
1 2 2 [0,0,1] 5 [4,2,0]
2 0 2 [0,0,1] 6 [2,0,1]
2 1 1 [0,1,0] 7 [1,2,0]
2 2 1 [0,1,0] 8 [0,1,2]

TABLE I
EXAMPLE FUNCTION f , CODING F AND SPECTRUM S

The coefficients of the spectrum S are denoted sp, 0 ≤
p < 3n. The n-digit ternary expansion of p gives the value
assignment to the variables associated with the coefficient. If
the coefficients are arranged by increasing subscript value, as
in Table I, we say the coefficients are in natural order. In this
paper, we also employ an alternate ordering of the spectral
coefficients which we term weighted order where the coef-
ficients are arranged into groups by the number (ascending)
of nonzero digits in the ternary expansions of the coefficient
indices. Each group is itself arranged into subgroups by the
number (ascending) of digits equal to 2. Within a subgroup
the coefficients are by ascending order of the index values.

For n = 2, the weighted order is as follows where the
indices are shown as 2-digit ternary numbers:

s00||s01s10|s02s20||s11|s12s21|s22

Symbols || separate groups and | separate subgroups. For n =
3, the weighted order is:

s000||s001s010s100|s002s020s200||s011s101s110|
s012s021s102s120s201s210|s022s202s220||
s111|s112s121s211|s122s212s221|s222

III. SPECTRAL TRANSLATIONS AND
FUNCTION CLASSIFICATION

Five spectral translations [2], [3] are used in the spectral
classification of 2-valued functions. We here present exten-
sions of those translations to the ternary case. For each we
give the functional translation and the corresponding operation
on the spectrum. Note that the extensions presented here differ
from those given in [8] which assumed arbitrary permutations
and linear translations to be available. Here we use sum
mod3 and value interchange as the basic operations. We also
use variable interchange as used in [8].

In the following definition of the spectral translations, let
p = (p1p2 . . . pn)3 and q = (q1q2 . . . qn)3 be two ternary
numbers as found in the indexes of spectrum coefficients.

Translation 1 Interchange of input variables xi and xj . This
corresponds to the interchange of the spectral coefficient pairs
given by,

sp ↔ sq

where q = (p1 . . . pi−1pjpi+1 . . . pj−1pipj+1 . . . pn), i.e., q is
obtained from p by interchanging digits i and j.

In the 2-valued case, translation 2 involves the negation of
an input variable. We expand this to two translations: (2a)
cycle and (2b) value exchange.



Translation 2a Cycle of the input variable xi by v ∈
{0, 1, 2}, i.e., replace xi ⊕ v for xi. For each sp, p 6= 0,
multiply sp by a(vw) mod 3, where w = pi.

Translation 2b Exchange the values va and vb, va, vb ∈
{0, 1, 2} for input variables xi. Let m1 = (va + vb) mod 3
and m2 = (3 − m1) mod 3. Construct a new spectrum S∗

where ∀p
• if pi = 0, s∗p = sp
• if pi = 1, s∗q = sp multiplied by am2 where q = p except

that qi = 2
• if pi = 2, s∗q = sp multiplied by am1 where q = p except

that qi = 1

In the 2-valued case, translation 3 involves the negation of
the function. Again we expand this into two translations.

Translation 3a Cycle of the function by v ∈ {0, 1, 2}.
Multiply every spectral coefficient by av .

Translation 3b Exchange of the values va and vb, va, vb ∈
{0, 1, 2} for the function. Construct a new spectrum S∗ where
s∗q = sp∀p where q is p with all 1’s changed to 2’s and all 2’s
changed to 1’s, and for each coefficient of S∗ the va and vb
positions in the triple defining the coefficient are interchanged.

Translation 4 Replacement of input variable xi by xi⊕xj .
Construct a new spectrum S∗ with sq = sp where q = p
except that qj = (pi + pj) mod 3.

