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ABSTRACT
Today’s rapid advances in the physical implementation of quan-

tum computers demand for scalable synthesis methods in order to

map practical logic designs to quantum architectures. We present

a synthesis algorithm for quantum computing based on k-LUT
networks, which can be derived from Verilog netlists using state-of-

the-art and off-the-shelf mapping algorithms. We demonstrate the

effectiveness of our method in automatically synthesizing several

floating point networks up to double precision. As many quantum

algorithms target scientific simulation applications, they can make

rich use of floating point arithmetic components. But due to the

lack of quantum circuit descriptions for those components, it is not

possible to find a realistic cost estimation for the algorithms. Our

synthesized benchmarks provide cost estimates that allow quantum

algorithm designers to provide the first complete cost estimates for

a host of quantum algorithms. This is an essential step towards the

goal of understanding which quantum algorithms will be practical

in the first generations of quantum computers.

1 INTRODUCTION
Recent progress in fabrication makes the practical application of

quantum computers a tangible prospect [11, 19, 26]. However, as

quantum computers scale up to tackle problems in computational

chemistry, machine learning, and cryptanalysis, design automation

will be necessary to fully leverage the power of this emerging

computational model.

A major problem facing quantum computing is the inability of

existing hand crafted approaches to generate networks for scien-

tific operations that require a reasonable number of quantum bits

and gates. As an example, the quantum linear systems algorithm

requires as few as 100 (logical) quantum bits to encode a 2
100 × 2100

matrix inversion problem [8, 15]. However, in prior approaches the

reciprocal step in the calculation can require in excess of 500 quan-

tum bits which means that arithmetic may dominate the memory

requirements (i.e., number of qubits) of that algorithm [32]. Simi-

larly, recent quantum chemistry simulation algorithms can provide

improved scaling over the best known methods but at the price of

requiring the molecular integrals that define the problem to be com-

puted [4]. While floating point addition was studied before [16, 24],

at present networks do not exist for more complex floating point

operations such as exponential, reciprocal square root, multiplica-

tion, and squaring. Without the ability to automatically generate
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circuits for these operations it will be a nearly impossible task to

estimate the full costs of such algorithms let alone verify that the

underlying circuitry is correct.

It has recently been shown [28] that hierarchical reversible logic

synthesis methods based on logic network representations are able

to synthesize large arithmetic designs. The underlying idea is to

map subnetworks into reversible networks. If the subnetworks are

small enough, one can use less scalable functional reversible syn-

thesis methods that are based on Boolean satisfiability [14], truth

tables [21], or decision diagrams [31]. However, logic networks

differ quite significantly from reversible logic networks when con-

sidering their structure. This is one of the main disadvantages of

currently known hierarchical synthesis methods. As one example,

when using reversible circuits in quantum computers, all outputs

must either compute a primary input value, a primary output value,

or a constant—they cannot expose an intermediate result to an

output line, which is referred to as garbage output. State-of-the-art

algorithms such as the approach presented in [28] do not explicitly

consider techniques to “uncompute values” such that there are no

garbage outputs. In order to use the circuit in a quantum computer,

one needs to apply a technique called “Bennett trick” [5], which re-

quires to double the number of gates and add one additional circuit

line for each primary output.

In this paper we present a hierarchical synthesis approach based

on k-feasible Boolean logic networks. These are logic networks in

which every gate has at most k inputs. These are often also referred

to as k-LUT (lookup table) networks. We show that there is a one-

to-one connection between a k-input LUT in a logic network and a

reversible single-target gate with k control lines in a reversible net-

work. A single-target gate has a control function and a single target

line, that is inverted if and only if the control function evaluates to

1. Each single-target gate can be synthesized into a quantum circuit

using techniques such as exclusive-sum-of-product (ESOP) decom-

position [13]. As a first step, our synthesis approach can quickly

derive a skeleton for the reversible network that is only based on

single-target gates. In this skeleton, the number of required addi-

tional lines is already final, and also it is guaranteed that it has

no garbage outputs. In the second step, each single-target gate is

synthesized using a separate algorithm. It is possible to parallelize

the second step.

We used our algorithm to find reversible logic networks for

several floating point arithmetic networks up to double precision.

