
SAT Based Exact Synthesis using DAG Topology Families
Winston Haaswijk

EPFL

Lausanne, Vaud, Switzerland

winston.haaswijk@epfl.ch

Alan Mishchenko

University of California, Berkeley

Berkeley, California, United States

alanmi@berkeley.edu

Mathias Soeken

EPFL

Lausanne, Vaud, Switzerland

mathias.soeken@epfl.ch

Giovanni De Micheli

EPFL

Lausanne, Vaud, Switzerland

giovanni.demicheli@epfl.ch

ABSTRACT
SAT based exact synthesis is a powerful technique, with applica-

tions in logic optimization, technology mapping, and synthesis for

emerging technologies. However, its runtime behavior can be un-

predictable and slow. In this paper, we propose to add a new type

of constraint based on families of DAG topologies. Such families re-

strict the search space considerably and let us partition the synthesis

problem in a natural way. Our approach shows significant reduc-

tions in runtime as compared to state-of-the-art implementations,

by up to 63.43%. Moreover, our implementation has significantly

fewer timeouts compared to baseline and reference implementa-

tions, and reduces this number by up to 61%. In fact, our topology

based implementation dominates the others with respect to the

number of solved instances: given a runtime bound, it solves at

least as many instances as any other implementation.

ACM Reference Format:
Winston Haaswijk, Alan Mishchenko, Mathias Soeken, and Giovanni De

Micheli. 2018. SAT Based Exact Synthesis using DAG Topology Families. In

DAC ’18: DAC ’18: The 55th Annual Design Automation Conference 2018, June
24–29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3195970.3196111

1 INTRODUCTION
In recent years, there has been a large research effort into SAT

based logic synthesis methods. A notable research direction has

been the synthesis of optimum Boolean chains, also known as exact
synthesis [4, 16, 17]. A Boolean chain is a directed acyclic graph
(DAG), in which every vertex corresponds to a 2-input Boolean

operator [10]. Boolean chains are compact structures for the repre-

sentation of multiple-output Boolean functions. They are similar

to the concept of unbound logic networks used by the logic synthe-

sis community. Exact synthesis has various applications in logic

optimization, technology mapping, and synthesis for emerging

technologies [4, 14, 16, 17]

Given a Boolean function, we can solve the problem of finding an

optimum Boolean chain for that function by solving sequences of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00

https://doi.org/10.1145/3195970.3196111

SAT formulae [3, 12]. However, the major drawback of SAT based

synthesis is the unpredictable, and potentially long, runtime of SAT

invocations. This runtime is perhaps unsurprising if we consider

that, in finding optimum Boolean chains, the SAT solver has to

simultaneously perform at least two distinct tasks:

(1) finding valid DAG structures for the Boolean chain

(2) assigning Boolean operators to the vertices in these DAGs,

such that the entire sequence of the chain corresponds to

the specified Boolean function

Another drawback to SAT based synthesis is that, like many logic

synthesis and EDA problems, it is difficult to parallelize. Some ef-

forts have been made in parallelizing SAT solvers using techniques

such as cube-and-conquer, clause sharing, and so-called portfolio
SAT solvers that apply different SAT solvers in a parallel or dis-

tributed manner [6, 7]. However, the search space is so large that the

impact of using multiple threads is limited. Moreover, parallel SAT

solvers based on these methods are largely domain agnostic, and

do not take advantage of the structure of specific problem domains.

The main contribution of this paper is the proposal to use DAG

topology families to mitigate the runtime problems of exact syn-

thesis. These topology families can be used to provide additional

constraints to the SAT solver, and thus to speed up the synthesis

process. In other words, topology based synthesis is a proposal to

synthesize Boolean chains (and extensions thereof) while providing

additional aid to the SAT solver in performing step (1).

