
Improvements to Boolean Resynthesis
Luca Amarú∗, Mathias Soeken†, Patrick Vuillod∗, Jiong Luo∗,

Alan Mishchenko‡, Janet Olson∗, Robert Brayton‡, Giovanni De Micheli†

∗Synopsys Inc., Design Group, Sunnyvale, California, USA
†Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
‡Department of EECS, UC Berkeley, Berkeley, California, USA

Abstract—In electronic design automation Boolean resynthesis
techniques are increasingly used to improve the quality of
results where algebraic methods hit local minima. Boolean
methods rely on complete functional properties of a logic circuit,
preferably including don’t care information. Computationally
expensive engines such as truth tables, SAT and binary decision
diagrams are required to gather such properties. The choice
of the engine determines the scalability of Boolean resynthesis.
In this paper, we present improvements to Boolean resynthesis,
enabling more optimization opportunities to be found at the
same or smaller runtime cost as compared to state-of-the-art
methods. Our contributions include (i) a theory of Boolean
filtering to drastically reduce the number of gates processed
and still retain all possible optimization opportunities, (ii) a
weaker notion of maximum set of permissible functions, which
can be computed efficiently via truth tables, (iii) a generalized
refactoring engine that supports multiple representation forms,
and (iv) a practical Boolean resynthesis flow, which combines the
techniques proposed so far. Using our Boolean resynthesis on the
EPFL benchmarks, we improve 10 of the best known area results
in the synthesis competition. Embedded in a commercial EDA
flow for ASICs, the Boolean resynthesis flow reduces the area
by -2.67% and total negative slack by -5.48%, after physical
implementation, at negligible runtime cost.

I. INTRODUCTION

Boolean resynthesis aims at improving an existing logic
network implementation. The methods used in Boolean resyn-
thesis are capable of stronger optimization than algebraic
techniques, which usually generate the initial logic network
implementation [1], [2]. Since Boolean methods have higher
computational complexity than algebraic methods, they are
used cautiously in electronic design automation (EDA) flows
[1], [2].

This paper presents improvements to Boolean resynthesis.
We revisit fundamental data structures and algorithms for
Boolean resynthesis, in light of modern computing capabil-
ities, enabling more optimization opportunities to be found at
the same or smaller runtime than state-of-the-art methods [3],
[4]. The main contributions of this paper are:

1) a theory of Boolean filtering, to drastically reduce the
number of gates processed by resubstitution, while still
retaining all possible optimization opportunities;

2) a weaker notion of the maximum set of permissible
functions, called forward functional flexibility, which can
be computed easily via truth tables;

3) a generalized refactoring engine which supports multiple
representation forms and maximizes nodes sharing; and

4) a practical Boolean resynthesis flow, which combines
the techniques proposed so far into a global optimization
engine, for use in commercial EDA tools.

We evaluate our techniques both on academic and industrial
benchmarks. By applying Boolean resynthesis directly on

the LUT-6 mapped networks, we improve 10 of the best
known area results in the EPFL synthesis competition [5].
We embed the Boolean resynthesis engine in a commercial
EDA tool. After physical implementation, our enhanced EDA
flow reduces the area by -2.67%, leakage by -2.11%, worst
negative slack by -0.44%, and total negative slack by -5.48%,
at negligible runtime cost.

II. BACKGROUND AND MOTIVATION

A. Boolean Logic Optimization
Logic optimization methods are usually divided into two

groups: Algebraic methods, which are fast, and Boolean
methods, which are slower but achieve better results [1],
[2]. Traditional algebraic methods treat a logic function as a
polynomial. Instead, Boolean methods handle the true nature
of a logic function using Boolean identities as well as don’t
cares to get a better solution.

While many different Boolean methods exist, this paper fo-
cuses on resubstitution, rewriting, refactoring, and permissible
functions, because they show the best quality of results to
runtime tradeoffs in an industrial synthesis environment. We
refer the interested reader to [1], [2], [6] for a more exhaustive
review on the literature for Boolean methods. We refer the
reader to [2] for standard notions in logic optimization and
synthesis.

