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Abstract—In this paper, we study exact multi-level logic
benchmarks. We refer to an exact logic benchmark, or exact
benchmark in short, as the optimal implementation of a given
Boolean function, in terms of minimum number of logic levels
and/or nodes. Exact benchmarks are of paramount importance
to design automation because they allow engineers to test the
efficiency of heuristic techniques used in practice. When dealing
with two-level logic circuits, tools to generate exact benchmarks
are available, e.g., espresso-exact, and scale up to relatively
large size. However, when moving to modern multi-level logic
circuits, the problem of deriving exact benchmarks is inherently
more complex. Indeed, few solutions are known. In this paper,
we present a scalable method to generate exact multi-level
benchmarks with the optimum, or provably close to the optimum,
number of logic levels. Our technique involves concepts from
graph theory and joint support decomposition. Experimental
results show an asymptotic exponential gap between state-of-
the-art synthesis techniques and our exact results. Our findings
underline the need for strong new research in logic synthesis.

I. INTRODUCTION

The Electronic Design Automation (EDA) community heav-
ily relies on logic benchmarks to evaluate the performance of
academic and commercial design tools [1]–[5]. Benchmark-
ing of practical (heuristic) design methods in EDA involves
comparing current results with immediately previous results
or best attained results [5]. In this way, it is possible to
measure the relative efficiency of a heuristic technique. As
it is unknown whether the existing results are optimum, an
absolute measure cannot be provided. Consequently, although
the relative efficiency may be large, the results can still be far
from the optimum. A better evaluation is possible if the exact
results are also available. With the exact results, it is possible
to determine the absolute efficiency of a heuristic technique by
measuring how close it gets to the known optimum. However,
generating (meaningful) benchmarks with known exact results
is quite a challenging problem [6]. This is especially true for
logic synthesis and logic optimization [6].

When considering only two-level logic, it is possible to
generate fairly large exact circuits. Tools such as espresso-
exact [8], based on the Quine-McCluskey algorithm, are
actively used in design flows and solve the problem of two-
level logic minimization exactly.

When moving to modern multi-level logic, the problem
of exact synthesis becomes inherently more difficult [6]–[8].

This is because the space of possible solutions is much larger
as there is no limitations on the number of logic levels.
Few solutions exist to solve the problem of exact multi-level
synthesis [9]. Among the few existing solutions, none of them
attained the same performance as exact two-level synthesis,
limiting the possible applications of the corresponding tools.
For this reason, it is interesting to generate benchmarks that
are provably optimum, against which heuristic approaches can
be compared.

Exact multi-level benchmarks can be generated in two
ways: (i) by using exact synthesis algorithms on a function
specification, and (ii) by providing a construction algorithm,
with relaxed or no function specification, and prove that it
always generates an optimum circuit. The weak scalability
of exact synthesis algorithm rules out the first approach to
generate large exact benchmarks.

In this paper, we address the problem of creating exact
multi-level benchmarks using a constructive approach. Our
construction generates non-trivial, non-treelike, depth-optimal
polynomial size multi-level circuits in polynomial time. The
key concepts enabling this result come from graph theory
and joint support decomposition. Experimental results show an
asymptotic exponential gap between state-of-the-art synthesis
techniques and our exact results. Our exact results, publicly
available at [10], serve as common yardstick for future synthe-
sis work and open the next big challenges in logic synthesis. In
fact, our findings demonstrate the enduring need for efficient
and effective logic synthesis tools.

The remainder is organized as follows. Section II surveys
previous works on logic benchmarks, with an emphasis on
exact circuits. Section III describes the proposed construction
techniques for exact multi-level circuits with optimal depth.
Section IV shows synthesis experiments on our set of depth-
optimal benchmarks. Section V discusses open challenges
and future work on exact benchmarks and exact synthesis.
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Previous Benchmark Suites

1) MCNC Benchmarks: The first set of combinational
benchmark circuits was reported at the International Sympo-
sium on Circuits and Systems (ISCAS) in 1985. After four



years, sequential circuits were added to ISCAS’85 generating
the ISCAS’89 benchmark suite. In 1991, these benchmarks
plus others presented at past workshops and conferences were
collected and distributed under the maintainance of the Micro-
electronics Center of North Carolina (MCNC) [1]. The MCNC
suite was published in the same year at the International
Workshop on Logic Synthesis (IWLS). Even though quite
outdated, MCNC benchmarks are still popular in academic
research.