From these networks we can derive cost estimates for their use in

quantum algorithms. This has been a missing information in many

proposed algorithms, and arithmetic computation has often not

been explicitly taken into account. Our cost estimates show that this

is misleading as for some algorithms the arithmetic computation

accounts for the dominant cost.
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Figure 1: A 4-feasible network with 11 inputs, 3 outputs, and
13 gates

2 PRELIMINARIES
2.1 Some Notation
A digraph G = (V ,A) is called simple, if A ⊆ V ×V , i.e., there can
be at most one arc between two vertices for each direction. We

refer to d− (v ) = #{w | (w,v ) ∈ A} and d+ (v ) = #{w | (v,w ) ∈ A}
as in-degree and out-degree of v . We use [n] as the short hand for

{1, . . . ,n}.

2.2 Boolean Logic Networks
A Boolean logic network is a simple digraph whose vertices are

primary inputs, primary outputs, and gates and whose arcs connect

gates to inputs, outputs, and other gates. Formally, a Boolean logic

network N = (V ,A, F ) consists of a simple digraph (V ,A) and a

function mapping F . It has vertices V = X ∪ Y ∪ G for primary

inputsX , primary outputsY , and gatesG . We have d− (x ) = 0 for all

x ∈ X and d+ (y) = 0 for ally ∈ Y . ArcsA ⊆ (X ∪G×G∪Y ) connect
primary inputs and gates to other gates and primary outputs. Each

gate д ∈ G realizes a Boolean function F (д) : Bd− (д) → B. Finally,
we call a network k-feasible if d− (д) ≤ k for all д ∈ G. Sometimes

k-feasible networks are referred to as k-LUT networks (LUT means

lookup-table) and LUT mapping (see, e.g., [7, 9, 22, 27]) refers to

a family of algorithms that obtain k-feasible networks, e.g., from
homogeneous logic representations such as And-inverter graphs

(AIGs, [18]) or Majority-inverter graphs (MIGs, [2]).

Example 2.1. Fig. 1 shows a 4-feasible network of the benchmark

cm85a obtained using ABC [6]. It has 11 inputs, 3 outputs, and 13

gates. The gate functions are not shown but it can easily be checked

that each gate has at most 4 inputs.

2.3 Reversible Logic Networks
A reversible logic network realizes a reversible function, which

makes it very different from conventional logic networks. Reversible

networks are a cascade of reversible gates and the most general gate

we consider in this paper is the single-target gate. A single-target

gate Tc ({x1, . . . ,xk },xk+1) has control lines x1, . . . ,xk , a target line
xk+1, and a control function c : Bk → B. It realizes the reversible

function f : Bk+1 → Bk+1
with f : xi 7→ xi for i ≤ k and

f : xk+1 7→ xk+1 ⊕ c (x1, . . . ,xk ). All reversible functions can

be realized by cascades of single-target gates [10]. We use the ‘◦’

operator for concatenation of gates.

Example 2.2. Fig. 2(a) shows a reversible circuit that realizes a
full adder using two single-target gates, one for each output. Two

additional lines, called ancilla and initialized with 0, are added to
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Figure 2: Reversible circuit for a full adder using (a) 2 single-
target gates, (b) 3 Toffoli gates and 3 CNOT gates, and (c) 1
Toffoli gate and 6 CNOT gates.

the network to store the result of the outputs. All inputs are kept

as output.

2.4 Mapping to Quantum Circuits
The most commonly used approach to implement quantum circuits

is to construct a classical reversible circuit with multiple-controlled

Toffoli gates and map these into a sequence of Clifford gates and T
gates. A multiple-controlled Toffoli gate is a special single-target

gate in which the control function is 1 (tautology) or can be ex-

pressed in terms of a single product term. One can always decom-

pose a single-target gate Tc ({x1, . . . ,xk },xk+1) into a cascade of

Toffoli gates

Tc1 (X1,xk+1) ◦ Tc2 (X2,xk+1) ◦ · · · ◦ Tcl (Xl ,xk+1), (1)

where c = c1 ⊕ c2 ⊕ · · · ⊕ cl , each ci is a product term or 1, and

Xi ⊆ {x1, . . . ,xk } is the support of ci . This decomposition of c
is also referred to as ESOP decomposition. If c = xi , we refer to
Tc ({xi },xk+1) as CNOT gate.

