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Abstract—Traditional logic synthesis faces challenges of meet-
ing the requirements demanded by the many emerging nanotech-
nologies that are based on logic models different from standard
CMOS. Several emerging nanodevices including Quantum-dot
Cellular Automata (QCA) and Spin Torque Majority Gates (STMG)
are based on majority logic. In addition, technology constraints
require to restrict the number of fan-outs or impose difficulties in
realizing inversions. In this paper, we use a majority-based logic
synthesis approach to synthesize inversion-free networks with
restricted fan-out. We propose one algorithm that propagates
all inversions to the primary inputs and another algorithm that
limits the number of fan-outs of each majority gate. These
algorithms show significant impact on QCA- and STMG-based
circuits. Experimental results demonstrate that the average area-
delay-energy product can be improved by 3.1× in QCA-based
circuits and from 2.9× to 8.1× for STMG-based circuits.

I. INTRODUCTION

The downscaling of CMOS technologies dictated by Moore’s
Law [1] will reach its limit in the next decade [2]. This has
given rise to a search for alternative devices that extend the
semiconductor industry roadmap beyond the CMOS technol-
ogy [3].

A wide variety of beyond-CMOS devices has been studied
in the last decade. They include (i) charged-based components
such as Carbon Nanotubes (CNT, [4]) and Quantum-dot
Cellular Automata (QCA, [5]) and (ii) non-charge-based
solutions such as Spin Torque Majority Gate (STMG, [6]) and
NanoMagnet Logic (NML, [7]). One main difference compared
to CMOS technology is that a large amount of novel alternative
devices have different logic abstraction with respect to standard
transistors. In particular, the device model for QCA, STMG,
and NML technologies is the majority voter. The variety of
beyond-CMOS devices further leads to a broad range of various
technological constraints. Two main drawbacks apply to several
devices. First, since all devices are targeted towards ultra-low
energy operation, the inherent amplification or the driving
capabilities of these devices are low [8]. This leads to the need
of constraining the fan-out characteristics of the implemented
circuits. Second, several beyond-CMOS technologies do not
offer efficient implementations of inverters (INVs) [9], [10].
Therefore, it is required to minimize their application [11]
or even to eliminate them from implemented circuits. Logic
synthesis needs to consider all these characteristics.

In this work, we synthesize and optimize circuits by making
use of a majority-based data-structure, called Majority Inverter
Graphs (MIG, [12]). In particular, we introduce two algorithmic
techniques to rewrite MIGs. The first algorithm eliminates
inverter components, moving them to primary inputs. The
second algorithm constrains the maximum fan-out of each
node to n, in our case 3. These two algorithms produce
networks that can be adapted for majority-based beyond-CMOS
technologies, such as QCA and STMG. As a matter of fact,
both QCA and STMG have fan-out limitations, since their
primitive logic structure relies on a cross-like shape. This
means that the primitive fan-out gate for these two technologies
has a fan-out of 3 (n = 3). QCA-based circuits can realize
inversion, even if not in an efficient way [9]. To implement
the inversion in STMG-based circuits, we propose two hybrid
solutions combining STMG with CMOS or NML inverters. We
demonstrate that QCA-based circuits benefit from inversion-
free circuits with constrained fan-out. The Area-Delay-Energy
Product (ADEP) is on average 3.1× lower compared to the not
optimized case. Further, our algorithms allow the realization
of circuits based only on STMG. The inversion-free STMG
networks produce on average 8.1× smaller ADEP compared
to STMG/CMOS hybrids and 2.9× smaller ADEP compared
to STMG/NML hybrids.

II. BACKGROUND ON TECHNOLOGIES

In this section, background on QCA and STMG is introduced.
Both nanotechnologies have fan-out limitations and they benefit
from inversion-free networks.

A. Quantum-Dot Cellular Automata

QCA technology was first proposed in 1993 [5]. This
technology is based on the interaction of QCA cells and it can
be useful to design circuits with high switching speed, high
device density, and low power consumption. Each cell consists
of four quantum dots and two free electrons. The electrons
are able to tunnel between the dots, which are coupled by
tunnel barriers. The electrons are forced by Coulomb repulsion
in opposite corners of the cell producing two energetically
equivalent polarizations, i.e., P = 1 and P = −1. The two
polarizations are used to represent logic 1 and 0 respectively.
However for these polarization states to be energetically stable,
the operating temperature is limited to ∼1 K [9].
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Fig. 1. (a) QCA layout for majority, (b) inverter

TABLE I
TECHNOLOGY PARAMETERS FOR QCA INVERTER AND MAJORITY GATES.