2) IWLS Benchmarks: In 2005, a new set of benchmarks
for logic synthesis was presented at the IWLS workshop under
the name of IWLS05 benchmark suite [2]. It consisted of 84
designs collected from various websites (OpenCores, Faraday,
etc.) and previous benchmark suites (MCNC, ITC, etc.).

3) EPFL Benchmarks: The EPFL combinational bench-
mark suite has been introduced at the IWLS workshop in
2015 [3]. It consists of 23 combinational circuits designed
to challenge modern logic optimization tools. The benchmark
suite is divided into arithmetic, random/control, and MtM
(more-then-ten-million) benchmarks. The arithmetic part in-
cludes 10 benchmarks, e.g., square-root, hypotenuse, divisor,
and multiplier. The random/control part consists of another 10
benchmarks, e.g., round-robin arbiter, lookahead XY router,
alu control unit, and memory controller. The MtM part con-
tains 3 very large benchmarks, featuring more than ten million
gates each. In addition to providing the benchmarks, the EPFL
suite also keeps track of the best optimization results.

B. Exact-Size Benchmarks

It is unknown whether any benchmark of the previously
discussed benchmark suits is optimum—in fact, for most of
the benchmarks it is quite unlikely. Other benchmark suites
have been presented which only contain exact benchmarks that
are optimum with respect to size.

1) LEKO Benchmarks: Logic synthesis Examples with
Known Optimal (LEKO) have been introduced in [11] with
application to FPGA synthesis. They target area-optimal map-
pings so they can be classified as exact-size benchmarks. The
core idea of LEKO is to replicate a small circuit with known
optimal size. If the replication follows a specific strategy [11],
the final results preserve size-optimality. Size-optimality is
measured in terms of the number of 4-LUTs rather than
number of binary operations.

2) LEKU Benchmarks: Logic synthesis Examples with
Known Upper Bounds (LEKU) are derived from LEKO by
collapsing them into two level logic and successively de-
composing them into primitive gates. LEKU circuits serve as
suboptimal starting points for the heuristic techniques under
test.

C. Motivation

In this work, we are addressing the construction of exact-
depth benchmarks, which has not been proposed so far. These
benchmarks are of particular interest to today’s design flows
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Fig. 1. Depth-optimal balanced-tree realization for f = abc + abd.

that often optimize for depth as it correlates with the delay of
the final system.

III. CONSTRUCTION OF DEPTH-OPTIMAL BENCHMARKS

In this section we present a construction method for multi-
level logic circuits with optimal depth. Our construction is
based on balanced binary tree circuits, i.e., circuit in which
each node that is not a leaf has two children and every path
from the root to a leaf has the same length. We further assume
that each leaf represents a unique variable. In Section III.A,
we show that balanced binary tree circuits with unique inputs
are depth-optimal. However, the simple construction has two
major drawbacks: (i) there are assignments of binary functions
to the nodes that lead to trivial functions, and (ii) each
subcircuit is disjoint support decomposable, which makes
them easy to optimize using disjoint support decomposition
techniques [15], [16]. In Sections III-B and III-C we address
these drawbacks with more advanced algorithms.

A. Depth-Optimality of Balanced Binary Tree Circuits

As binary operations for the nodes in balanced binary tree
circuits we consider the 10 binary Boolean operators of two
variables1 a ∧ b, ā ∧ b, a ∧ b̄, ā ∧ b̄, a ∨ b, ā ∨ b, a ∨ b̄, ā ∨ b̄,
a ⊕ b, and ā ⊕ b. Recall, that leaves are labeled by a unique
variable.

Theorem 3.1: A balanced binary tree as described above is a
depth-optimal realization for the Boolean function it realizes.

Proof: (Reductio ad absurdum) It is easy to see that a
function represented by a balanced binary tree of depth k
depends on all 2k variables obtained from the tree’s leaves.
Let us assume it can be realized by a circuit of depth k − 1.
A circuit of depth k−1 in which each node represents one of
the 10 Boolean operators can have at most 2k−1 unique leaves
and hence depend at most on 2k−1 variables which contradicts
our assumption.

Fig. 1 shows an example for a depth-optimal realization us-
ing a balanced binary tree structure. The represented function
is f = abc + abd.

Although balanced binary trees are provably depth-optimal,
sometimes they represent trivial functions. For example, if all

1There are 16 possible binary Boolean operators, but operators 0, 1, a, ā,
b, b̄ do not functionally depend on both variables.



nodes represent AND operations, the tree simply represents
a multi-input AND function. Most EDA tools would easily
derive such representation. Similar considerations hold for the
OR operation. In this work, we are interested in non-trivial
depth-optimal multi-level circuits.