Translation 5 Replacement of the function f by f ⊕ xi.
Construct a new spectrum S∗ with sq = sp where q = p
except that qi = (pi + 1) mod 3.

Translations 1, 2b and 3b are each clearly self-inverse.
Translations 2a, 3a, 4 and 5 each involve the mod 3 sum and
the inverse operation for each is to apply the same translation
two more times.

Application of these translations leads to the following key
concept:

Definition 2: Two functions f(x1, x2, . . . , xn) and
g(x1, x2, . . . , xn) are termed spectral translation equivalent
if f can be transformed into g by the application of some
sequence of the above translations. Since the translations all
have inverses, it is straightforward to identify a sequence
of translations to transform g to f . Also as shown in the
definitions of the translations they can be directly carried out
in the spectral domain, i.e., it is straightforward to transform
between the spectra of f and g.

Spectral translation equivalence divides ternary functions
into spectral equivalence classes leading to the idea of using
spectral translation for ternary function classification. Such
classification was introduced in [8].

We define an ordering of the spectra of n-variable ternary
functions and relate that to spectral classification.

Definition 3: Given two n-variable ternary functions
f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) with spectra Sf and
Sg respectively, we say f precedes g, denoted f ≺ g if for
the first coefficient position (in weighted order) for which
the coefficients from Sf and Sg differ, the coefficient from
Sf has larger magnitude, or if the two coefficients have the
same magnitude, the coefficient from Sf is greater than the
coefficient from Sg . Note that for convenience we will also
write Sf ≺ Sg .

Definition 4: Clearly, a spectral equivalence class must con-
tain a function fR that precedes every other function in the
class. We term fR the representative function for the class.

The problem addressed in this paper is:
Problem Statement: Given a ternary function f (spectrum

S) find a low cost sequence of spectral translations that
transforms f to the representative function fR (spectrum SR)
of the spectral equivalence class that contains f .

The cost of a sequence of translations depends on the cost
model used. If all translations are assumed to have unit cost,
the cost is simply the number of translations. Assigning 0 cost
to each translation means that any sequence leading to fR is
equally acceptable. In this paper we use the following:

Cost Model:
• Translation 1 interchanges 2 variables and requires a swap

gate which can be implemented using three mod 3 sum
gates. We thus assume a cost of 3.

• Translations 2a, 2b, 3a and 3b each require a single gate,
cycle or value exchange to implement an inversion and
we thus use a cost of 1.

• Translations 4 and 5 each require a single mod 3 sum
gate and again we use a cost of 1.

IV. TRANSFORMATION ALGORITHM

The transformation algorithm presented in this section is
based on a 2-valued version developed by the authors and
presented in [18]. The ternary version presented here is not a
simple extension. Complications arise due to the complexity of
extending 2-valued NOT to ternary unary operations as noted
above in the extension of the spectral translations. In addition,
procedure ADJUST has no counterpart in the 2-valued case.

Procedure TRANSFORM, introduced in this paper, maps
a function f , with spectrum S, to the representative function
fR, with spectrum SR, for the equivalence class that contains
f . In doing so it finds a low cost sequence of translations but
does not necessarily find the minimal cost sequence as the
algorithm does not search all possible translation sequences.
The parameters to the procedure are the spectrum S, the
number of function variables n, and a third parameter v
explained below. TRANSFORM is recursive and performs a
non-exhaustive search of translation possibilities.

When the procedure completes the result is the spectrum
SR and the sequence of translations is in TR. T is used to
record a sequence of translations as it is built. SR, TR and T
are for simplicity and efficiency global to the procedures.

TRANSFORM uses a procedure ADJUST that performs the
final adjustments to a spectrum. ADJUST is recursive because
of the myriad of choices of translations to finalize a spectrum.
ADJUST in turn uses a procedure called PRECEDES that
accepts a spectrum, parameter S, and compares it to the
spectrum SR which as noted above is a global. SR is replaced
by S and the sequence of translations T replaces TR if
S ≺ SR, see Definition 3.