1) Resubstitution: Resubstitution, or resub in short,
(re)expresses the function of a node n using other nodes
already present in the network. A resub transformation is ac-
cepted if the new implementation is better, w.r.t. a target met-
ric, than the current node implementation using the immediate
fanins. This approach generalizes to k-resubstitution, which
adds exactly k new nodes and removes l nodes, where l is the
number of nodes in the maximum fanout free cone (MFFC, [7],
[8]) of n. If l > k, global size improvement is achieved.
The functionality of the new nodes can be drawn from a
library of available primitive gates for resubstitution. This
approach is similar to technology-dependent resynthesis based
on resubstitution [9], [10]. In its AIG implementation [7], [8],
resubstitution only adds two-input AND nodes, with possibly
complemented inputs/outputs.

2) Rewriting: Rewriting is a greedy algorithm which mini-
mizes the size (and/or depth) of a logic network by iteratively
selecting network subgraphs rooted at a node and replacing
them with smaller precomputed subgraphs, while preserving
the functionality at the root node. Typical precomputed sub-
graphs cover all 4 variables functions, or if applicable their
more compact 222 NPN classes [7], [11], [12].

3) Refactoring: Refactoring can be seen as a variant of
rewriting. It iteratively selects large cones of logic rooted at a
node. Then, it tries to replace the logic structure of the cone by



a factored form of the root function. The change is accepted
if there is an improvement in the selected cost metric (usually
number of gates in the network) [7], [8].

4) Permissible Functions: Due to observability and control-
lability don’t cares in a logic network, often the function at
a node n, say f1, can be changed to another function, say
f2, without affecting the intended behavior at the primary
outputs [13], [14]. Such function f2 is called a permissible
function for node n. We call the set of all permissible
functions for a node n its maximum set of permissible functions
(MSPF). A known subset of MSPF is called compatible set of
permissible functions (CSPF), which is characterized by the
following property: if a node’s function is replaced by one of
its CSPF, then all other node’s CSPFs remain valid, i.e., do
not need recomputation.

B. Motivation
Boolean optimization methods are renown to be powerful

but runtime expensive. This limits their wide applicability
in automated design, thus potentially leaving optimization
opportunities unseen. This work aims at spotting more Boolean
optimization opportunities, without spending more runtime,
thanks to a revisitation of fundamental data structures and
algorithms in Boolean resynthesis.

III. FAST EXPLORATION OF THE BOOLEAN SPACE

This section introduces approaches for the fast exploration
of the Boolean optimization search space. First, it presents
Boolean filtering that aims at strongly reducing the number of
candidates for resubstitution, without losing any optimization
opportunity. Then, it discusses a weaker notion of MSPF, that
can be easily obtained via truth tables, and details its main
computation steps.

A. Boolean Filtering
In principle, k-resubstitution can produce optimal logic net-

works, when k is large enough. Unfortunately, k-resubstitution
is computationally expensive; a limitation that already be-
comes apparent for k = 1. In order to illustrate this problem,
let us first consider a typical execution scenario.

Since resubstitution is typically applied to small and
medium size windows of logic, one can quickly compute
each node’s truth table (up to 15 inputs) or BDD [15] (up
to 20 inputs). These function representations efficiently sup-
port functional equivalence checking, which are the primitive
operations in a resubstitution algorithm. The goal is to keep
the amount of equivalence checks low. Consider as an example
1-resubstitution using the AND-2 gate library, i.e., if we have
N internal nodes in the window (with a non-trivial MFFC),
we try to express each one of these nodes as the AND of
two other nodes in the window. Therefore, in the worst case
O(N2) equivalence checks are needed for each node, summing
up to O(N3) checks for the whole window. Structural filtering
can be applied, e.g., skip candidates in the transitive fan-out
code of the current node, skip disjoint trees, or skip nodes
whose level is too far away. Even with all structural filters,
the perceived runtime complexity remains very high, which
requires to set a maximum number m of candidates to be tried,
at least for the first new input. In this way, the overall number
of equivalence checks decreases to O(m·N2). Experimentally,
it is known that by setting a maximum number of candidates

we overlook many advantageous optimization opportunities,
but this becomes even more necessary when attempting resub-
stitution with higher order k or richer gate libraries. Despite
the speedups above, many equivalence checks are still spent in
verifying null candidates, which are nodes that cannot possibly
lead to a valid solution.