The rest of this paper is organized as follows. Section 2 provides

some background on Boolean chains, and on finding optimum

Boolean chains using SAT based exact synthesis. In Section 3 we

introduce a simple generalization of Boolean chains which allows

for chains that have n-input operators. Then, in Section 4, we dis-

cuss DAG topology families and introduce the related concept of

Boolean fences. We discuss some theoretical properties of fences

and algorithms for generating them. Next, in Section 5, we show

how the conventional SAT based exact synthesis algorithm can

be extended to include topological constraints. Then, in Section 6

we perform several experiments with our new synthesis algorithm

and compare it to the state-of-the-art. We show that our topology

based algorithm is able to obtain significant runtime reductions of

up to 63.43%. Perhaps even more importantly, given the runtime

budget, it also is able to solve up to 61% more problem instances.

Moreover, our topology based algorithm dominates the others in

terms of solved instances. Finally, we conclude the paper with a

brief discussion in Section 7.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Winston Haaswijk, Alan Mishchenko, Mathias Soeken, and Giovanni De Micheli

x3x2x1

∧ ⊕

∧ ⊕

∨

Carry Sum

x4
x5

x6 x7

x8

Figure 1: Illustration of a Boolean chain for a full adder. As
it is not used, the constant zero input x0 is not shown here.

2 BACKGROUND
2.1 Boolean Chains
Supposewe are givenm functions f1(x1, . . . ,xn), . . . , fm (x1, . . . ,xn)
that each compute some values for the same set of n inputs. As

described by Knuth in [10], a Boolean chain for these functions is a

sequence (xn+1, . . . ,xn+r) with the property that each step in the

sequence combines two of the preceding steps:

xi = x j(i) ◦i xk (i) for n + 1 ≤ i ≤ n + r

where 1 ≤ j(i) < i , and 1 ≤ k(i) < i , and where ◦i is one of sixteen
binary operators. Such a chain must also have the property that for

1 ≤ j ≤ m, either fj (x1, . . . ,xn) = xl (j) or fj (x1, . . . ,xn) = x̄l (j),
where 0 ≤ l(j) ≤ n + r and x0 = 0. Since each step can only refer

to previous steps in the sequence, there is a partial order between

steps and we can view such chains as DAGs.

For example, when n = 3, then the chain

x4 = x1 ∧ x2

x5 = x1 ⊕ x2

x6 = x3 ∧ x5

x7 = x3 ⊕ x5

x8 = x4 ∨ x6

can be used to represent the 3-input 2-output function f (x1,x2,x3) =

(x1⊕x2⊕x3, ⟨x1,x2,x3⟩), which is commonly known as a full adder.

Figure 1 illustrates this example.

2.2 SAT Based Exact Synthesis
We present here a variant of Knuth’s algorithm for the synthesis for

optimum Boolean chains [11]. There are different variations on this

algorithm, for examplewith different selection variable schemes [12].

In all variations, however, the key idea behind SAT formulation is

the same: to construct a SAT formula that is satisfiable if and only if
there exists a Boolean chain with r steps that computes functions

f1, . . . , fm depending on n variables. In Knuth’s algorithm, such

a formula consists of the following variables, for 1 ≤ h ≤ m,

n < i ≤ n + r , and 1 ≤ t ≤ 2
n
:

xit : t
th
bit of xi ’s truth table

дih : fh (x1, . . . ,xn) = xi

si jk : xi = x j ◦i xk for 1 ≤ j < k < i

fipq : p ◦i q for 0 ≤ p,q ≤ 1

Here, the дih variables determine which outputs point to which

steps. The si jk variables determine the inputs j and k , for each step

i . These are also known as selection variables. The fipq encode for

all steps i what the corresponding Boolean operator is.

These variables are then constrained by a set of clauses which

ensure that the chain computes the correct functions. For 0 ≤

a,b, c ≤ 1 and 1 ≤ j < k < i , the main clauses are:

(s̄i jk ∨ (xit ⊕ a) ∨ (x jt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā))

Intuitively, these clauses encode the following constraint: if step i

has inputs j and k , and the t
th
bit of xi is a, and the t

th
bit of x j is

b, and the t
th
bit of xk is c , then it must be the case that b ◦i c = a.

This can be understood by rewriting the formula as follows:

((si jk ∧ (xit ⊕ ā) ∧ (x jt ⊕ ¯b) ∧ (xkt ⊕ c̄)) → (fibc ⊕ ā))

Note that a, b, and c are constants which are used to set the proper

variable polarities.

