
Approximation-aware Rewriting of AIGs for Error Tolerant
Applications

Arun Chandrasekharan1 Mathias Soeken2 Daniel Große1,3 Rolf Drechsler1,3
1Group of Computer Architecture, University of Bremen, Germany

2Integrated Systems Laboratory, EPFL, Switzerland
3Cyber Physical Systems, DFKI GmbH, Bremen, Germany

{arun,grosse,drechsle}@cs.uni-bremen.de, mathias.soeken@epfl.ch

ABSTRACT
Approximation circuits offer superior performance (speed
and area) compared to traditional circuits at the cost of com-
putational accuracy. The accuracy of the results in approx-
imation circuits is evaluated based on several error metrics
such as worst-case error, bit-flip error, or error-rate. Several
applications have varied requirements in error metrics, i.e.,
all the error criteria have to be met together at a time, or
in combinations. Nevertheless, all applications benefit from
improved delay and area. An automated synthesis approach
with formal guarantees on error metrics is very helpful in
generating circuits that meet these criteria. Furthermore,
each of these metrics are independent quantities (value of
one metric does not correlate with the other), and auto-
mated synthesis can discover opportunities to trade off one
or more of the relaxed metrics with a strict requirement on
the other, resulting in better performance.

In this paper, we present an automatic synthesis approach
using And-Inverter Graphs (AIGs) based rewriting that not
only improves the performance but also guarantees the bounds
of approximation errors introduced. Our synthesis approach
is evaluated on a wide range of designs and standard bench-
mark circuits to show the usefulness and applicability. In
particular, we show that our synthesis results are even com-
parable with the optimization achieved with hand crafted
adhoc approximation circuits such as approximation adders
in a case study on image compression.

1. INTRODUCTION
Approximate computing improves the efficiency of a cir-

cuit in terms of speed and area by relaxing computational
accuracy. At a first glance one might think that this ap-
proach is not a good idea, but it has become evident that
there is a huge set of applications which can tolerate errors.
Applications such as multi-media processing and compress-
ing, voice recognition, web search, or deep learning are just
a few examples.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07-10, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2967003

Certainly, several questions arise when rethinking the cir-
cuit design process under the concept of approximate com-
puting: (1) What errors are acceptable for a concrete appli-
cation? (2) How to design approximate circuits? (3) How to
perform functional verification and production test? All of
these are major questions. For answering the first question,
different error metrics have been proposed. Essentially, they
measure the approximation error by comparing the output of
the original circuit against the output of the approximation
circuit. Typical metrics are error-rate, worst-case error, and
bit-flip error [3]. Please note that the chosen metric depends
highly on the application.

On the design side (second question), we focus on func-
tional approximation in this work, i.e., a slightly different
function is realized (in comparison to the original one) re-
sulting in a more efficient implementation. Two main di-
rections of functional approximation can be distinguished:
(i) for a given design, an approximation circuit is created
manually; most of the research has been done here. This
includes for example approximate adders [8, 9] and approx-
imate multipliers [10]. However, since this procedure has
strong limitations in making the potential of approximation
widely available, research started on (ii) design automation
methods to derive approximated components from a golden
design automatically.

Different synthesis approaches have been proposed. They
range from reduction of sum-of-product implementations [22],
redundancy propagation [23], and don’t care based simpli-
fication (SALSA) [26] to dedicated three-level circuit con-
struction heuristics [2]. Recently the ASLAN [20] frame-
work has been presented which extends SALSA and is able
to synthesize approximate sequential circuits. ASLAN uses
formal verification techniques to ensure quality constraints
given in the form of a user-specified Quality Evaluation Cir-
cuit (QEC). However, the QEC has to be constructed by
the user similar to a test bench, which is a design prob-
lem by itself. In addition, constructing a circuit to formu-
late the approximation error metrics requires detailed un-
derstanding of formal property checking (liveness and safety
properties), and verification techniques. Further, some error
metrics such as error-rate cannot be expressed in terms of
Boolean functions efficiently since these require counting in
the solution space which is a #SAT problem (i.e., count-
ing the number of solutions). Moreover the error metrics
used in these approaches are rather restricted (e.g., [26] uses
worst-case error and a very closely related relative-error as
metrics) and how to trade off a stricter requirement in one
metric wrt. to a relaxed requirement in another has not been

considered, especially when the error metrics are unrelated
to each other.