In this work, we address the filtering problem for resubsti-
tution from a different perspective. We make use of canalizing
functions [16], [17] to implement Boolean filtering rules,
which can exclude a whole set of candidate pairs by just
inspecting a single operand. We say that a function g is p/q-
canalizing in x if the co-factor gx=p = q for two constant
Boolean values p and q. In other words, g’s value is uniquely
determined by assigning x to either 0 or 1.

Theorem 1: Let f be the function of a node we want to re-
substitute using a k-input gate with function g(x1, x2, . . . , xk)
and k candidate nodes that have functions n1, n2, . . . , nk,
respectively. If g is p/q-canalizing in xi, then ni can only
be a valid candidate, if (ni = p) → (f = q), or logically
equivalent (f 6= q)→ (ni 6= p).

Example 1: The two input AND function is 0/0-canalizing
in both its inputs. Assume we want to express some node with
function f using two other nodes with functions a and b. Then
a can only be valid, if f → a, or equivalently f ∧ a = f .

These checks can be found for many other gate functions
and are easily implemented based on truth tables or BDDs.
If a check finds that some node a is not a valid candidate,
all combinations in which a is present can be discarded. As
rules with two operands we implemented AND-resub (f ∧a =
f ) and OR-resub (f ∨ a = f ) according to Theorem 1. We
also added XOR-resub, which is not canalizing and therefore
cannot be concluded from checking a single operand only.1

Typically candidates are iterated in nested for loops. There-
fore it is most effective to filter candidates based on nodes
in the outer loops. However, also with several operands the
technique can be applied in several steps as illustrated by the
following example.

Example 2: If we plan to express a function f in terms of
three nodes with functions a, b, and c using f = a ∨ (b ∧ c),
we can first check whether a is valid. If a is invalid, one
can continue. Otherwise, one can check b’s validity to filter
out candidates for c. When checking b, one can assume that
a = 0, since otherwise the equation is satisfied independent
of b. Therefore, one can reapply Theorem 1 to fa=0 = b ∧ c,
which is 0/0-canalizing in b.

Based on the last example, we add further resubstitution
techniques using three operands, which are AND-OR resub
(f = a ∨ (b ∧ c)), OR-AND-resub (f = a ∧ (b ∨ c)), but
also XOR-AND-resub (f = a ∧ (b ⊕ c)) and XOR-OR-resub
(f = a ∨ (b ⊕ c)), in which both a can be filtered using
Theorem 1. We also consider a MUX resub (f = (a∧b)∨(ā∧
c)). Disallowing a MUX with a constant data input, one can
first filter the select input a by noting it is valid, if (fa 6= 0)∧
(fā 6= 0). The next operands can be filtered using Theorem 1.

The proposed Boolean filtering allows logic synthesis to
spend runtime only on profitable transformations, skipping
unfruitful attempts. For example, considering the voter bench-
mark of the EPFL suite [5], ABC command resub -K 10 -N
1 [4] takes about 0.09 seconds and reduces the size by about

1There are other more technical tricks that can help to speed up XOR
resubstitution, but go beyond the scope of this paper.



14%. Increasing N to 2 and 3, which corresponds to 2 and 3
resubstitution, improves the size savings to 16% and 20% for
0.13 and 0.21 seconds spent, respectively. On the other hand,
our proposed resubstitution technique with Boolean filtering,
using the same cut size of 10, is able to reduce the original
size by 26% in 0.1 seconds. Our size improvement is measured
after AIG strashing, which decomposes our complex resub
types into 2-input ANDs, for the sake of fair comparison with
ABC’s resub command.

B. Weaker Notion of MSPF

Recall that the MSPF of a node in a logic network is the set
of all its permissible functions. The computation of the MSPF
can be very time-consuming, especially when a logic network
has many reconvergent paths. In addition, the MSPFs of all
the gates and connections in a circuit have to be recomputed
each time the circuit is transformed and reduced [13], [14].

To exploit the concept of permissible functions with afford-
able runtime, we present a weaker notion of MSPF, that we
call forward functional flexibility (FFF) of the logic network
w.r.t. a node n. FFF considers only the permissible functions
generated by the forward propagation of a node’s functionality
and don’t cares to its transitive fan-out (TFO). In contrast,
the full MSPF considers all possible permissible functions by
definition, thus also the ones originated by the interaction of a
node with its transitive fan-in (TFI) and the rest of the network.
Our experience indicates that FFF grasps a good amount of
MSPF opportunities but still fits in a tight runtime budget [18].