Example 2.3. Fig. 2(b) shows the full adder circuit from the pre-

vious example in terms of Toffoli gates. Each single-target gate is

expressed in terms of 3 Toffoli gates. Positive and negative con-

trol lines of the Toffoli gates are drawn as solid and white dots,

respectively. Fig. 2(c) realizes the same output function, albeit with

1 Toffoli gate.

Quantum circuits are described in terms of a small library of gates

that interact with one or two qubits. One of the most frequently

considered libraries is called the so-called Clifford+T gate library

that consists of the reversible CNOT gate, the Hadamard gate, and

the T gate. The T -gate is sufficiently expensive in most approaches

to fault tolerant quantum computing [3] that it is customary to

neglect all other gates when costing a quantum algorithm.

Several works from the literature describe how to map reversible

gates into Clifford+T gates (see, e.g., [1, 3, 20]). Note that circuits

exist that only require 4 T gates to apply Toffoli up to a phase

rotation on the target [17]. While the latter circuits can often be

used in place of a standard Toffoli gate, they cannot always be used

in this fashion. As such, we focus on the 7 T -gate networks in our

synthesis algorithms. Consequently, our costs could be pessimistic

by a factor of as much as 7/4. Improvements to the decomposition

of multiple-controlled Toffoli gates into Clifford+T circuits have an

immediate positive effect on our proposed synthesis method.
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Figure 3: Simple LUT network to illustrate order heuristics
(dashed lines in the single-target gates mean that the line is
not input to the gate)

3 GENERAL IDEA AND MOTIVATION
This section illustrates the general idea on how to map LUT net-

works into reversible circuits. For this purpose, take a look at the

LUT network in Fig. 3(a). The network consists of 5 inputsx1, . . . ,x5
and 5 LUTs with names 1 to 5. It has two outputs, y1 and y2, which
functions are computed by LUT 3 and LUT 5, respectively.

A straightforward way of translating the LUT into a reversible

circuit is by using one single-target gate for each LUT in topological

order. The target of each single-target gate is a 0-initialized new

ancilla line. The reversible circuit in Fig. 3(b) up to the fifth gate

results when applying such a procedure. With these five gates, the

outputs y1 and y2 are realized at line 8 and 10 of the reversible

circuit. But after these first five gates, the reversible circuit has

garbage outputs on lines 6, 7, and 9 that compute the functions of

the inner LUTs of the network. The circuit must be free of garbage

outputs in order to be implemented on a quantum computer. This

is because the result of the calculation is entangled with the in-

termediate results and so they cannot be discarded and recycled

without damaging the results they are entangled with [25]. We can

uncompute the intermediate results by re-applying the single-target

gates for the LUTs in reverse topological order. This disentangles

the qubits, reverting them all to constant 0s. In Fig. 3(b) the last 3

gates uncompute intermediate results at lines 6, 7, and 9. Based on

this observation we derive the following lemma.

Lemma 3.1. When realizing a LUT network with u gates by a
reversible circuit that uses single-target gates for each LUT, we need
at most u ancilla lines.

But we can do better. Once we have computed a primary output,

we can uncompute LUTs that are not used any longer by other

outputs. The uncomputed lines restore a 0 that can be used instead

of creating a new ancilla. In the example of Fig. 3, we can first

compute output y2 and then uncompute LUTs 4 and 2, as they are

not in the logic cone of output y1. The freed ancilla can be used for
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Figure 4: The plot shows the upper and lower bound on
the number of additional lines when synthesizing a 16-bit
floating point adder from a LUT network with LUT size
k = 2, . . . , 32

the single-target gate realizing LUT 3. This observation leads to a

lemma providing a lower bound.

Lemma 3.2. Given a LUT network with m outputs, let l be the
maximum cone size over all outputs. When realizing the LUT network
by a reversible circuit that uses single-target gates for each LUT, we
need at least l ancilla lines.