Next, let (t1, . . . , tn)2 = t be the binary encoding of t . In order

to fix the proper output values, we add the clauses (д̄hi ∨ x̄it)
or (д̄hi ∨ xit) depending on the value fh (t1, . . . , tn). We also add∨n+r
i=n+1

дhi and
∨i−1

k=1

∨k−1

j=1
si jk , so that every output points to a

step in the chain and to ensure that every step has two inputs.

These are the only clauses necessary to ensure that a valid chain

is found. Other clauses, such as forcing a colexicographic order

on the steps, may be added to speed up synthesis. We refer the

interested reader to [11].

One can use these clause to synthesize Boolean chain as follows:
1

(1) Initialize r = 1.

(2) Generate the clauses for an r step chain.

(3) If they are satisfiable, we are done.

(4) Otherwise, increment r and goto 2.

The final value for r represents the minimum number of steps

necessary to compute the specified functions.

3 GENERALIZED BOOLEAN CHAINS
In Section 2.1 we describe the common definition of Boolean chains.

However, that definition includes only binary operators. We can

extend the definition to include Boolean operators of arbitrary

numbers of variables. For simplicitly, we will impose the restriction

that the number of operands of the Boolean operators will be upper

bounded by some fixed n.
This extension has two main motivations. First, synthesis of

chains with larger operators may be significantly faster. For exam-

ple, using Boolean chains with 3-input operators, one can efficiently

classify the set of all 5-input functions using SAT based exact syn-

thesis [5], whereas this has not been achieved for 2-input operator

chains. Second, one application of exact synthesis is in technology

mapping, where we are often required to use a diverse set of logic

primitives. For example, we may be given a standard cell library

and asked to find an efficient implementation of a function f in

1
For convenience, we do not consider trivial special cases such as 0-step chains here.

SAT Based Exact Synthesis using DAG Topology Families DAC ’18, June 24–29, 2018, San Francisco, CA, USA

terms of the primitive Boolean operators defined by the standard

cells. Generally, we cannot assume that the cell library contains

only 2-input operators. Following the convention of [15], we denote

such a set of primitives by B.

We extend the definition as follows. Let f = (f1, . . . fm) be a
multiple-output Boolean function, such that f : Bn → Bm

. An

unbounded Boolean chain is a sequence (xn+1, . . . ,xn+r):

xi = ϕi (x j(i,1), . . . ,x j(i, ι(ϕi))) for n + 1 ≤ i ≤ n + r

such that 1 ≤ j(i,v) < i , and 1 ≤ ι(ϕi) ≤ n, and for all 1 ≤ k ≤
m, either fk (x1, . . . ,xn) = xl (k) or fk (x1, . . . ,xn) = x̄l (k), where
0 ≤ l(k) ≤ n + r , and x0 = 0. We call ι(ϕi) the fanin of operator

ϕi . For convenience, in the following we use Boolean chains to

refer to this extended definition. Note that for all Boolean chains

n < i ≤ n + r ⇒ ϕi ∈ B. For example, in the common definition

of Boolean chains, we have ι(ϕi) = 2 for all i and B is the set of all

binary operators.

4 DAG TOPOLOGIES, FENCES, AND FAMILIES
Suppose we are given a DAG G = (V ,E), and a Boolean function

f : Bn → Bm
. We may be able to transform the DAG into a

Boolean chain for f by assigning the appropriate operators ϕi ∈ B
to every vertex vi ∈ V . We call such a transformation a labeling of

the graph. Recall that finding a labeling corresponds to step (2) of

the synthesis process described in the introduction. Finding such a

labeling may not be possible, but if it exists, a SAT solver can find

it efficiently. For example, consider the 6-input function with truth

table 0x9ef7a8d9c7193a0f . The smallest known implementation of

this function uses 19 2-input gates. When the solution topology is

given, a SAT solver can find a labeling in 0.12s on a laptop computer.