The FFF(C, n) is computed as a second truth table2 for
a specific node n in a small or medium network C. The
FFF(C, n) information can be interpreted as follows: where
its entry is ‘1’, the corresponding entry in the real truth table
of n can be flipped without effecting the value at any of the
primary outputs in C. This information introduces flexibility
to Boolean methods, as it is sufficient to compare the nodes’
functions only at their non-flexible input combinations; as
demonstrated in the following example.

Example 3: Let n1 and n2 be two nodes in a network C,
representing the functions f1 and f2, respectively. Then we
can consider n1 and n2 equal in C, if(

f1 & FFF(C, n1)
)

=
(
f2 & FFF(C, n2)

)
.

Further, the previously presented filtering techniques can be
enhanced by FFF. Reconsider Example 1: The validity check
for node a is stronger when incorporating functional flexibility:(

f & FFF(C, f)
)
→

(
a & FFF(C, a)

)
Algorithm 1 shows the high-level procedure to compute

FFF(C, n). The procedure starts by assigning maximum flex-
ibility to the global FFF(C, n) (logic constant 1). The local
don’t care (DC) truth table for n is also set to logic constant
1. In the context of Algorithm 1, the don’t-care truth-table
DC(n,m) for some node m w.r.t. n has a different meaning
than the FFF. In order to explain this, let us focus on the ith

entry of each table. If DC(n,m)[i] is ‘0’, it means that the
m’s truth table at index i is not sensible (“does not care”) to
flipping the bit at index i of n’s truth table propagated through
n’s TFO.

2The FFF computation procedure can be extended to use BDDs, or any
other canonical representation, in place of truth tables.

Input : Logic network C, Current node n
Output: Forward Functional Flexibility FFF(C, n)

1 DC(n) = logic constant 1;
2 FFF(C, n) = logic constant 1;
3 foreach node m ∈ TFO(n) in topological order do
4 foreach fanin k of m do
5 i = 0;
6 if k has DC info then
7 DC-in(i) = DC(n, k);
8 else
9 DC-in(i) = logic constant 0;

10 i++;
11 end
12 SOP = get-sop-representation(m);
13 DC(n,m) = logic constant 0;
14 acc-sop = logic constant 0;
15 foreach term of the SOP do
16 term = logic constant 1;
17 flex-term = logic constant 0;
18 foreach literal of the term do
19 flex-term = dc-and(literal,

DC-in(literal-index), term, flex-term);
20 term = literal & term;
21 end
22 DC(n,m) = dc-or(term, flex-term, acc-sop,

DC(n,m));
23 acc-sop = acc-sop | term;
24 end
25 if m ∈ PrimaryOutputs(C) then
26 FFF(C, n) = FFF(C, n) & DC(n,m);
27 end
28 return FFF(C, n);

Algorithm 1: Functional flexibility computation

In Alg. 1, the DC truth-table is propagated from n to
the primary outputs in topological order. For each node, the
DC truth-table is computed by processing the node’s sum-of-
products (SOP) representations. Note that while parsing the
SOP, and/or operators are replaced by special operators (Alg. 2
and Alg. 3) that take into consideration the local don’t cares.

Input : Truth tables (a, dca, b, dcb)
Output: dc-and(a, dca, b, dcb)

1 aux1 = (a | dca) & dcb;
2 aux2 = (b | dcb) & dca;
3 res = aux1 | aux2;
4 return res;

Algorithm 2: dc-and: and-2 function including don’t cares
for each operand

Input : Truth tables (a, dca, b, dcb)
Output: dc-or(a, dca, b, dcb)

1 aux1 = (! a & ! dca) & dcb;
2 aux2 = (! b & ! dcb) & dca;
3 res = aux1 | aux2;
4 return res;

Algorithm 3: dc-or: or-2 function including don’t cares for
each operand



When a primary output m is found during the procedure,
FFF(C, n) is updated by and-ing itself with the complement
of DC(n,m). It can be seen that DC(n,m) and FFF(C, n)
have complementary meanings. Moreover, only the common
intersection between the FFF of all outputs can be safely used
for optimization purposes, which explains the and-ing. Once
all the primary outputs have been processed, the final forward
functional flexibility FFF(C, n) is returned by Algorithm 1.