Area (µm2) Delay (ns) Energy (fJ)

INV 4.0× 10−3 1.4× 10−2 9.8·10−6

MAJ 1.2× 10−3 4× 10−3 2.9·10−6

It has been demonstrated that the fundamental logic element
of QCA is the three-inputs majority gate [13], and QCA based
circuits can be build using only majority and inverters [14].
Figs. 1a and 1b show the layout of a QCA majority gate
and inverter, respectively. Five QCA cells are needed to build
one majority gate. The polarization of the central logic cell,
called device cell, is the majority of the three inputs, while the
output cell follows the polarization of the device cell. Thirteen
quantum cells are used for the inverter (Fig. 1b). At the first
branch point, the input wire goes one cell farther the beginning
of the offset wires. In this case, aligning effects prevail and
the two wires have the same polarization as the input. At the
second join, antialigning effects control the polarization of the
next cell, causing an inversion in the signal.

Table I introduces the primitive area, delay, and energy
constants used for the QCA technology, extracted from [13],
[15].

As shown in Fig. 1 and in Table I, the QCA inverter
implementation is significantly less efficient compared to the
majority gate. For this reason, propagating inverters to the
circuit inputs will be beneficial for QCA implementations.

B. Spin Torque Majority Gate

STMG is a three-input majority gate driven by Spin Transfer
Torque (STT) [16], [17] and has been proposed by Nikonov
et al. [6]. It consists of a cross-shaped free layer shared
between four Magnetic Tunnel Junctions (MTJ) (see Fig. 2).
The bit information (0 or 1) in the device is represented
by the magnetization orientation (up or down) in the free
layer. Three MTJs write the input states via STT in a current
perpendicular to plane configuration. The forth MTJ reads
the output state via tunnel magnetoresistance. The magnetic
domains are mainly driven by domain wall automotion, the

TABLE II
TECHNOLOGY PARAMETERS FOR STMG HYBRID FLAVORS INVERTER AND

MAJORITY GATES

Area (µm2) Delay (ns) Energy (fJ)

MTJ write/read 0 4 70
MAJ 3.6× 10−3 1.5 0

INV-CMOS 6.0× 10−2 2.6× 10−2 4.0× 10−1

INV-NML 2.3× 10−2 10 0

transport of a magnetic domain wall under the influence of
demagnetization and magnetic anisotropy [18]. The operating
range has been extensively studied by micromagnetic simula-
tions and numerical modeling in [19] and [20], respectively. The

Fig. 2. Schematic of STMG [6]. The three MTJ inputs are visible in yellow,
while the output is the orange block.

STMG concept carries the potential of smaller area, low power,
nonvolatility, reconfigurability, and radiation hardness [6]. A
first inverter concept was presented in [10] where it was
assumed that the functionality of an inverter is achieved through
a ferromagnetic wire that connects two STMG devices and is
fabricated as a slanted layer in the magnetic material stack.
However, this concept cannot be realized with state-of-the-art
magnetic material integration technology. We can envision two
possible flavors of STMG devices that can implement netlists:

1) STMG/CMOS hybrid, where each inversion is imple-
mented by CMOS inverters. This assumes that for each
inversion an MTJ is read and the next one is written
with the inverted result.

2) STMG/NML hybrid, where each inversion is imple-
mented by an out-of-plane nanomagnet, as in the NML
concept. This assumes that there is no conversion to the
electric domain and the inversion is implemented in the
magnetic domain.

We benchmark and compare the results of our algorithms
to these two aforementioned STMG hybrid flavors. For this
comparison we use the primitive area, delay, and energy
constants shown in Table II. The MTJ parameters are extracted
from [21], the CMOS inverter parameters are extracted from a
CMOS 7 nm node [22], and the NML inverter is assumed to
be a 150 nm×150 nm nanomagnet based on [23].
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Fig. 3. Example (a) of AOIG (left) and the derived MIG (right) for f =
x⊕ y ⊕ z. From now on, complements will be denoted with bubbles on the
edges. (b) is the optimized MIG for f .