That is, we start by synthesizing a circuit for the output with the

maximum cone. Let’s assume that this cone contains l LUTs. They
can be synthesized using l single-target gates. From these l gates,
l − 1 gates can be uncomputed (all except the LUT computing the

output), and therefore restores l − 1 lines which hold a constant 0

value. We can easily see that the exact number of required lines

may be a bit larger, since all output values need to be kept. Further,

we may want to make use of logic sharing and use at most two

single-target gates for each LUT in the network.

The role of the LUT size. As can be seen from the previous dis-

cussion, the number of additional lines roughly corresponds to the

number of LUTs. Hence, we are interested in logic synthesis algo-

rithms that minimize the number of LUTs. Several algorithms can

be found in the literature [7, 9, 22, 27]. In classical logic synthesis

the number of LUT-inputs k needs to be selected according to some

target architecture. For example in FPGA mapping, its value is typ-

ically 6 or 7. But for our algorithm, we can use k as a parameter

that trades off the number of qubits to the number of T gates: If

k is small, one needs many LUTs to realize the function, but the

small number of inputs also limits the number of control lines in

the Toffoli gates obtained from ESOP-based synthesis. And when

k is large, one needs fewer LUTs but the resulting Toffoli gates

are larger and therefore require more T gates. Further, since for

larger k the LUT functions are getting more complex, the runtime

potentially increases as ESOP decomposition is becoming more

difficult.

To illustrate the influence of the LUT size we performed the

following experiment, illustrated in Fig. 4. We applied area-oriented

LUTmapping usingABC’s [6] command ‘if -Kk -a’ fork = 2, . . . , 32
to a 16-bit floating point adder. The blue line (×) shows the upper
bound according to Lemma 3.1 and the red line (+) shows the lower
bound according to Lemma 3.2. First, it can be noted that the bounds

are very close to each other. The reason can be that the technology

mapping algorithm is efficient in finding shared logic. Second, it
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can be seen that for small values of k , up to k = 6, the number of

additional lines can be reduced significantly. Afterwards, one gains

smaller benefit from increasing the cut size. However, for k = 31

and k = 32, the number of lines can again be significantly reduced.

In fact, for k = 32, each output can be represented by a single LUT

since the adder has 32 inputs.

4 IMPLEMENTATION
The outer structure of the synthesis algorithm is simple. It takes as

input a Boolean logic network N = (V ,A, F ), and outputs a number

of lines l of the reversible circuit, and a sequence S of operations.

The algorithms manages a mapm : G → {0, . . . , l } that keeps track
of which LUT results are computed by which lines. The operations

are

• PI(x , i ) with an input x ∈ X and a line i ∈ [l]. This assigns
the input x to line i in the circuit.

• PO(y, i ) with an outputy ∈ Y and a line i ∈ [l]. This assigns
the output y to line i in the circuit.

• COMP(д, i ) with a gate д ∈ G and a line i ∈ [l]. This applies
a single-target gate TF (д) ({m(j ) | j ∈ fanin(д)}, i ) and sets

m(д) ← i .
• UCOMP(д, i ) with a gate д ∈ G and a line i ∈ [l]. This

behaves as COMP(д, i ) but setsm(д) ← 0.

Example 4.1. The synthesis sequence to produce the circuit in
Fig. 3(b) is

PI(x1, 1), . . . , PI(x5, 5), COMP(1, 6), COMP(2, 7), COMP(3, 8),

COMP(4, 9), COMP(5, 10), UCOMP(4, 9), UCOMP(2, 7), UCOMP(1, 6),

PO(y1, 8), PO(y2, 10)

Algorithm 1 describes in detail how the synthesis sequence S is

obtained. The algorithm keeps track of the current number of lines

l , freed lines in a stack C , and a LUT-to-line mappingm (lines 1–3).

Also we have a reference counter r (д) for each LUT д that allows

us to check when д can be uncomputed. In line 5 and 14, input and

output operations are added to S . In between, in lines 6–13, opera-

tions for computing and uncomputing gates are determined. Each

gate д is visited in topological order. First, the gate д is computed

and a 0-initialized line is requested. Either there is one in C or we

get a new line by incrementing l . After a COMP operation for д is

added to S , we try to uncompute the children recursively by calling

uncompute_children. In that function, first the reference counter is

decremented for each child д′. If that leads to a reference count of 0,
i.e., no other gate needs the computed value of д′, we uncompute д′

and add the restored line to the stack C . With a given a topological

order of LUTs, the time complexity of Algorithm 1 is linear in the

number of LUTs.