IV. GLOBAL BOOLEAN RESYNTHESIS FLOW

This section presents new Boolean optimization techniques,
based on the theoretical and practical improvements described
so far, forming altogether a novel Boolean resynthesis flow.

A. Resub for Complex Gates
We propose an enhanced resubstitution algorithm, capa-

ble of inferring complex gates, mapped or unmapped, with
efficient runtime. Alg. 4 depicts the pseudocode. The top

Input : Logic network, cut-size, filter-volume, nresub
(nrsb), zero-gain (zg), max-candidates (mc)

Output: Resynthesized logic network

1 list = topological-sort-network(network);
2 foreach node m in list do
3 if node is not a MFFC root then
4 continue;
5 cut = find-reconvergent-cut(m, cut-size);
6 expand-cut-into-window(cut);
7 if volume cut / size cut < filter-volume then
8 continue;
9 compute-truth-tables(window);

10 wdw = topological-sort-network(window);
11 foreach node n in wdw do
12 if (nrsb > -1) && zero-resub(n, window) then
13 continue;
14 if (nrsb > 0) && and-resub(n, wdw, zg, mc) then
15 continue;
16 if (nrsb > 1) && xor-resub(n, wdw, zg, mc) then
17 continue;
18 if (nrsb > 2) && ao-resub(n, wdw, zg, mc) then
19 continue;
20 if (nrsb > 3) && xa-resub(n, wdw, zg, mc) then
21 continue;
22 if (nrsb > 4) && ax-resub(n, wdw, zg, mc) then
23 continue;
24 if (nrsb > 5) && mux-resub(n, wdw, zg, mc) then
25 continue;
26 if (nrsb > 6) && mx-resub(n, wdw, zg, mc) then
27 continue;
28 end
29 end
30 network-cleanup-and-sweeping(network);

Algorithm 4: Resub for complex gates

procedure spans through the entire logic network, considering
each node in topological order, but resubstitution is only
applied to small/medium windows created around a node. The
window computation proceeds as follows. First a reconvergent
cut is found for the current node. Then, the cut is expanded
w.r.t. its boundaries, i.e., every external node which is not
contained by the cut, but has fanins inside the cut, is added.

This process is continued until (i) no more nodes can be added
or (ii) a volume limit is hit. The final result is a window, with
as many inputs as leaves in the original cut but more outputs,
due to the expansion. Resubstitution is then applied to this
window. Windows that are too thin, i.e., with volume over
input size ratio too small, are filtered because they are unlikely
to lead to any advantageous resubstitution. Only windows
passing the filtering tests move to truth table computation.
Truth tables, functional support, and related properties, are
calculated for every node in the window, using efficient bitwise
manipulation as, e.g., discussed in [19]. At this point, each
node of the window is tried for various resubstitutions, in a
waterfall model, i.e., the first resubstitution succeeding is the
one kept. The variable nresub determines how many different
types of resub are tried, and thus controls the computational
complexity of the algorithm. Without loss of generality, we
assume nresub is set to max-int so all types of resub are
tried. First, zero-resub is tried, where only equivalent gates in
the window are merged, up to complementation. Functional
support information can drastically speedup zero-resub: only
candidates with exactly the same support as n are tried. If
zero-resub returns 1, i.e., was successful, no other resubs are
attempted for the same node and the loop moves to the next
node in the window. Otherwise, other types of resub are tried.
For each of these other resub, the size of the MFFC rooted
at n is checked: if {extra-resub-nodes ≥ MFFC-size + zero-
gain} the loop moves directly to the next node, because no size
saving is possible. For example, and-resub introduces 1 extra
node and the MFFC-size of n needs to be at least 2 to have
advantageous resub. This costing can be extended to reduce
the number of levels. More importantly, this costing can be
made more accurate if the logic network is mapped, so real
area savings can be measured in place of node savings. Inside
each of the resub type, the filtering rules of Section III-A
are used to evaluate only candidates leading to valid resub-
stitutions. Also, a maximum number of candidates is still
used, even though rarely hit, to keep runtime under control
for corner cases. The types of supported resub, in increasing
computational complexity order, are: and (and-2 node/gate),
xor (xor-2 node/gate), ao (and-or nodes/gates), xa (xor-and
nodes/gates), ax (and-xor nodes/gates), mux (mux node/gate)
and mx (mux-xor nodes/gates). If the regular polarity resub
is not immediately successful, complementation at inputs and
output of each resub is also tried. Finally, dead nodes cleanup
and logic network sweeping is run.