III. MAJORITY-BASED LOGIC MANIPULATION

In this section, we describe the data structure used
for Boolean functions representation and optimization, i.e.,
MIGs [12], [24]. A MIG is defined as a homogeneous logic
network consisting of 3-input majority nodes and regular and
complemented edges. MIGs take advantage of the expressive-
ness of the majority operator to efficiently represent Boolean
functions. Indeed, traditional AND and OR can be obtained
from the majority operator. In the case of 3-input majorities,
AND is realized by fixing one input to 0 while OR is realized
by fixing one input to 1. As a consequence, AND/OR/INV
Graphs (AOIGs) are a special case of MIGs and MIGs can
be derived from AOIGs. Fig. 3(a) shows an example of AOIG
(left) and the MIG (right) obtained from it. MAJ operators
with a constant input take the place of AND/OR operators.

Even more advantageous MIG representations can be ob-
tained using nodes with non-constant inputs [12]. A dedicated
Boolean algebra was first presented in [24] to manipulate MIG
representations. The corresponding axiomatic system consists
of five primitive transformation rules and it has been proven
that, by using a sequence of transformations from this axiomatic
system, it is possible to traverse the entire MIG representation
space [12]. In other words, given any two equivalent MIG
representations, it is possible to transform one into the other by
just using these rules. One MIG can then be transformed into
its optimized representation by using these transformations.
An optimized MIG for function f is presented in Fig. 3b.
Both depth (number of levels) and size (number of nodes) are
optimized. All details about MIG and its axiomatic system can
be found in [12].

IV. MIG REWRITING ALGORITHMS

This section presents two MIG-rewriting algorithms. The first
algorithm, called Inversion Propagation Algorithm, propagates
all inverters to the inputs in order to obtain an inversion-
free MIG. The second algorithm, called Fan-Out Restriction
Algorithm, limits the maximum fan-out of each node. Both
methods aim at not changing the depth of the resulting graph.

A. Inversion Propagation Algorithm

The Inversion Propagation Algorithm rewrites the MIG to
obtain a network where all inversions are placed on primary
inputs. This is achieved by propagating inverters using the
transformation rule 〈xyz〉 = 〈x̄ȳz̄〉, which is one of the axioms
presented in [12] and called Ω.I . The idea is to recursively

Input: MIG node v
Output: MIG node v with inversions on inputs

1 p← polarity(v);
2 if p = 1 ∧ v is not PI then
3 apply Ω.I on v;
4 p← 0;
5 end
6 if v is PI then
7 return v;
8 end
9 if v′ ← is cached(v, p) then

10 return v′;
11 end
12 foreach child c of v do
13 inv free(c);
14 end
15 cache(v, p);
16 return v;

Algorithm 1: Inversion Propagation Algorithm ‘inv free’
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Fig. 4. Example for Alg. 1. (a) is the original MIG for function f = x⊕y⊕z;
(b) represents the same graph where Ω.I has been applied on node 3; (c) is
the inversions free graph.

apply Ω.I to move complemented edges from the outputs to
the inputs. Previous works have been presented on inversion
minimization [11]. Here, the aim is to obtain a network with
all inversions on inputs, then the total number of inversions
may not be decreased.

The algorithm is based on a dynamic programming approach,
and it consists of a recursive function called inv free. The
inversion propagation algorithm is shown in Alg. 1. The
algorithm starts by applying the function to each output of
the network. If the node v is not complemented, the function
inv free is applied recursively to the children (lines 12–13
in Alg. 1). If v is complemented, Ω.I is applied to the node
before applying inv free to the children (line 2 in Alg. 1). In
this second case, the polarities of the children are changed and
the algorithm is applied taking into account the new polarities.
The function is applied for each output. To avoid solving the
same subgraphs more than once, all the computed solutions
are cached.