For the topological order we first compute the cone for each

primary output and order them by size in descending order. We

perform a topological sort using depth-first search for each cone

and do not include duplicates when we visit each cone.

5 EXPERIMENTAL EVALUATION
In the following we refer to our proposed algorithm as LUT-based
Hierarchical Reversible Synthesis (LHRS). We have implemented the

algorithm as command ‘lhrs’ on top of the reversible logic syn-

thesis framework RevKit [30].
1
All experiments have been carried

1
The source code can be found at github.com/msoeken/cirkit

Input :Logic network N = (V = X ∪ Y ∪G, A, F )
Output :Synthesis sequence S , number of lines l

1 set l ← 1;

2 initialize empty stack C ;

3 initialize empty mapm;

4 for д ∈ G do set r (д) ← d+ (д);
5 for x ∈ X do add PI(x, i ) to S , set l ← l + 1;
6 for д ∈ G in topological order do
7 set t ← request_constant(C, l );
8 add COMP(д, t ) to S ;
9 setm (д) ← t ;

10 if d+ (д) = 1 and ∃ : y ∈ Y such that (д, y ) ∈ A then
11 uncompute_children(g);

12 end
13 end
14 for y ∈ Y do add PO(y,m (д)) to S such that (д, y ) ∈ A;
15 return S, l ;

16 function request_constant(C, l )
17 if C is not empty then
18 return C .pop();
19 else
20 set l ← l + 1;
21 return l ;
22 end

23 function uncompute_children(д, C )
24 for д′ ∈ fanin(д) ∩G do
25 set r (д′) ← r (д′) − 1;
26 if r (д′) = 0 then
27 add UCOMP(д′,m (д′)) to S ;
28 C .push(m (д′));
29 uncompute_children(д′, C );

30 end
31 end

Algorithm 1: Obtaining a synthesis sequence

out on an Intel Xeon CPU E5-2680 v3 at 2.50 GHz with 64 GB of

main memory running Linux 4.4 and gcc 5.4. More details to the

benchmarks of the paper and further benchmarks can be found at

quantumfpl.stationq.com.

As benchmarks we used Verilog netlists of several arithmetic

floating point designs in half (16-bit), single (32-bit), and double

(64-bit) precision. For synthesis all Verilog files were translated

into AIGs and optimized for size using ABC’s ‘resyn2’ script. As
baseline we compare our results to the state-of-the-art hierarchical

reversible logic synthesis algorithm presented in [28], referred to

as CBS. CBS partitions an AIG into subnetworks which are then

embedded into reversible functions and synthesized using symbolic

reversible synthesis algorithms [29]. The size of the subnetworks

can be controlled with a threshold parameter t . In our experiments

we set t to 10, which results in a similar number of additional lines

compared to LHRS with LUT size k = 6. It is important to note that

CBS does not uncompute results and produces garbage outputs.

The reported numbers are based on the circuits with garbage lines,

but one can use the “Bennett trick” [5] to uncompute all garbage

lines. This trick requires to add one ancilla for each output and

double the number of T gates. For CBS we report the number of

qubits, an upper bound on the number of T gates according to [20],

and the runtime in seconds.

github.com/msoeken/cirkit
quantumfpl.stationq.com
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Table 1: Experimental results

Benchmark CBS [28] k = 6 max k best k

qubits T gates runtime LUTs qubits T gates runtime k LUTs qubits T gates runtime k LUTs qubits T gates runtime

add-16 287 976840 20.10 211 230 17549 20.53 20 134 156 158389 14.26 14 164 164 111451 14.07

add-32 615 2180502 37.12 480 526 41174 48.69 20 316 368 343849 34.15 14 349 378 132336 32.69

add-64 1323 6099918 128.75 1090 1194 85813 105.93 20 756 867 755391 79.32 7 1090 1117 92709 97.79

cmp-16 71 88847 1.17 33 65 5096 2.37 20 6 38 34879 11.88 15 17 40 75145 0.94

cmp-32 122 101450 1.29 63 126 9256 5.03 20 30 74 991961 146.20 20 30 74 991961 146.20