B. Resub with weaker MSPF

The forward functional flexibility information introduced in
Section III-B is particularly useful in the resub environment.
It can be used to update the truth table information for the
current node n in the window, so successive resub moves can
take advantage of the don’t cares flexibility. Alg. 5 shows the
procedure for resub with FFF. Most of the procedure remains
identical to Alg. 4, but with updates inside the window pro-
cessing. For each node n evaluated inside the window, the FFF
information is computed and the truth table for n is updated. If
the successive resub is successful, no other nodes are tried and
we skip to next window. This is necessary because the truth
tables may be modified by the use of don’t cares, so successive
resub moves are potentially incorrect and FFF properties



Input : Logic network, cut-size, filter-volume, nresub,
zero-gain, max-candidates

Output: Resynthesized logic network using FFF
information

1 list = topological-sort-network(network);
2 foreach node m in list do
3 if node is not a MFFC root then
4 continue;
5 cut = find-reconvergent-cut(m, cut-size);
6 expand-cut-into-window(cut);
7 if volume cut / size cut < filter-volume then
8 continue;
9 compute-truth-tables(window);

10 wdw = topological-sort-network(window);
11 foreach node n in wdw do
12 FFF = compute-FFF(n, wdw);
13 update-truth-table-with-flexibility(n, FF);
14 run-resub-flow();
15 if resub with FFF is successful then
16 break;
17 end
18 end
19 network-cleanup-and-sweeping(network);

Algorithm 5: Resub with forward functional flexibility

invalid. We also evaluated alternative approaches to window-
skipping, where FFF and truth tables are incrementally up-
dated after a successful resub. We experimentally found that
window-skipping is still more advantageous (QoR/runtime-
wise) because (i) permits exploring diverse cones of logic and
(ii) covers more don’t cares combinations.

C. Refactoring into Multiple Representation Forms

Refactoring aims at re-expressing a cut, or a window, with a
new, potentially more compact, logic structure. The change is
accepted if there is an improvement in the target cost metric
(area, delay, etc.). Refactoring differs from resubstitution in
the scope of the structural change: while resub changes one
node at a time, refactoring operates on a large cone of logic at
once. Compared to rewriting, refactoring supports larger cuts
and can operate on multi-output functions (windows).

Standard refactoring is based on SOP representation, and
thus uses traditional collapsing, minimization and refactoring
algorithms [20]. As many new representation forms emerge
in EDA [21], and offer advantages over SOP, we developed
a generalized refactoring engine which can support generic
data structures & optimization techniques. We call it window
export & import (WEI) package. WEI is applied node-wise,
and works as follows. For the given node n, it computes a cut
using reconvergence driven methods. The cut can be extended
into a window, using a similar approach to the one described
for resub. Then, a new logic network is created, named weiNet,
which duplicates the logic of the window. Each leaf of the
window/cut becomes a primary input (PI) of weiNet. Each
node of the window, which is not a PI, and has at least one
fanout outside of the window itself becomes a primary output
(PO) of weiNet. At this point, a generic synthesis technique can
be applied to the newly formed network. After synthesis, the
new network characteristics are measured. If an improvement
is seen in the chosen metric, the new network is imported

back to the original network. Because of the way weiNet
is built, sharing of the logic below each POs is enforced
and maximized. Thus, no extra duplication happens when
importing back the new logic network.

Some beneficial synthesis techniques that we have exper-
imented with the WEI engine, over small/medium weiNet
sizes, are: SOP collapsing and factoring, ESOP collapsing and
XOR-decomposition, BDD collapsing and dominator-based
decomposition, BBDD restructuring for XORs, SPP collapsing
and minimization, and others.

In summary, WEI enables high-effort optimization methods
to run on small/medium sub-networks, with guaranteed maxi-
mal sharing of nodes and contained computational complexity.