An example is given in Fig. 4. Fig. 4(a) represents the
original MIG for function f = x ⊕ y ⊕ z. Since output f is
complemented, the rule Ω.I is applied on node 3. Fig. 4(b)
shows the MIG with changed polarities for node 3. At this
point, function inv free can be applied on each child of node 3.
Since node 1 is complemented, Ω.I is applied. Since children
of node 1 are all primary inputs, this subgraph is cached. The
same procedure applies for the second and third child of node
3. The resulting MIG is shown in Fig. 4(c). All the inversions
are on primary inputs.
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Fig. 5. Example for Alg. 1 leading to a size increase. (a) is the original MIG;
(b) represents the same graph after Alg. 1 has been applied.

The proposed algorithm does not change the depth of the
graph, but it may result in an increase in the MIG’s size. This
happens if a node has fan-out with two different polarities.
The example in Fig. 5 shows the MIG of a full adder and it
explains the size increase. In Fig. 5(a), node 2 has fan-out of 2.
The edge going to node 3 is not complemented, while the one
going to output co has a complementation. To be able to move
the negation on output co to the inputs, and without changing
the polarity of the other outcoming edge, two copies of the
same node are necessary. The final result is shown in Fig. 5(b).
The depth remains constant, but the size is increased.

B. Fan-Out Restriction Algorithm

The Fan-out Restriction Algorithm rewrites the MIG such
that every node has a fan-out less or equal to n. The main idea
is to create copies of nodes with large fan-out.

The algorithm is similar to the Inversion Propagation
Algorithm. It is based on a dynamic programming approach and
it exploits a recursive function called fo restr. The recursive
function is shown in Alg. 2. The algorithm starts by applying
the function to each output. A counter called fo counter cached
the number of times node v is used (line 1 of Alg. 2). For
each node v, four different cases are possible.

1) v is a primary input. In this case, the function returns
the primary input since the fan-out limit is not applied
on inputs of the network.

2) The node is already cached and it has been used less than
n times. Since the node has fan-out < n, the function
returns the cached node. The fo counter is updated (line
6 in Alg. 2).

3) The node is already cached but it has been used n times
(fan-out = n). The same node cannot be returned since the
maximum fan-out is reached. For this case, a new node
needs to be created. The function fo restr is applied to
the children. The cached value is updated and the counter
is reset (lines 12–16).

4) The node is not cached. The recursive function fo restr
is applied to the children and the node is created and
cached (lines 12–16).

It follows from this algorithm that if there is at least 1 node
with fan-out > n, the size of the graph is increased; the depth
however remains unchanged as we aim at keeping the same
circuit speed. Fig. 6 shows an example with n = 1. The
algorithm starts from node 4 and recursively reaches the node
1. When child 1 is accessed from node 2, the node itself is
returned. Node 3 has node 1 as child as well, but it has already

Input: MIG node v
Output: MIG node v with fan-out ≤ n

1 f ← fo counter(v);
2 if v is PI then
3 return v;
4 end
5 if v′ ← is cached(v, p) ∧ f < n then
6 fo counter(v)++;
7 return v′;
8 end
9 if v′ ← is cached(v, p) ∧ f = n then

10 remove (v′);
11 end
12 foreach child c of v do
13 fo restr(c);
14 end
15 fo counter(v)← 1;
16 cache(v);
17 return v;

Algorithm 2: Fan-out Restriction Algorithm ‘fo restr’
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Fig. 6. Example for the Fan-Out Restriction Algorithm. (a) is the original
MIG; (b) represents the same graph after fan-out restriction.

been used n = 1 times. In this case, a copy of the node 1 is
created. Fig. 6 shows the final result. All nodes have fan-out
≤ 1; the size is increased, while the depth remains constant.

It is important to highlight that this algorithm can lead to
an exponential size increase. New copies of nodes lead to a
fan-out increase for their children. This can result in new copies
also for nodes that were not reaching the fan-out limit in the
original MIG. A possible solution could be to use a method
similar to the one proposed in [25]. The method consists of
introducing one more level with buffer nodes reproducing the
original node. In this way the maximum fan-out of the node is
9 without introducing any new copy, hence keeping children
fan-out unchanged. This alternative method could limit the size
increase, but it results in a depth increase for the MIG. We
applied this alternative method on the non-critical paths of some
benchmarks. This mixed method leads to small improvements
as compared to Alg 2. Furthermore, for some circuits, the area
increase is larger. For these reasons, we present here only the
results obtained with Alg. 2.