TRANSFORM and ADJUST employ seven procedures,
TRANS1, TRANS2A, . . . , TRANS5, one for each of the spectral
translations described in Section III. Each applies a translation
to the parameter spectrum S. The translation is also appended



to the end of the global T . Note that it is important that T is
maintained in the order the translations are to be applied.

We use the notation j[p] to mean the pth digit (0 is the least
significant position) in the ternary expansion of j.

1: procedure TRANSFORM(S, n, v)
2: if v = 0 then
3: SR ← S
4: TR ← φ
5: end if
6: if v ≤ n then
7: find min and max magnitude coefficient values
8: consider all coefficients if v = 0
9: otherwise consider all sp beginning at p = 3v−1

10: end if
11: if v > n or max = 0 then
12: ADJUST(S, n, 0)
13: return
14: end if
15: for each sj (in weighted order) starting at
16: j = 0 if v = 0
17: or j = 1 otherwise do
18: if ||sj || = max then
19: S1 ← S
20: if v = 0 then
21: T ← φ
22: end if
23: save← len(T )
24: if j 6= 0 then
25: k ← (lowest p ≥ v such that
26: j[p− 1] > 0
27: for each 1 ≤ p ≤ n, p 6= k do
28: if j[p] > 0 then
29: TRANS4(S1, n, k, p)
30: if j[p] = j[k] then
31: TRANS4(S1, n, k, p)
32: end if
33: end if
34: end for
35: if v = 0 then
36: TRANS5(S1, n, k)
37: if j[k] = 1 then
38: TRANS5(S1, n, k)
39: end if
40: else
41: if k 6= v then
42: TRANS1(S1, n, k, v)
43: end if
44: end if
45: end if
46: TRANSFORM(S1, n, v + 1)
47: if v = 0 and min = max then
48: return
49: end if
50: len(T )← save
51: end if
52: end for
53: return
54: end procedure

TRANSFORM implements a recursive search of depth n+ 1
that chooses appropriate translations to assign in order values
to SR0 followed by the first order coefficients in order from
variable x1 to xn. Parameter v identifies which variable, and
therefore which coefficients of SR, are under consideration
so the initial call should be TRANSFORM(S, n, 0). The
operation of TRANSFORM is as follows:

• lines 2–5: v = 0 is the top of the search so SR is
initialized to S, the spectrum of interest, and TR, the
sequence of translations to map S to SR, is set to empty.

• lines 6–10: The min and max magnitude coefficient
values are found by a simple linear search. All coeffi-
cients are considered if v = 0, otherwise the coefficients
beginning with the first coefficient with a nonzero digit in
position v−1 of the index are considered. This operation
is skipped if v > n which is the terminal case of the
recursion.

• lines 11–14: This is the terminal case for the TRANS-
FORM recursion which is when v > n or when max = 0.
ADJUST is called to apply appropriate type 2 and 3
translations to the spectrum, see details below.

• lines 15–52: The coefficients are considered in weighted
order. S0 is only considered if v = 0 which is the case
for choosing the appropriate value for SR0 .

– 18: Consider the coefficients where ||sj || = max.
– 19–22: Make S1 a copy of S and if v = 0 (the top

of the recursion) set the sequence of translations T
to empty. S1 is needed so that upon return from a
recursion S is unchanged.

– 23: Save the current length of T . This is necessary
to restore the sequence of translations upon return
from a recursion.

– 24–45: If j 6= 0 translations may be required to move
S1
α to S1

v .

∗ 25–34: Set k to be the lowest p ≥ v such that the
pth digit in the ternary expansion of j is nonzero
and then apply type 4 translations to move S1

j to
S1
k .

∗ 35–39: If v = 0, a type 5 translations are applied
to move S1

k to S1
0 .

∗ 41–43: Else if k 6= v, apply a type 1 translation
to move S1

k to S1
v

– 46: This is the recursive call to transform S1 for
v + 1, the next level of recursion.