D. Integration into a Global (Re)Synthesis Flow
We have integrated the optimization techniques presented

so far in an industrial logic optimization engine, together
with well known state-of-the-art methods. Then, we created
a Boolean resynthesis script, consisting of the following com-
mands:

rw ; r s −c 9 ; r s −c 1 0 ; r f s −c 9 ;
rwz ; mf −c 9 ; r s z −c 1 0 ; rw ;
r f b −c 1 2 ; r s −c 9 ; r f s −c 1 0 ;
r s −c 1 0 ; rw ; r s −c 1 2 ; r s z −c 1 2 ;
rwz ; r f s −c 1 0 ; mf −c 1 0 ;
r s −c 1 2 ; r f b z −c 1 4 ; mf −c 1 1 ; rwz

Where rw is state-of-the-art rewriting and balancing [7],
[22], rs is resub for complex gates, mf is resub with FFF
information, rfs is generalized refactoring based on SOPs and
rfb is generalized refactoring based on BDDs. Commands
ending with z stands for “accept zero gain transformations”.
The extra switch -c denotes the maximum cut/window size. By
default all available types of resub are tried, with maximum
number of candidates equal to 100. Faster versions of this
script only look for a subset of resub types, e.g., nresub = 3
for rs and mf commands. All commands can be programmed
to work either on unmapped, e.g., AIG, or mapped logic
networks. The Boolean resynthesis script produces improved
results when iterated multiple times, e.g., 2-5 times, depending
on the specific runtime budget. More iterations need more
diverse optimization methods to be intertwined with Boolean
resynthesis, to escape deeper local minima.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of our proposed
Boolean resynthesis flow. First, we challenge Boolean resyn-
thesis to improve the best results in the EPFL benchmark suite
[5]. Finally, we integrate Boolean resynthesis in an industrial
EDA flow, and show sensible QoR gains post place & route.

A. Methodology
We implemented Boolean resynthesis as part of a commer-

cial design automation solution. In the EDA flow, Boolean
resynthesis runs after the initial logic structuring, which mainly
aims at reducing area. So, Boolean resynthesis targets size
reduction in the logic network. Tight control on the number
of levels and the number of nets is enforced during Boolean
resynthesis: this is known to correlate with delay and conges-
tion later on in the flow.

We also implemented Boolean resynthesis as a standalone
optimization package, to run tests on academic benchmarks.



B. EPFL Benchmarks
The EPFL benchmark suite project keeps track of the best

synthesis results, mapped into LUT-6, generated by EDA
research groups. In this work, we challenge the area category
of the EPFL suite. As the EPFL best results come mapped into
LUT-6, we use Boolean resynthesis in mapped mode to im-
prove on top of them. New gates introduced by Boolean resyn-
thesis have less than 6 inputs, so the output of our Boolean
resynthesis is already compliant with the EPFL competition
rules. In order to form meaningful windows of large-fanin
nodes, we increased the cut size of the Boolean resynthesis
script, adding +6 to each command. The runtime of Boolean
resynthesis still remained comparable to traditional restruc-
turing/mapping scripts for the largest benchmarks processed.
Our results are summarized by Table I. Thanks to Boolean

TABLE I
NEW BEST AREA RESULTS FOR THE EPFL SUITE

Benchmark I/O LUT-6 count Level Count.
arbiter 256/129 403 23

i2c 147/142 211 7
log2 32/32 6570 119

mem ctrl 1204/1231 2117 22
priority 128/8 108 26

sin 24/25 1228 55
hypotenuse 256/128 40385 4527

voter 1001/1 1297 17
sqrt 128/64 3076 1106

square 64/128 3243 74

resynthesis, we improved 10 of the previous best size (area)
results. Level count improved for the hypotenuse benchmark,
as highlighted in green color. For the other benchmarks, level
count is not increased.

Our circuit implementations can be downloaded at [23].

C. ASIC Results
We tested a commercial EDA flow, empowered with our

Boolean resynthesis, on 50 state-of-the-art ASICs, coming
from major electronics industries. We cannot provide details
on each ASIC benchmark because of non-disclosure agree-
ments. However, we present average results w.r.t. a baseline
flow without our Boolean resynthesis techniques. The post
place & route results are summarized by Table II.

TABLE II
POST PLACE&ROUTE RESULTS ON 50 INDUSTRIAL DESIGN

Flow Area Leakage WNS TNS Runtime
Baseline 1 1 1 1 1

Proposed flow -2.67% -2.11% -0.44% -5.48% +1.35%

Our complete design flow, embedding Boolean resynthesis,
enables sensible area & leakage reductions, −2.67% and
−2.11% respectively, on average, and also good WNS/TNS
improvements, at only +1.35% runtime cost.