V. RESULTS

This section describes results obtained with the algorithms
proposed in Section IV. We also test our methods for two
different technologies: QCA and STMG.



A. Inversion-Free and Fan-Out Restriction

In order to obtain inversions free circuits with restricted
fan-out, we developed two C++ programs to implement Alg. 1
and Alg. 2. We evaluate our methods on circuits from EPFL
benchmarks.1 First we applied Alg. 1, then, on the same
network, Alg. 2 using n = 3. Results are listed in Table III. The
depth of the circuit remains constant, while the final size is 1.9×
larger on average. The ‘Depth + Inv’ is the path with maximum
number of majority nodes and inversions. The ‘#INV’ is the
number of MIG nodes with at least one complemented fan-out.
The ‘#INV’ in Table III refers to inversions on primary input,
since all circuits are inversion-free. The number of inversions
is lower as compared to the original graph; only two circuits
(dec and router) have the same number of inversions after the
algorithms are applied.

B. QCA and STMG Results

In this section, we show how QCA-based circuits benefit
from inversion-free networks with limited fan-out. We also
demonstrate the realization of STMG-based circuits which do
not include hybrid inversions.

We evaluate area, delay, and energy of QCA-based circuits
using the specification from Table I. Table IV shows the
experimental results. The optimized MIG is the one without
inversions and with fan-out limited to 3. Even if the optimized
MIG has larger size (see Table III), this leads to a smaller
QCA area, since QCA inverters are much larger compared to a
majority gate. The inversion-free and fan-out restricted netlists
yield on average 3.1× smaller ADEP. Only one benchmark
(dec) has a slightly worse ADEP; all others circuits benefit
from inversion-free and fan-out restriction.

We evaluate area, delay, and energy for the STMG-based
circuits. The inversion-free MIGs obtained with our algorithms
allow realization of STMG-based circuits. We compare our
results both with STMG/CMOS hybrid and STMG/NML hybrid
circuits. In both cases CMOS and NML are used in order to
obtain inversions. Table V shows the STMG experimental
results. The STMG-based circuits produce, on average, both
lower area and delay. On average, a 8.1× smaller ADEP
compared to STMG/CMOS hybrids and 2.9× smaller ADEP
compared to STMG/NML hybrids is obtained using only
STMG. In this case, all circuits benefit from inversion-free and
fan-out restriction.

VI. CONCLUSION

We described majority-based synthesis methods that consider
two main technological constraints for emerging technologies.
We implemented an algorithm that can synthesize inversion-
free networks in which all inversion are on primary inputs.
Further, we developed a method to restrict the number of fan-
outs for each majority node of the circuit. We applied the two
algorithms on the same networks.

At the logic level, a size increase is obtained, but a decrease
in the number of inversions is achieved. Experiments showed
that both QCA and STMG circuits benefit from this technology

1http://lsi.epfl.ch/benchmarks

aware synthesis. The ADEP is decreased of 3.1× in the QCA
case. 8.1× smaller ADEP compared to STMG/CMOS hybrids
and 2.9× smaller ADEP compared to STMG/NML hybrids
are obtained using STMG-based circuits.
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TABLE III
INVERSION PROPAGATION AND FAN-OUT RESTRICTION ALGORITHMS ON EPFL BENCHMARKS

Benchmark Original MIG Optimized MIG
Name IN OUT Depth Depth + Inv Size # INV Depth + Inv Size × Larger # INV × Smaller

adder 256 129 12 21 2978 1449 13 6963 2.3 256 5.7
arbiter 256 129 14 27 2179 1042 15 2892 1.3 128 8.1

bar 135 128 14 28 3054 2999 15 3054 1.0 7 428.4
cavlc 10 11 11 21 745 370 12 955 1.3 10 37.0

ctrl 7 26 5 10 127 72 6 138 1.1 7 10.3
dec 8 256 4 5 420 8 5 528 1.3 8 1.0
i2c 147 142 9 18 1108 762 10 1354 1.2 93 8.2

int2float 11 7 9 15 246 121 10 279 1.1 11 11.0
log2 32 32 181 343 37582 22481 182 109839 2.9 32 702.5
max 512 130 27 53 7202 3147 28 21250 3.0 512 6.1

mem 1204 1231 18 36 10362 8519 19 14659 1.4 801 10.6
mult 128 128 111 205 41885 25594 112 113215 2.7 128 200.0

priority 128 8 10 18 498 295 11 621 1.2 122 2.4
router 60 30 9 13 113 62 10 185 1.6 60 1.0

sin 24 25 91 165 7890 3823 92 25557 3.2 24 159.3
sqrt 128 64 690 1249 52344 28734 691 174018 3.3 126 228.0

square 64 128 36 70 19200 17158 37 39234 2.0 64 268.1
voter 1001 1 60 114 14078 12064 61 31980 2.3 1001 12.1