B. Populating the Binary Tree with Operators

In order to avoid trivial functions, we suggest to just pick
them randomly using a linear distribution over the 10 binary
operations. Since 2 of the 10 operations are binate, there is
a very high probability to avoid circuits that represent unate
functions [12], which again can be handled as a special case
by logic synthesis algorithms [13], [14]. In order to completely
rule out the possibility of generating unate circuits, it is
sufficient to enforce the presence of at least one binate operator
in the tree. This can happen right after the random assignment.
Algorithm 1 shows pseudo code to generate circuits in such a
manner.

Algorithm 1 Generation of depth-optimal multi-level circuits
with disjoint support.
INPUT: Complexity measure n
OUTPUT: Depth-optimal circuit with 2n inputs.

create empty balanced binary tree with n levels;
for each node n do

assign n a random binary operator;
end for
enforce the presence of at least one binate operator;

C. Breaking the Disjoint Support Property

The circuits generated by Algorithm 1 have optimal depth
and are binate. However, there is still an important property po-
tentially making these benchmarks trivial. At any node of the
tree, the function represented has disjoint support [15]. This
means that disjoint support decompositon techniques [15],
[16] can be quite effective here. In order to overcome this
limitation, in this section we show how to break the disjoint
support property.

We present two techniques to break the disjoint support
property. The first one merges two disjoint full trees. The
second one uses non-disjoint building blocks in place of binary
operators.

1) Merging Two Disjoint Full Trees: This method starts
with the creation of two balanced binary trees using Algo-
rithm 1. These two trees have the same number of primary
inputs but they need to be functionally different. Since the
generation of Algorithm 1 is random, it is very unlikely that
the two circuits represent the same function, especially for
large n. As a second step, the primary inputs are shared
between the two circuits. The roots of the two subtrees are then
combined with a random binary operator into a single primary
output. Finally, the functional support of the composite circuit
is verified. Algorithm 2 briefly depicts the procedure.

Algorithm 2 Generation of depth-optimal multi-level circuits
with joint support.
INPUT: Complexity measure n
OUTPUT: Depth-optimal circuit with 2n inputs.
A = Algorithm 1(n);
B = Algorithm 1(n);
share primary inputs of A and B;
create node n that joins roots of A and B;
assign node n to a random binary operator;
set n as primary output of the composite circuit;
verify the functional support of the composite circuit;

Algorithm 2 generates a multi-level circuit with 2n inputs,
n + 1 levels and 2n+1 − 1 nodes. The dependency on all 2n

inputs is not guaranteed by the construction method and there-
fore we verify the functional support as a last step. Although
verifying the functional support is intractable, modern SAT-
based techniques can handle fairly large problem instances
[17]. It is worth noticing that in all our experiments the
functional support has not been altered by Algorithm 2.

With the functional support verified, we can determine the
properties of the benchmarks generated by Algorithm 2. The
following theorem holds.

Theorem 3.2: A multi-level logic circuit generated by Al-
gorithm 2, with functional support verified and equal to 2n, is
(i) binate and non-fully disjoint support and (ii) at most one
unit far from the optimum depth.

Proof We start by proving the binate and non-full disjoint
support properties. Binateness follows from Algorithm 1. The
non-disjointness follows by merging of two circuits with
shared primary inputs: at least one node will not admit a
disjoint support decomposition [16]. Now consider the exact-
ness property: the circuit is at most one level far from the
optimum. This means the circuit cannot be realized with less
than n levels. Let us proceed by contradiction and suppose
instead it is possible to build the same circuit with n − 1
levels. With similar reasoning as in the proof of Theorem 3.1,
we can show that such circuit would depend on fewer inputs
than the original one, hence the contradiction.

The circuits generated by Algorithm 2 can be simplified
by low-effort synthesis scripts. By doing this it is possible
to recover the level off and hit the absolute optimum. Also,
the joint support nature of the circuit (reconvergence) is more
visible once processed by a synthesis pass. Fig. 2 shows the
output of Algorithm 2, with n = 4, after a simple AIG
rewriting pass [18], [19]. The depth optimality is reached.