The efficiency of labeling may inspire one to think of the follow-

ing (naive) synthesis algorithm:

function Synthesize(f)
while true do

G ← NextDaд()
if LabelinдExists(G, f) then

Chain ← LabelGraph(G, f)
return Chain

end if
end while

end function
Such an algorithm reduces to efficiently finding a DAG with the

proper structure for f . However, in general, given f we do not

know a priori which DAG structures have a labeling for f . Given
an n-input function, finding a suitable DAG requires us to search a

very large space of DAG structures. Unfortunately, the enumeration

of potential DAGs in this space generally outweighs the potential

efficiency of graph labeling.

Alternatively, instead of providing the SAT solver with a DAG

to label, we can specify a set of clauses which constrain the SAT

solver’s search to a particular family of DAG topologies.We then use

the SAT solver’s efficient search heuristics to find only those topolo-

gies within that family. This approach avoids explicit enumeration

of DAGs and provides a middle ground between the unstructured

exact synthesis formulation of Section 2.2 and the fully structured

labeling of graphs. The idea to explore this middle ground is the

main contribution of this paper.

Level 1F (4, 1)

Level 1

Level 2

F (4, 2)

Level 1

Level 2

Level 3

F (4, 3)

Level 1

Level 2

Level 3

Level 4

F (4, 4)

Figure 2: An illustration of the fences in F4. Every fence cor-
responds to a family of DAGs with the same distribution of
nodes accross levels. We draw an edge here between the first
node on each level in a fence, just for visualization purposes.

4.1 Fences
Given two integers k and l (1 ≤ l ≤ k), a Boolean fence is a partition
of k nodes over l levels, where every level contains at least one

node. We can denote a Boolean fence by an ordered sequence F =
(λ1, . . . , λl), where every λi corresponds to the collection of nodes

on level i . A Boolean fence (k, l) is not unique: there may bemultiple

ways of distributing k nodes over l levels. We call the set of all such

partitions a Boolean fence family and write F (k, l). We use Fk to

denote the set of all fence families of k nodes:

Fk = {F (k, l) | 1 ≤ l ≤ k}

To be concise, we also refer to Boolean fences and fence families as

fences and families, respectively. Boolean fences can be visualized

as graphs. Figure 2 shows the fences in F4.

Every DAG of n nodes corresponds to a unique fence F ∈ Fn . To
see why, note that we can assign levels to nodes in a DAG based on

their partial order. Such an assignment allows us to find the level

distribution corresponding to the fence F .
A fence induces a set of DAG topologies, in which each topology

corresponds to the same distribution of nodes over levels, but with

different arcs between nodes. In other words, fences are represen-

tations for families of graph topologies. Consequently, a fence also

induces a set of Boolean chains with those topologies.

4.2 Counting Fences
Let us consider the following question: how many fences are there

in familyF (k, l)? Note that, in this family, l nodes are fixed, since we
need to have at least one node on l levels. The remaining k−l nodes
may be arbitrarily distributed across the l levels. In other words,

our question reduces to: howmany ways are there to distribute k−l
indistinguishable nodes across l bins? The answer is equal to the

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Winston Haaswijk, Alan Mishchenko, Mathias Soeken, and Giovanni De Micheli

number of nonnegative integer-valued solutions to the equation

x1 + x2 + · · · + xl = k − l

and hence

|F (k, l)| =

(
k − 1

l − 1

)
. (1)

We can now use Formula 1 to count the total number of fences of k
nodes, |Fk | as follows:

|Fk | =

k∑
i=1

(
k − 1

i − 1

)
= 2

k−1

The reader may verify that these formulas correctly predicts the

numbers of fences in Figure 2.

4.3 Generating Fences
Our synthesis method requires an efficient algorithm for the gen-

eration of fences. Suppose we want to generate Fk . In order to

do this, we first observe that the number of fence families in Fk
closely correspond to different integer partitionings of k . Recall
that, given an integer k , an integer partition of k is a way of writing

k as the sum of positive integers k1 + · · · + ki = k . We can obtain a

fence from such a partition by imposing an order on it. Let S be the

multiset of integers corresponding to an integer partition of k , and
let l = |S |. Now, we can create a fence F ∈ F (k, l) from this partition

by fixing F = (k1, . . . ,kl) where ki ∈ S(1 ≤ i ≤ l). Note that S
is a unique partition of k . However, F may not be the only fence

corresponding to this partition. To see why, let π be a permutation

of l . Then, the fence F ′ = Fπ = (kπ (1), . . . ,kπ (n)) is also a fence in

F (k, l).
Thus, to generate all fences in Fk , we have to do the following:

• Generate all integer partitions S of k .
• For all such S , generate all permutations πS .