– 44–46: At the top of the recursion (v = 0) this avoids
excessive searching of a ‘flat’ spectrum (min =
max) which is when all coefficients have the same
magnitude .

– 50: Restore the length of T to its value before the
last coefficient considered in preparation for the next
Sα to be considered.

• line 53: The recursion options are exhausted so return.

The following procedure applies Definition 3.

1: procedure PRECEDES(S, n)
2: find the first j (in weighted order) such that sj 6= sRj
3: if there is no such j and cost(T ) < cost(TR) or
4: ||sj || > ||sRj || or
5: ||sj || = ||sRp || and sj > sRj then
6: SR ← S
7: TR ← T
8: end if
9: return

10: end procedure



Procedure ADJUST refers to normalizing a spectral co-
efficient where a coefficient represented by [x0, x1, x2] is
normalized if x0 ≥ x1 ≥ x2 recalling that all three values
cannot be equal.

1: procedure ADJUST(S, n, v)
2: if v > n then
3: PRECEDE(S, n)
4: return
5: end if
6: S1 ← S
7: if v = 0 then
8: TRANS3A(S1, n, q) where q is the
9: rotation factor to normalize s0

10: if s101 < s102 then
11: TRANS3B(s1, n, 1, 2)
12: end if
13: adjust(s1, n, 1)
14: if s101 = s101 then
15: TRANS3B(s1, n, 0, 1)
16: ADJUST(s1, n, 1)
17: end if
18: if s101 = s102 then
19: TRANS3B(s1, n, 1, 2)
20: ADJUST(s1, n, 1)
21: end if
22: else
23: save← len(T )
24: TRANS2A(S1, n, v, q) where q is the
25: rotation factor to normalize s13v−1

26: ADJUST(S1, n, v + 1)
27: if ||S1

2×3v−1 || ≥ ||S1
3v−1 || then

28: TRANS2B(S1, n, v, 1, 2)
29: TRANS2A(S1, n, v, q) where q is the
30: rotation factor to normalize s13v−1

31: ADJUST(S1, n, v + 1)
32: end if
33: len(T )← save
34: end if
35: end procedure

ADJUST is recursive and operates as follows:
• lines 2–5: This is the terminal case for the ADJUST

recursion. PRECEDES is called and if S ≺ SR or
S = SR and cost(S) < cost(SR), S will be copied
into SR and T will be copied into TR. Return because
this is the terminal case in the recursion.

• line 6: Make S1 a copy of S.
• lines 7–21: For v = 0 type 3a and type 3b translations

are applied to adjust s10. This consists of normalization
(lines 8–9) and selected value interchanges (lines 10–21).
Note the multiple recursive calls to ADJUST to consider
the full possibilities of transformation affecting s10.

• lines 22-34: For 0 < v ≤ n, this section applies
appropriate type 2a and 2b translations to adjust s13v−1 . As
above, multiple recursive calls to ADJUST are required
to explore all the options. Also note that the length of
the translations sequence is saved and restored as was
required in TRANSFORM.

V. EXPERIMENTAL RESULTS

Our first experiment was to apply the transformation al-
gorithm to the 33

2

= 19, 683 two variable functions and to

determine how many unique representative functions (equiva-
lence classes) are found. Our implementation is written in C
and applying it to all 19,683 functions took 0.78 CPU sec. on
a laptop computer with a dual core 2.5 GHz Intel i5 processor.

The results are shown in Table II. Eleven classes were
found. For each class, we show

• the count of the number of functions in the class,
• the representative function coded as a decimal number

with fR0 being the least significant digit in the ternary
expansion of that number, and

• the spectrum of the representative function.
It is interesting to note that the sizes (number of functions) of
the classes are quite varied. We also observe that considering
the 19,683 functions, the maximum transition cost for a single
function was found to be 12, and the average over all functions
was found to be 6.003.