Average 1.9 116.7

TABLE IV
QCA EXPERIMENTS

Original Optimized MIG
Name Area (µm2) Delay (ns) Energy (fJ) ADEP (a.u.) Area (µm2) Delay (ns) Energy (fJ) ADEP (a.u.)

adder 9.4 1.7× 10−1 2.3× 10−2 3.7× 10−2 9.4 6.2× 10−2 2.3× 10−2 1.3× 10−2

arbiter 6.8 2.4× 10−1 1.7× 10−2 2.7× 10−2 4.0 7× 10−2 9.8× 10−3 2.7× 10−3

bar 1.6× 101 2.5× 10−1 3.8× 10−2 1.5× 10−1 3.7 7× 10−2 9.0× 10−3 2.3× 10−3

cavlc 2.4 1.8× 10−1 5.8× 10−3 2.5× 10−3 1.2 5.8× 10−2 2.9× 10−3 2× 10−4

ctrl 5× 10−1 9× 10−2 1.1× 10−3 4.3× 10−5 1.9× 10−1 3.4× 10−2 4.7× 10−4 3.1× 10−6

dec 5× 10−1 3× 10−2 1.3× 10−3 2.1× 10−5 6.7× 10−1 3× 10−2 1.6× 10−3 3.3× 10−5

i2c 4.4 1.6× 10−1 1.1× 10−2 7.6× 10−3 2.0 5× 10−2 4.9× 10−3 4.9× 10−4

int2float 8× 10−1 1.2× 10−1 1.9× 10−3 1.8× 10−4 3.8× 10−1 5× 10−2 9.3× 10−4 1.8× 10−5

log2 1.4× 102 3.0 3.3× 10−1 1.3× 102 1.3× 102 7.4× 10−1 3.2× 10−1 3.1× 101

max 2.1× 101 4.7× 10−1 5.2× 10−2 5.2× 10−1 2.8× 101 1.2× 10−1 6.7× 10−2 2.3× 10−1

mem 4.7× 101 3.2× 10−1 1.1× 10−1 1.7 2.1× 101 8.6× 10−2 5.1× 10−2 9.1× 10−2

mult 1.5× 102 1.8 3.7× 10−1 1.0× 102 1.4× 102 4.6× 10−1 3.3× 10−1 2.1× 101

priority 1.8 1.5× 10−1 4.4× 10−3 1.2× 10−3 1.2 5.4× 10−2 3.0× 10−3 2.0× 10−4

router 4× 10−1 9.2× 10−2 9.4× 10−4 3.3× 10−5 4.6× 10−1 5× 10−2 1.1× 10−3 2.6× 10−5

sin 2.5× 101 1.4 6.1× 10−2 2.1 3.1× 101 3.8× 10−1 7.5× 10−2 8.8× 10−1

sqrt 1.8× 102 1.1× 101 4.4× 10−1 8.2× 102 2.1× 102 2.8 5.1× 10−1 3.0× 102

square 9.2× 101 6.2× 10−1 2.2× 10−1 1.3× 101 4.7× 101 1.6× 10−1 1.2× 10−1 8.7× 10−1

voter 6.5× 101 10.0× 10−1 1.6× 10−1 1.0× 101 4.2× 101 2.5× 10−1 1.0× 10−1 1.1

Averages 4.2× 101 1.1 1.0× 10−1 6.0× 101 3.7× 101 3.1× 10−1 9.1× 10−2 2.0× 101

TABLE V
STMG EXPERIMENTS

Original MIG — STMG/CMOS Original MIG — STMG/NML Optimized MIG
Name Area (µm2) Delay (ns) Energy (nJ) ADE (a.u.) Area (µm2) Delay (ns) Energy (nJ) ADE (a.u.) Area (µm2) Delay (ns) Energy (nJ) ADE (a.u.)