In practice, we are often not interested in enumerating all 2
k−1

fences in Fk . Instead, we are often satisfied once we obtain a fence

that our synthesizer finds a solution with. All of this suggest the lazy

fence generating algorithm in Algorithm 1. The algorithm presented

here is a coroutine thatmay be called repeatedly and yields all fences

in Fk until exhausted. The algorithm is constructed by composing

standard integer partitioning and permutation algorithms. In our

implementation we use a lazy adaptation of the integer partition

algorithm from Knuth [10] (fascicle 3, page 38), who attributes it to

Hindenburg [8]. For the permutations we use an algorithm from

the C++ standard library.

Algorithm 1 is an efficient procedure that may be function in

the inner loop of a synthesis algorithm. For example, we can gen-

erate set {Fk | k ≤ 10} in 0.097 seconds. On top of this basic

procedure we can also build more sophisticated algorithms, such

as algorithms that filter out any fences that are unnecessary for a

specific synthesis task. We discuss such methods in Section 5.

5 EXACT SYNTHESIS USING FENCES
We have seen how fences correspond to families of DAG topologies,

investigated some of their theoretical properties, and presented

a fence generating algorithm. In this section we consider how to

use fences to accelerate exact synthesis by using them to provide

additional constraints in the SAT formulation. To do so, let us first

look at some connections between fences and Boolean chains.

Algorithm 1 An algorithm to generate all fences in Fk .

function GenerateFences(k)
while true do

S ← NextPartition(k)
if S , ∅ then

l ← |S |
while true do

π ← NextPermutation(S)
if π , ∅ then

F ← EmptyFence(l)
for i ← 0; i < l ; i + + do

F [i] ← S[π (i)]
end for
yield F

else
break

end if
end while

else
yield ∅

end if
end while

end function

Consider a fence F = (λ1, . . . , λl). Let G = (V ,E) be a DAG, and
let τ (v) : V → N be the function that assigns each vertex from G
to its level. Let τi = |{v | τ (v) = i}|. We say thatG satisfies F if and

only if |λi | = τi . In other words, a DAG satisfies the topological

constraints of a fence if its distribution of nodes across levels is the

same. We say that a Boolean chain satisfies F if its underlying DAG

structure satisfies F . We consider the primary inputs of the chain

to have level 0, and do not consider them in satisfying F .
For example, consider the fence F = (λ1, λ2) ∈ F (4, 2) high-

lighted in Figure 3(a). We have numbered its nodes to make them

easier to distinguish. Intuitively, only DAGs with two nodes on the

first level and two nodes on the second level satisfy F . For exam-

ple, Figure 3(b) is a 2-input operator Boolean chain satisfying the

constraints from F . Similarly Figure 3(c) is a 3-input Boolean chain

that satisfies F . However, Figure 3(d) shows a chain that is invalid

for F . It violates the constraint that the step corresponding to fence

node 4 be on level 2.

Observe that the topology constraints captured by fences are

independent of number of inputs, or operator fanin. This is desirable,

as it implies that the same fence generator can be used as the

basis for synthesis of generalized Boolean chains and functions of

arbitrary input size.

Now consider again the arbitrary fence F = (λ1, . . . , λl) ∈ F (k, l).
Suppose we wish to synthesize a Boolean chain that satisfies F . We

know that it must be a k-step chain. We assign step i to level t by
setting

τ (xi) = t ⇔ t = min

t ′
i ≤

t ′∑
j=0

|λj |.

where |λ0 | = n, the number of primary inputs.