Note that 12 classes were identified in [8] but by applying
our method to example functions from [8] we have found that
the classes identified as 8 and 10 in that work map to a single
class which is class 7 in Table II. The transformations are
shown in Table III.

For n = 3, there are k = 33
3

= 7, 625, 597, 484, 987
ternary functions and an exhaustive search of all functions
is intractable. In this case, we chose to sample random
functions. In particular, the search scheme starts from function
0 and chooses each next function by adding a pseudo-random
number to the current function number. The pseudo-random
numbers are generated using the C library function rand().
For the system used, RAND MAX = 32,767 so on average
the jump from one function to the next is 16,383.5. A single
application of this scheme will thus on average consider
k/16, 383.5 = 465, 443, 738.2 functions and for the computer
used takes about 19.7 CPU hours.

We have applied the scheme five times using C library
function srand() to seed the random number generator to
produce a different set of random functions for each trial.
Over the five trials, 167,275 unique representative functions
were found although no single trial found them all. As seen
above for the case of n = 2, the size of the classes is quite
varied and some are relatively small making them less likely
to be found by processing randomly selected functions. The
closest in a single trial was 167,272. Also note that in each
of the trials all the representative functions were found by
approximately half way through the trial.

The 167,275 representative functions suggest the number
of spectral equivalence classes for n = 3 but it can only
be considered a lower bound as we only checked randomly
selected functions. While this seems a very large number
of classes we note that 167, 275/33

3

= 2.194 × 10−8. For
comparison it is known there are 48 spectral equivalence
classes for the 22

5

= 4, 294, 967, 2964 2-valued functions
giving a ratio of 1.118× 10−8.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a novel algorithm which maps a
ternary function to the representative function for the spectral



TABLE II
SPECTRAL CLASSES FOR n = 2

class count fR 00 01 10 02 20 11 12 21 22
1 27 0 [9,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0]
2 486 81 [8,1,0] [2,1,0] [2,1,0] [1,0,2] [1,0,2] [1,0,2] [0,2,1] [0,2,1] [2,1,0]
3 1944 2268 [7,2,0] [4,2,0] [2,0,1] [2,0,4] [2,0,1] [0,1,2] [1,2,0] [0,1,2] [1,2,0]
5 216 2271 [6,3,0] [6,3,0] [0,0,0] [3,0,6] [0,0,0] [0,0,0] [0,0,0] [0,0,0] [0,0,0]
4 3888 111 [6,3,0] [3,3,0] [3,3,0] [0,0,3] [0,0,3] [3,0,0] [0,0,0] [0,0,0] [3,0,3]
6 1944 4455 [6,0,0] [3,3,0] [3,0,0] [3,0,3] [0,0,0] [0,0,3] [0,3,0] [0,0,0] [0,0,0]
7 2916 9072 [5,4,0] [4,0,2] [4,0,2] [4,0,2] [4,0,2] [0,2,1] [0,2,1] [0,2,1] [0,2,1]
8 1944 2298 [5,4,0] [5,4,0] [2,1,0] [1,0,5] [1,0,2] [2,1,0] [2,1,0] [1,0,2] [1,0,2]
9 5832 15390 [5,1,0] [5,1,0] [4,0,2] [1,0,2] [2,1,0] [0,2,1] [0,2,1] [0,2,4] [2,1,0]
10 1944 2622 [3,3,0] [3,3,0] [3,3,0] [3,0,3] [3,0,3] [3,3,0] [3,0,3] [3,0,3] [0,3,3]
11 324 15714 [3,0,0] [3,0,0] [3,0,0] [3,0,0] [3,0,0] [0,3,0] [0,0,3] [0,0,3] [0,3,0]