cmp-64 241 223231 2.85 117 245 17576 8.76 20 63 153 1748784 196.74 8 94 206 33111 6.21

div-16 690 1740176 26.11 275 300 21105 26.55 19 86 112 8378278 18786.70 8 315 258 28285 20.34

div-32 3058 6399903 85.47 1206 1260 66305 107.12 17 851 905 111875120 419368.00 7 1201 1240 69324 113.79

div-64 14481 27514384 350.79 5760 5876 260147 554.79 17 4995 5111 76754630 73753.00 7 5339 5826 267727 534.13

exp-16 1664 3382385 55.02 1356 1371 120113 106.48 16 16 32 1282820 198.17 16 16 32 1282820 198.17

exp-32 5639 10700985 172.48 4605 4636 353926 346.98 18 2907 2938 5796846 11669.20 9 3859 3599 294501 274.80

invsqrt-16 1860 2041683 31.39 1103 899 62887 76.20 16 16 32 214552 9.39 16 16 32 214552 9.39

invsqrt-32 9151 9747362 163.47 4214 4242 190094 338.06 18 3481 3510 90662102 231135.00 6 5387 4242 190094 338.06

invsqrt-64 45815 45581354 799.49 20817 20874 1233350 2025.77 17 19417 19479 196026416 163269.00 7 23442 20646 813404 2140.32

ln-16 1038 5479910 117.24 872 867 90684 68.69 16 16 32 1424454 486.98 16 16 32 1424454 486.98

ln-32 3900 7194487 117.42 3393 3275 263534 250.95 20 873 888 81338102 88226.50 7 3064 3041 263740 232.67

ln-64 26758 36269684 622.92 12298 13149 353642 1188.02 17 11972 11982 14561273 17768.30 17 11972 11982 14561273 17768.30

log2-16 1013 5382593 98.18 953 937 49390 67.07 16 16 32 869010 127.45 16 16 32 869010 127.45

log2-32 4530 7558580 112.36 4001 4008 343082 296.61 18 1124 1127 44250263 154516.00 16 1201 1242 17547121 7794.27

log2-64 12131 21048101 334.23 6318 6414 238135 545.34 20 4842 5749 5985810 3417.62 9 5635 6107 295698 559.45

mult-16 832 2469732 50.01 481 499 47808 41.96 20 249 267 2231718 682.36 15 297 282 944292 79.83

mult-32 2011 7587702 151.58 1499 1536 126158 135.17 20 744 778 6839419 8676.95 19 790 801 6124492 4133.41

mult-64 6860 25813784 496.79 5439 5495 433158 535.25 20 2745 2812 16980088 19791.80 6 5304 5495 433158 535.25

recip-16 1034 3623390 60.20 673 622 58210 60.57 16 16 32 263117 7.27 16 16 32 263117 7.27

recip-32 2866 7646749 125.31 1979 1913 147568 193.97 19 818 840 6071996 6598.64 13 1115 1073 1268452 107.83

recip-64 15919 39149336 641.04 10634 10276 874172 1042.08 20 5892 5391 41490244 87964.90 11 7420 6563 1761316 682.80

sincos-16 435 895815 16.72 190 367 21404 27.83 16 16 33 578680 31.24 16 16 33 578680 31.24

sincos-32 2175 6189192 122.16 1828 1740 132172 140.13 20 698 1228 506492 494.49 9 1454 1483 143937 97.81

square-16 227 569441 9.22 116 113 10219 10.04 16 16 32 196313 6.38 16 16 32 196313 6.38

square-32 1021 2762396 44.96 567 564 38517 49.82 20 178 194 8415178 93561.60 19 179 206 6965063 19863.60

square-64 4674 10821011 154.96 2807 2788 163058 251.47 18 1540 1588 21988382 47948.60 6 2798 2788 163058 251.47

sqrt-16 271 802177 15.59 120 131 11788 9.44 16 16 32 184713 5.61 16 16 32 184713 5.61

sqrt-32 1353 3249386 57.08 704 597 39785 41.89 19 243 274 10024225 15.03 15 552 321 8818533 2707.93

sqrt-64 6793 12560225 194.37 2793 2855 146096 245.43 17 1934 1997 117177325 324895.00 17 1934 1997 117177325 324895.00

sub-16 282 918191 16.72 250 231 17309 20.21 20 146 141 759780 31.56 10 191 185 32947 15.33

sub-32 621 2378121 40.93 562 528 39365 46.07 20 317 337 563680 75.80 15 369 367 191550 32.43

sub-64 1374 6516457 146.30 1172 1191 85225 110.50 20 723 811 917518 92.30 12 837 904 181998 77.02