To fully appreciate the impact of our techniques, consider
that the relative area reduction is calculated on the whole chip.
This also includes sequential elements, IPs and other blocks
where Boolean resynthesis does not directly operate.

VI. CONCLUSIONS

In this paper, we revisited fundamental data structures and
algorithms for Boolean resynthesis, with the aim to find more
optimization opportunities at affordable runtime cost. The
major contributions of this work are: (i) a theory of Boolean

filtering, to drastically reduce the number of gates processed
and still retain all possible optimization opportunities, (ii) a
weaker notion of MSPF, which can be computed efficiently
via truth tables, (iii) a generalized refactoring engine and
(iv) a practical Boolean resynthesis flow, which combines the
proposed techniques. Using our Boolean resynthesis on LUT-
6 mapped networks, we improved 10 of the best known area
results in the EPFL synthesis competition. Embedded in a
commercial EDA flow for ASICs, our Boolean resynthesis
flow reduced the area by -2.11%, and total negative slack by
-5.48%, after physical implementation, at small runtime cost.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 264–300, 1990.

[2] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[3] A. Mishchenko, R. K. Brayton, J. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” ACM Trans. on
Reconfigurable Technology and Systems, vol. 4, no. 4, pp. 34:1–34:23,
2011.

[4] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 2010, pp.
24–40.

[5] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL com-
binational benchmark suite,” in Int’l Workshop on Logic and Synthesis,
2015.

[6] S. P. Khatri and K. Gulati, Eds., Advanced Techniques in Logic Synthesis,
Optimizations and Applications. Springer, 2011.

[7] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532–535.

[8] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Int’l Workshop on Logic and Synthesis, 2006,
pp. 15–22.

[9] V. N. Kravets and P. Kudva, “Implicit enumeration of structural changes
in circuit optimization,” in Design Automation Conference, 2004, pp.
438–441.

[10] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. K. Brayton, and
M. Chrzanowska-Jeske, “Using simulation and satisfiability to compute
flexibilities in Boolean networks,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 25, no. 5, pp. 743–755, 2006.

[11] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Exact
synthesis of majority-inverter graphs and its applications,” IEEE Trans.
on CAD of Integrated Circuits and Systems, 2017, accepted.

[12] W. Haaswijk, M. Soeken, L. G. Amarù, P.-E. Gaillardon, and
G. De Micheli, “A novel basis for logic optimization,” in Asia and South
Pacific Design Automation Conference, 2017.

[13] S. Muroga, “Logic synthesizers, the transduction method and its ex-
tension, sylon,” in Logic Synthesis and Optimization, T. Sasao, Ed.
Springer, 1993, pp. 59–86.

[14] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, “The
transduction method-design of logic networks based on permissible
functions,” IEEE Trans. on Computers, vol. 38, no. 10, pp. 1404–1424,
1989.

[15] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[16] S. Kauffman, “The large scale structure and dynamics of gene control
circuits: An ensemble approach,” Journal of Theoretical Biology, vol. 44,
no. 1, pp. 167–190, 1974.

[17] D. E. Knuth, The Art of Computer Programming, Volume 4A. Addison-
Wesley, 2011.

[18] L. G. Amarù, P. Vuillod, J. Luo, and J. Olson, “Logic optimization and
synthesis: Trends and directions in industry,” in Design, Automation and
Test in Europe, 2017, pp. 1303–1305.

[19] H. S. Warren, Jr., Hacker’s Delight. Addison-Wesley, 2002.
[20] R. K. Brayton and C. T. McMullen, “The decomposition and factoriza-

tion of Boolean expressions,” in Int’l Symp. on Circuits and Systems,
1982, pp. 49–54.

[21] L. G. Amarù, New Data Structures and Algorithms for Logic Synthesis
and Verification. Springer, 2017.

[22] A. Mishchenko, R. K. Brayton, S. Jang, and V. N. Kravets, “Delay
optimization using SOP balancing,” in Int’l Conf. on Computer-Aided
Design, 2011, pp. 375–382.

[23] Https://lsi.epfl.ch/benchmarks.