2) Using non-DSD Blocks as Primitive Operators: A dif-
ferent way of addressing the disjoint support issue, is to use
larger primitive blocks in the tree construction. These large
primitive blocks would be optimal implementations of function
with no disjoint support decomposition (prime) [15], [16].
Algorithm 1 can be easily adapted for this purpose. However,



55

19 4735

25 34

28

29

24

26

27

20

21 22

23 48

49

60

61

44

45

42

4340

58

41

54

39

38

33

18 3130

37

36

32

46

5957 56

51

50

53

52

x3x16 x13 x9x12 x1x2x5x4 x7x6x11 x10x15 x14

f

x8

Fig. 2. Exact benchmark with complexity 4 (24 inputs). Depth-optimal AIG realization with 8 levels. Nodes are AND-2 functions and dotted edges are INV.

the problem of using k-arity blocks is that the number of
leaves, i.e., primary inputs, of the tree grows much faster.
As an example, when using primitive blocks with 4 inputs,
the number of primary inputs grows as 4n, with n being the
complexity (depth) of the benchmark considered.

In this work, we use Algorithm 2 to generate depth-optimal
multi-level benchmarks.

D. Building a Suboptimal Circuit

Once the depth-optimal benchmark has been generated, we
also need to create a suboptimal starting point for the synthesis
tools under test. We discuss hereafter two possible approaches
to generate such suboptimal circuit.

1) BDD-based Collapsing: One possibility is to create a
Binary Decision Diagram (BDD) [20] for the exact bench-
mark. Since the functional support of the benchmark has been
verified, the corresponding BDD is guaranteed to have as many
levels as many inputs. The circuits generated by Algorithm 2,
with n + 1 levels but 2n inputs, would be collapsed into
2n levels. This guarantees an exponential gap between the
exact solution and suboptimal starting point. In this way, the
logic synthesis tools under test have an ample design space
to explore, making the benchmarking more effective. The
only drawback stands in the BDD complexity. It is known
that BDD may be exponentially sized [20] and they only
scale up to relatively small/medium values. Our experimental
evaluation has shown this approach is viable up to 1024/2048
inputs (n = 10/11). After that, BDD collapsing becomes too
expensive in terms of runtime and alternative approaches are
required. Please note that circuits with up to 2048 inputs and
11 levels are already relatively large and relevant to most
contemporary synthesis scenarios.

2) SOP-based Collapsing: SOP-based collapsing is quite
popular in traditional logic synthesis and consists in generating

a two-level SOP for the circuit under test. Recent approaches
for SOP collapsing make use of SAT engines [21] and showed
quite efficient results. In our context, SOP collapsing must
be succeded by a decomposition step, in order to create
a suboptimal multi-level circuit. SOP collapsing also has
scalability limitations, mainly related to the two-level logic
representation.

In this study, we use BDD-based collapsing to generate the
suboptimal starting point.

IV. EXPERIMENTAL RESULTS

In this section, we test state-of-the-art synthesis techniques
over a set of exact benchmarks. We first describe the experi-
mental methodology. Then, we present the synthesis results.

A. Methodology

Our algorithms have been implemented in C programming
language and the tools have been tested in a Linux environ-
ment. Our C progam counts about 1k lines.

1) Benchmark Generation: We generated 7 exact bench-
marks, using Algorithm 2, with complexity ranging from 4
to 10. The corresponding circuits have support size ranging
from 16 to 1024. The runtime for generating the optimal
benchmarks is negligible, less than 4 seconds in the worst case.
The suboptimal starting implementations have been created
with BDD-based collapsing, as explained in the previous
section. The BDD for the exact circuit with complexity 10
(1024 inputs) has more than 600 000 nodes. Even though it is
still possible to collapse exact benchmarks with complexities
11 and 12, their size would be rather out of scale and would
bias the comparison with previous synthesis results.

2) Synthesis Setup: We considered three state-of-the-art
synthesis techniques, namely AIG-optimization performed by
ABC [19], MIG-optimization performed by MIGhty [23]–[25],
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Fig. 3. Synthesis experiments for the exact depth benchmarks. Benchmark complexity of 10 is not reported in the size plot because the value is out of scale.

TABLE I
SYNTHESIS EXPERIMENTS: LOGIC DEPTH

Complexity Sub-opt. DSD AIG MIG St-Exact
4 19 17 11 11 9
5 62 60 28 22 10
6 126 102 45 39 12
7 254 234 98 82 14
8 510 448 165 137 17
9 1022 886 356 243 17
10 2046 1792 1267 1182 19

TABLE II
SYNTHESIS EXPERIMENTS: LOGIC SIZE

Complexity Sub-opt. DSD AIG MIG St-Exact
4 235 175 154 164 51
5 524 517 331 686 97
6 1176 961 801 1351 204
7 2881 2648 2081 6236 411
8 5145 4563 3218 8893 818
9 16752 19541 17184 51278 1564

10 634806 468735 269432 275052 3110

and DSD-optimization performed by ABC [16]. Since our
study targets depth-minimality, we considered depth-oriented
synthesis scripts. For AIG-optimization, we used the script
resyn2rs; if -g iterated 10 times [22]. For MIG-optimization,
we used the synthesis script described in [25]. For DSD-
optimization, we used the dsd command available in ABC.
On top of these three techniques, we also report the sub-
optimal results and the exact results strashed into AIGs. These
strashed-exact results serve as upper bounds on the optimum.