For LHRS, we used ABC’s command ‘if -K k -a’ to obtain

an area-optimized LUT network. Each LUT is decomposed into

multiple-controlled Toffoli gates using ESOP-based synthesis on

ESOP expressions obtained usingABC’s command ‘&exorcism’ [23].
We report statistics about the resulting quantum circuits for three

different LUT sizes. First, we report k = 6, as this is usually the

LUT size at which very large LUT count reductions stop (see also

Fig. 4). Second, we report a maximum k , called max k . We stop the

synthesis either if we have successfully found a reversible network

based on a network with LUT size k = 20 or we hit a timeout limit

of 5 days. For large k , generating an initial ESOP cover from a LUT

and optimizing the cover using exorcism becomes the bottleneck.

Consequently, the runtime typically increases when increasing k .
By generating several quantum circuits for different LUT sizes k ,
we obtain a set of Pareto-optimal solutions. From these one can pick

a favorable solution that matches constraints, e.g., imposed by a

given architecture or quantum algorithm. To illustrate this, we have

plotted the number of qubits and T gates for each k for the 16-bit

adder in Fig. 5. As an example for picking a best tradeoff, we chose

the largest k before the relative increase in T gates is quintupled.

In the example, of the adder, this “sweet spot” is k = 14, and we

refer to it as best k . We list these numbers for all benchmarks in the

last five columns in the table.

Note that for all benchmarkswith 16 inputs (exp-16, invsqrt-16, ln-
16, log-16, recip-16, sincos-16, square-16, and sqrt-16), the maximum

and best k is k = 16, because then each output is represented

by exactly one LUT and the resulting networks do not need any

additional line to store temporary results. All single-target gates

have been mapped to Toffoli gates using ESOP decomposition with

exorcism [23].
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Figure 5: The plot shows all quantum circuit statistics for
the benchmark add-16 for LUT sizes k = 3, . . . , 20. The best
LUT size can be found at 14.

It can be seen that LHRS finds quantum circuits with much

better qubits/T gates tradeoff. Further, LHRS allows for a better

selection of results by using the LUT size as a parameter. One strong

advantage is that in LHRS one can quickly obtain a skeleton for the

final circuit in terms of single-target gates that already has the final

number of qubits. If this numbermatches the design constraints, one

can start the computational more challenging task of finding good

quantum circuits for each LUT function. Here, several synthesis

passes may be possible in order to optimize the result. Also post-

synthesis optimization techniques likely help to signficantly reduce

the number of T gates.

6 CONCLUSION
We have provided a new LUT based approach to reversible circuit

synthesis that outperforms existing state-of-the-art hierarchical

methods such as CBS and unlike such approaches provide networks

that are directly applicable to quantum computing. The benchmarks

that we provide give what is at present the most complete list of

costs for elementary functions for scientific computing. Apart from

simply showing improvements, these benchmarks provide cost

estimates that allow quantum algorithm designers to provide the

first complete cost estimates for a host of quantum algorithms.

This is an essential step towards the goal of understanding which

quantum algorithms will be practical in the first generations of

quantum computers.

While our work provides a meaningful step towards making

function synthesis inexpensive for quantum computing, consider-

able work remains. Two next steps are eminent. First, significant

cost improvements can be obtained when using an ESOP decom-

position that takes the T gates of the corresponding Toffoli gates

into account. Current ESOP decomposition optimizes with respect

to the number of product terms, which corresponds to the number

of Toffoli gates without considering their different complexities.

Second, a LUT mapping algorithm that balances the size of the

output cones instead of the overall LUT count can lead to smaller

number of qubits.
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