adder 8.7× 101 9.4× 101 2.5× 10−1 2.1× 103 4.3× 101 1.1× 102 1.5× 10−1 7.2× 102 2.5× 101 1.8× 101 4.8× 10−1 2.2× 102

arbiter 6.3× 101 1.3× 102 2.7× 10−1 2.2× 103 3.1× 101 1.6× 102 2.0× 10−1 9.5× 102 1.0× 101 2.1× 101 2.7× 10−1 5.8× 101

bar 1.8× 102 1.4× 102 6.0× 10−1 1.5× 104 7.8× 101 1.7× 102 3.9× 10−1 5.1× 103 1.1× 101 2.1× 101 3.9× 10−1 9.0× 101

cavlc 2.2× 101 1.0× 102 1.1× 10−1 2.4× 102 1.1× 101 1.2× 102 8.3× 10−2 1.1× 102 3.4 1.7× 101 1.2× 10−1 6.6
ctrl 4.3 5.2× 101 2.2× 10−2 4.8 2.1 6.2× 101 1.7× 10−2 2.1 5.0× 10−1 7.5 1.9× 10−2 7.1× 10−2

dec 1.5 1.8× 101 5.0× 10−2 1.4 1.7 2.0× 101 5.0× 10−2 1.7 1.9 6.0 6.5× 10−2 7.4× 10−1

i2c 4.6× 101 9.0× 101 1.9× 10−1 7.8× 102 2.1× 101 1.1× 102 1.4× 10−1 3.1× 102 5.6 1.4× 101 1.7× 10−1 1.3× 101

int2float 7.3 6.6× 101 3.9× 10−2 1.9× 101 3.6 7.8× 101 3.1× 10−2 8.6 1.0 1.4× 101 3.6× 10−2 5.0× 10−1

log2 1.3× 103 1.6× 103 4.2 8.9× 106 6.4× 102 1.9× 103 2.6 3.2× 106 4.0× 102 2.7× 102 7.9 8.5× 105

max 1.9× 102 2.5× 102 7.8× 10−1 3.7× 104 9.7× 101 3.0× 102 5.6× 10−1 1.6× 104 7.7× 101 4.1× 101 1.6 5.0× 103

mem 5.1× 102 1.8× 102 1.8 1.6× 105 2.3× 102 2.1× 102 1.2 5.8× 104 5.3× 101 2.7× 101 1.7 2.4× 103

mult 1.5× 103 9.2× 102 4.9 6.9× 106 7.3× 102 1.1× 103 3.1 2.5× 106 4.1× 102 1.7× 102 8.2 5.6× 105

priority 1.8× 101 8.3× 101 7.5× 10−2 1.1× 102 8.4 9.9× 101 5.4× 10−2 4.5× 101 7.3 1.5× 101 7.2× 10−2 7.9
router 3.7 5.0× 101 1.9× 10−2 3.5 1.8 5.8× 101 1.4× 10−2 1.5 3.6 1.4× 101 2.4× 10−2 1.2

sin 2.3× 102 7.3× 102 7.3× 10−1 1.2× 105 1.1× 102 8.8× 102 4.6× 10−1 4.6× 104 9.2× 101 1.4× 102 1.6 2.0× 104

sqrt 1.7× 103 5.5× 103 5.3 5.0× 107 8.3× 102 6.6× 103 3.2 1.8× 107 6.3× 102 1.0× 103 1.1× 101 7.0× 106

square 1.0× 103 3.3× 102 2.8 9.4× 105 4.6× 102 4.0× 102 1.5 2.8× 105 1.4× 102 5.4× 101 3.2 2.5× 104

voter 7.2× 102 5.3× 102 2.0 7.5× 105 3.2× 102 6.3× 102 1.1 2.3× 105 1.2× 102 9.0× 101 2.5 2.6× 104

Averages 4.3× 102 6.0× 102 1.3 3.8× 106 2.0× 102 7.2× 102 8.3× 10−1 1.3× 106 1.1× 102 1.1× 102 2.2 4.7× 105
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