Please note that, in this study, we do not aim at comparing
existing synthesis tools against each other. We are rather
interested in determining the gap between standard synthesis
results and the exact results. For this reason, we do not
optimize further the synthesis scripts but we use their default
versions. Although we do not provide an extensive evaluation
of all contemporary synthesis tools, our work enables other
researchers to pursue this direction.

B. Results

The synthesis results are reported in Tables I and II and
graphically shown by Fig. 3.

1) Depth results: As a first observation, the depth of all
DSD-, AIG-, and MIG-optimized circuits sensibly decreases
w.r.t. the suboptimal implementations. DSD-optimization is

less effective than AIG and MIG. This is expected because the
exact benchmarks have been explictly designed to have joint
support. This implies that disjoint support decomposition will
not find many optimization opportunities. Considering instead
AIG and MIG optimizations, they both strongly reduce the
number of levels, between 2× and 3×, as compared to the
suboptimal starting points. However, with respect to to the
strashed exact realizations, all three synthesis techniques are
far from achieving the optimum. For the first benchmarks,
with complexity 4–6, AIG and MIG heuristics are between
1.2× and 3.6× far from the exact results. When moving to
higher complexity, the gap between the exact results and the
synthesis heuristics becomes larger, up to 66×. In Fig. 3 it is
possible to appreciate the trend of this gap, which resembles
an exponential curve.

2) Size results: Table II shows the size results for the con-
sidered synthesis techniques. DSD and AIG techniques reduce
the number of nodes for most benchmarks. The MIG technique
increases the number of nodes as the depth-optimization is
more aggressive. Please note that more size optimization is
possible if interleaving MIG depth optimization [25] with MIG
size techniques in [26]. This would result in a similar script as
the one used for AIG optimization. However, as the purpose of
this work is not size optimization, we did not improve further



the size results.
For all techniques, the size of the exact results remains

much smaller, from about 3× to 90×. In Fig. 3, the size for
complexity 10 is not reported because out of scale and would
compromise the readability of the plot. Nevertheless, all the
values are included in Table III for the sake of completeness.

V. DISCUSSION

Our benchmark generation methods provide, for the first
time, a scalable way to generate non-trivial exact circuits in
the multi-level realm. This opens the opportunity to measure
the efficienty of multi-level optimization heuristics with an
absolute metric.

This section briefly discusses some limitations of our meth-
ods and outlines future research.

A. Scalable Collapsing

Collapsing an exact benchmark is key to create the sub-
optimal circuit for the tools under test. In this work, we
employed BDD collapsing for this purpose. However, the use
of BDDs precludes the scalability to very large benchmarks.
A hybrid BDD [20] and SAT [21] collapsing approach can
alleviate the issue. A fundamentally different approach would
be to use logic maximization techniques rather than logic
minimization techniques. In our context, we would look for
depth-increasing transformations. Rewriting techniques [18],
[26] can have their internal goal easily modified for this
purpose. While this approach can be more scalable, the cor-
responding suboptimal circuits have weaker properties w.r.t.
BDD collapsing.

B. Non-DSD Native Construction

As mentioned in Section III-C2, using non-DSD primitive
blocks is an alternative approach to generate exact bench-
marks. By choosing the right non-DSD (prime) function block,
it is possible to tune the tree n-arity vs. benchmark complexity.
A clear advantage of non-DSD native construction is that
the functional support verification is not anymore necessary.
This is because the original properties of the circuit-tree are
preserved and merging is not required to break the DSD
feature. We believe that this approach would pave the way for
very large exact benchmarks, where verifying the functional
support may be the runtime bottleneck.

VI. CONCLUSIONS

In this paper, we studied exact multi-level logic benchmarks.
We presented efficient methods to generate exact multi-level
benchmarks with optimum, or provably close to the optimum,
number of logic levels. The exact benchmarks generated by
our techniques are non-trivial and scale up to large size. The
key concepts enabling our results come from graph theory and
joint support decomposition. Experimental results showed an
asymptotic exponential gap between state-of-the-art synthesis

techniques and our exact results. Our exact results, publicly
available at [10], will serve as common yardstick for future
synthesis work and prove that logic synthesis is a field where
innovation is still possible.
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