Note that if τ (xi) = t , then step xi must, by definition, have at

least one fanin on level t − 1. Thus, the fence constrains not only

SAT Based Exact Synthesis using DAG Topology Families DAC ’18, June 24–29, 2018, San Francisco, CA, USA

f1 f2

3 4

1 2

x1 x2 x3 x4

(a)

f1 f2

x6 x7

x4 x5

x1 x2 x3 x4

(b)

f1 f2

x9 x10

x7 x8

x2x1 x3 x4 x5 x6

(c)

f1 f2

x6 x7

x4 x5

x1 x2 x3 x4

(d)

Figure 3: The fence F in (a) corresponds to a set of possible DAG topologies and can thus be used to constrain the SAT solver’s
search. For instance, Figure (b) and Figure (c) satisfy the constraints from F . Figure (d) does not.

the distribution of nodes accross levels, but also the fanin relations

between nodes. Due to this level constraint, in the SAT formulation

the selection variable si jk may never be true if τ (k) < t − 1, for

any i < k . Let k ′ and k ′′ be the smallest and largest indices such

that τ (xk ′) = t − 1 and τ (xk ′′) = t − 1, respectively. A simple

way to express the constraints imposed by the fence is by adding,

for each step xi , the clause

∨k ′′
k=k ′ si jk (j < k). In that way, we

ensure that each step has at least one fanin from a level directly

below. This approach is similar to the way that colexicographic

or other symmetry-breaking clauses are added in [11]. However,

we can do better. Observe that, since none of the variables outside

of {si jk | k
′ ≤ k ≤ k ′′} may be true, we do not need to include

them in our SAT formula at all. Thus, by using a fence we can

significantly reduce the number of variables and clauses in our SAT

instances.

To implement exact synthesis with topological constraints we

can then proceed as follows: (i) Generate a new fence using the

procedure described in Algorithm 1. (ii) Using the constraints im-

plied by the fence, generate a reduced SAT formula. We use a set of

clauses analogous to the one described in Section 2.2. However, we

exclude any variables or clauses that are rendered unnecessary due

to the fence constraints, obtaining a simpler SAT formula. (iii) If
the formula is satisfiable, we are done. (iv) Otherwise, go to (i).

The fence generation procedure in Algorithm 1 can be easily

modified to yield a stream of fences of increasing size. Thus, we

extend the conventional exact synthesis algorithm, while decom-

posing the search space using increasingly large families of graph

topologies. Recall that in Section 4.2 we derived the total number of

fences of k nodes. Given an upper bound on the number of nodes

to realize a function, we therefore also have an upper bound on the

number of decomposed exact synthesis instances we have to solve.

6 EXPERIMENTS
In order to evaluate the performance of our proposed approach, we

find exact synthesis for the following collection of Boolean function

sets:

• NPN4: All 222 4-input NPN classes [9].

• FDSD6: 1000 fully-DSD decomposable 6-input functions. that

occur frequently in practical synthesis and technology map-

ping applications [13].

• PDSD6: 1000 partially-DSD decomposable 6-input functions

that occur frequently in practical technology mapping appli-

cations.

• FDSD8: 100 fully-DSD decomposable 8-input functions.

• PDSD8: 100 partially-DSD decomposable 8-input.

We compare five different SAT based exact synthesis approaches,

including a state-of-the-art reference implementation from the well

known ABC logic synthesis package [1].

(1) SYM: A baseline implementation of the SAT-based exact

synthesis algorithm, which is very similar in architecture

and performance to ABC’s state-of-the-art implementation

(command exact, [17]).
(2) SYM-CEGAR: Approach SYM with CEGAR loop to add the

main clauses incrementally [2].

(3) TOP: Our proposed algorithm based on fence enumeration

and the use of additional topological constraints.

(4) TOP-CEGAR: Approach TOP with CEGAR loop to add the

main clauses incrementally.

(5) ABC: The state-of-the-art reference implementation in ABC.