TABLE III
EXAMPLE FUNCTION TRANSFORMS

f1 from class 8 in [8] [0,0,1] [0,0,1] [0,0,1] [0,0,1] [1,0,0] [0,0,1] [1,0,0] [1,0,0] [0,1,0]
S1 (spectra are in weighted order) [2,0,4] [0,1,2] [0,4,5] [2,0,1] [2,0,4] [4,2,0] [0,4,2] [0,1,2] [2,0,1]
TRANS5: f ← f ⊕ x2 [2,0,4] [0,1,2] [2,0,4] [2,0,1] [0,4,5] [0,1,2] [2,0,1] [4,2,0] [0,4,2]
TRANS5: f ← f ⊕ x2 [0,4,5] [4,2,0] [2,0,4] [0,4,2] [2,0,4] [0,1,2] [2,0,1] [0,1,2] [2,0,1]
TRANS3A: f ← f ⊕ 1 [5,0,4] [0,4,2] [4,2,0] [2,0,4] [4,2,0] [2,0,1] [1,2,0] [2,0,1] [1,2,0]
TRANS3B: exchange 1 and 2 for f [5,4,0] [2,4,0] [4,0,2] [0,2,4] [4,0,2] [1,0,2] [2,1,0] [1,0,2] [2,1,0]
TRANS2A: x1 ← x1 ⊕ 2 [5,4,0] [4,0,2] [4,0,2] [4,0,2] [4,0,2] [0,2,1] [0,2,1] [0,2,1] [0,2,1]
f2 from class 10 in [8] [0,0,1] [0,0,1] [0,0,1] [1,0,0] [1,0,0] [1,0,0] [1,0,0] [1,0,0] [0,1,0]
S2 [4,0,2] [0,2,4] [0,2,4] [1,0,2] [1,0,2] [2,4,0] [0,2,1] [0,2,1] [4,0,5]
TRANS4: x1 ← x1 ⊕ x2 [4,0,2] [0,2,1] [0,2,4] [0,2,1] [1,0,2] [0,2,4] [4,0,5] [2,4,0] [1,0,2]
TRANS4: x1 ← x1 ⊕ x2 [4,0,2] [2,4,0] [0,2,4] [4,0,5] [1,0,2] [0,2,1] [1,0,2] [0,2,4] [0,2,1]
TRANS5: f ← f ⊕ x1 [4,0,5] [4,0,2] [1,0,2] [2,4,0] [0,2,1] [0,2,4] [0,2,1] [1,0,2] [0,2,4]
TRANS4: x2 ← x2 ⊕ x1 [4,0,5] [4,0,2] [0,2,1] [2,4,0] [1,0,2] [1,0,2] [0,2,4] [0,2,4] [0,2,1]
TRANS4: x2 ← x2 ⊕ x1 [4,0,5] [4,0,2] [0,2,4] [2,4,0] [0,2,4] [0,2,1] [1,0,2] [0,2,1] [1,0,2]
TRANS3A: f ← f ⊕ 1 [5,4,0] [2,4,0] [4,0,2] [0,2,4] [4,0,2] [1,0,2] [2,1,0] [1,0,2] [2,1,0]
TRANS2A: x1 ← x1 ⊕ 2 [5,4,0] [4,0,2] [4,0,2] [4,0,2] [4,0,2] [0,2,1] [0,2,1] [0,2,1] [0,2,1]

equivalence class containing the original function. The algo-
rithm has been applied to find 11 equivalence classes for n = 2
and to estimate that there are some 167,275 classes for n = 3.

Although the number of equivalence classes will be very
large for n > 3, the algorithm is still of utility as it can be
applied to determine if two functions are in the same class
and the translations to map one function to the other.

Future work will include considering the extension of the
method to higher radix functions. We anticipate the challenge
will be in determining how best to handle the complement
operations for higher radices. Note that [8] did consider higher
radix functions and that work will likely provide insights for
the extension of our approach.

Our code is prototype software and we will consider
possible optimizations to improve its efficiency. That is an
interesting challenge since performing the necessary ternary
(or higher radix) operations on a 2-valued computer is inher-
ently complex and not amenable to the usual coding schemes
commonly used to speed up code for 2-valued problems.
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