Table 1 lists all experimental results. For each approach four

values are listed: i) the mean solving time (mean), ii) the standard
deviation (dev), both in milliseconds, iii) the number of instances

that could not be solved before timing out (#t/o), and the number of

instances that were successfully solved (#ok). Note that the number

of solved instances is the most important metric here, as it captures

in essence how practical an algorithm is. Given a bound on runtime,

we obviously prefer the algorithm that can solve the most problems

within that bound. A similar metric is commonly used in SAT solver

competitions. In our experiments we limit runtime by specifying a

conflict limit to each SAT instance. All experiments were performed

on an Intel Xeon E5-2680 v3 (Haswell) 2.5 GHz processor with a 30

MB cache and 256GB of RAM.

The results in Table 1 show that using topological structure

enumeration can significantly improve the solving time, as well

as the number of solved instances. For NPN4, our topology based

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Winston Haaswijk, Alan Mishchenko, Mathias Soeken, and Giovanni De Micheli

Table 1: Experimental Results (all runtimes in milliseconds)

Functions SYM SYM-CEGAR TOP TOP-CEGAR ABC

mean dev #t/o #ok mean dev #t/o #ok mean dev #t/o #ok mean dev #t/o #ok mean dev #t/o #ok

NPN4 266.48 717.68 0 222 225.46 696.40 0 222 216.70 480.16 0 222 216.69 420.53 0 222 177.69 581.67 0 222

FDSD6 96.55 69.21 0 1000 69.00 57.43 0 1000 39.07 18.93 0 1000 29.61 16.19 0 1000 77.16 63.88 0 1000

PDSD6 43453.33 64757.49 256 744 43453.33 64757.49 1000 0 20707.11 32590.64 128 872 21605.81 33243.84 256 744 54525.05 85070.54 256 744

FDSD8 11998.39 7921.64 0 100 5583.13 3309.73 0 100 4809.29 2714.85 0 100 2688.51 1383.34 0 100 2490.18 1825.72 0 100

PDSD8 214959.90 86964.25 14 86 150533.31 75998.48 42 58 100871.79 62671.56 11 89 78619.48 32737.19 40 60 137010.13 41097.86 76 24

algorithm ismore than 19% faster than our baseline implementation.

All algorithms find the solutions for all problem instances. For

FDSD6, TOP-CEGAR is 57.09% faster than SYM-CEGAR and 61.63%
faster than ABC. Again, there are no timeouts. For PDSD6, TOP is

52.35% faster than TOP and 62.02% faster than ABC. We can also

solve 50%more instances than both other approaches before timing

out. The same observation can be made for the 8-input function sets.

For FDSD8, TOP-CEGAR is up to 51.85% faster than SYM-CEGAR.
For PDSD8, TOP-CEGAR is 63.43% faster than SYM-CEGAR and

42.68% faster than ABC. Again, our algorithm has fewer timeouts

than the others. Note especially the striking difference in timeout

percentage with the ABC implementation. Our algorithm has 61%
fewer timeouts than ABC. In fact, the table shows that it dominates

the other implementations with respect to the number of solved

instances.

In summary, we can see that the gains from using topological

constraints can be quite significant. They seem to be particularly

beneficial as the functions to be synthesized become larger and

harder to synthesize.

7 DISCUSSION & FUTUREWORK
This paper takes a new look at the difficult problem of SAT-based

exact synthesis for Boolean functions. The SAT-based exact synthe-

sis formulation must encode both the structure of the logic network

and the functionality of its nodes. These are cleverly encoded using

SAT clauses, however, their combination makes the problem very

hard to solve. We find that knowing the structure makes the prob-

lem significantly easier. Based on this observation, we introduce a

SAT-based exact synthesis method based on topological structure

enumeration. Since the number of topological structures grows

very quickly as the number of gates increases, we collect a set of

structures in what we call a Boolean fence. The paper introduces

a theory of Boolean fences, illustrates how they are enumerated,

and shows how they are used to constrain the SAT-based exact

synthesis encoding.

We evaluate our new approach to find optimum logic networks

for various sets of practical Boolean functions. Our experimental

results show a runtime reduction of up to 63.43%. Further, we
find find many solutions for instances in which the state-of-the-

art method, which does not make use of topological constraints,

times out. We reduce the number of timeouts by up to 61%. Our
topology based algorithm dominates the other implementations in

the number of solved instances: given a runtime budget it always

solves at least as many as any other implementation. This has

direct impact on a variety of logic optimization algorithms that use

exact synthesis, such as logic rewriting, technology mapping, and

synthesis for emerging technologies[4, 14, 16, 17].

In future work, we plan to find enumerate topological struc-

tures according to different strategies to reach further speed-ups.

Furthermore, DAG topologies provide a natural way of partition-

ing the synthesis search space: only parts of the space containing

potentially valid topologies needs to be examined. An interesting

line of investigation would be to use graph topologies as the basis

for parallel SAT based exact synthesis algorithms, using the graph

topologies as a source of parallelism.

ACKNOWLEDGMENTS
This work was supported in part by SRC contract 2710.001 “SAT-

based methods for scalable synthesis and verification” at UC Berke-

ley, H2020-ERC-2014-ADG 669354 CyberCare, and the Swiss Na-

tional Science Foundation (200021-169084 MAJesty).

REFERENCES
[1] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-

Strength Verification Tool. In Computer Aided Verification. 24–40.
[2] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.

Counterexample-Guided Abstraction Refinement. Springer Berlin Heidelberg,

Berlin, Heidelberg, 154–169. https://doi.org/10.1007/10722167_15

[3] Niklas Eén. 2007. Practical SAT - a tutorial on applied satisfiability solving. In

FMCAD.
[4] Winston Haaswijk, Mathias Soeken, Luca Amarú, Pierre-Emmanuel Gaillardon,

and Giovanni De Micheli. 2017. A Novel Basis for Logic Rewriting. In ASPDAC.
[5] Winston Haaswijk, Eleonora Testa, Mathias Soeken, and Giovanni De Micheli.

2017. Classifying Functions with Exact Synthesis. In ISMVL.
[6] Youssef Hamadi. 2009. ManySAT : a Parallel SAT Solver. Journal on Satisfiability,

Boolean Modeling and Computation 6, 5 (2009), 245–262. https://doi.org/10.1152/

japplphysiol.00460.2010

[7] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. 2012.

Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads. Springer

Berlin Heidelberg, Berlin, Heidelberg. 50–65 pages. https://doi.org/10.1007/

978-3-642-34188-5_8

[8] C.E. Hindenburg. 1779. In Nitinomii Dignitatum Exponentis Indeterminati. Ph.D.
Dissertation. University of Göttingen.

[9] Zheng Huang, Lingli Wang, Yakov Nasikovskiy, and Alan Mishchenko. 2013.

Fast Boolean matching based on NPN classification. In Int’l Conf. on Field-
Programmable Technology. 310–313.

[10] Donald E. Knuth. 2011. The Art of Computer Programming. Vol. 4A. Addison-
Wesley, Upper Saddle River, New Jersey.

[11] Donald E. Knuth. 2015. The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Addison-Wesley, Reading, Massachusetts.

[12] Arist Kojevnikov, Alexander S. Kulikov, and Grigory Yaroslavtsev. 2009. Finding

efficient circuits using SAT-solvers. In Theory and Applications of Satisfiability
Testing. 32–44.

[13] Alan Mishchenko. 2001. An Approach to Disjoint-Support Decomposition of Logic
Functions. Technical Report. Portland State University.

[14] AlanMishchenko, Satrajit Chatterjee, and Robert K. Brayton. 2007. Improvements

to Technology Mapping for LUT-Based FPGAs. IEEE Trans. on CAD of Integrated
Circuits and Systems 26, 2 (2007), 240–253.

[15] John P. Roth and Richard M. Karp. 1962. Minimization Over Boolean Graphs.

IBM Journal of Research and Development 6, 2 (1962), 227–238.
[16] Mathias Soeken, Luca Amarù, Pierre-Emmanuel Gaillardon, and Giovanni

De Micheli. 2017. Exact Synthesis of Majority-Inverter Graphs and Its Appli-

cations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2017). https://doi.org/10.1109/TCAD.2017.2664059

[17] Mathias Soeken, Giovanni De Micheli, and Alan Mishchenko. 2017. Busy Man’s

Synthesis : Combinational Delay Optimization With SAT. In Design Automation
and Test in Europe.