In this paper, we propose an algorithm for the synthesis of
approximation circuit with formal guarantees on error met-
rics. We introduce approximation-aware AIG rewriting and
our approach is able to synthesize circuits with significantly
improved performance within the allowed error bounds. Ex-
perimental evaluation of our approach on a broad range of
applications confirm the applicability of our method. We
also compare the quality to manually handcrafted approx-
imate designs. Further, the approximation-aware rewriting
technique can trade-off the relative significance of each error
metric for a particular application, to improve the quality of
the synthesized circuits.

In short, the major contributions in this paper are as fol-
lows.

1. We propose a synthesis methodology based on AIG
rewriting for approximate computing with formal guar-
antees on errors.

2. Our approach provides the ability to trade off one error
criteria with another.

3. The results show comparable quality to manually hand-
crafted approximate designs.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the necessary preliminaries. Section 3 gives
an overview of our approximation-aware AIG rewriting ap-
proach. We explain the implementation details of our me-
thodology in Section 4 and describe the results of the ex-
perimental evaluation in Section 5. Finally, the paper is
concluded in Section 6.

2. PRELIMINARIES

2.1 And-Inverter Graph
A Boolean network is a directed acyclic graph (DAG)

where nodes represent logic gates or primary inputs/primary
outputs (PIs/POs), and edges represent wires that form the
interconnection among the gates. An And-Invertor Graph
(AIG) is a Boolean network where the logic gates are two-
input ANDs and the edges can be complemented, i.e., in-
verted.

A path in an AIG, is a set of nodes starting from a PI
or a constant, and ending at a PO. The length of the path
is the number of nodes in the path excluding the PI and
PO. The depth of an AIG is the maximum length among all
the paths and the size is the total number of nodes in the
AIG. The depth of an AIG corresponds to delay and size
corresponds to area. It must be noted that the area and
the delay of the final implemented circuit heavily depends
on the technology mapping, routing delay and other tech-
nological parameters and as such cannot be deduced from
synthesis itself. However in the non-mapped network, depth
and size of AIG graph correlates well with delay and area of
the circuit.

Rewriting is an algorithmic transformation in an AIG that
introduces local modifications to the network to reduce the
depth and, or the size of the AIG [18]. Rewriting takes a
greedy approach by iteratively selecting subgraphs rooted
at a node and substituting them with better pre-computed
subgraphs.

out[0] out[1]

14

out[2]

25

32

30 31

2324 29

2821

221213 19 20 27

26

11

cin

17

189 10 1516

in1[0]in2[0] in1[1] in2[1]

Figure 1: AIG for 2-bit Full Adder

A cut of a node v is a set of nodes C, called leaves, such
that (i) every path from v to a primary input must visit at
least one node in C, and (ii) every node in C must be in-
cluded in at least one of these paths [5]. The node v is called
the root of the cut, and there may be several cuts for one
node. A cut is called k-feasible, if |C|≤ k. The cut size is
the number of nodes in the transitive fan-in cone of v up to
the leaves without including them. Each cut expresses a cut
function at the root expressed in terms of its leaves as inputs.
Intuitively a k-feasible cut represent a single output function
g, with k inputs which may be shared or substituted with
another function, ĝ. For rule based synthesis rewriting, the
substituted function is an equivalent function conforming to
the desired synthesis goals [18, 6, 11]. However, in approx-
imate synthesis, the substituted function does not have to
be equivalent, but should respect the global error and qual-
ity metrics, and synthesis goals. Cuts in an AIG can be
computed using cut enumeration techniques [19].

AIGs can be used to efficiently represent both sequential
and combinational circuits. In this work we restrict our-
selves to combinational networks only. An AIG network of
a 2-bit full adder circuit is illustrated in Fig 1. Each node
other than the terminal nodes (PIs and POs) represent an
AND gate, and the dotted arrows indicate inversion of the
respective input. A 3-input cut is shown with root node 19
and leaves 18, 16 and 15. The size of this cut is 2 (nodes
19, 17).

2.2 Combinational Equivalence Checking
Combinational equivalence checking (CEC) refers to the

usage of formal techniques to exhaustively verify two dif-
ferent implementations of the same logic to be functionally
equivalent i.e. both the implementations produce the same
output under all possible input combinations [14]. CEC
when applied to approximate hardware aims to establish
whether both the implementations produce outputs that do
not differ beyond a predefined quality threshold, under all
possible input combinations.

For a Boolean function f(x), Boolean Satisfiability (SAT)
problem consists of finding a satisfying input assignment
where f evaluates to true, or absence of such assignment.
SAT is a decision problem and finding any one solution re-
turns true. SAT techniques have developed tremendously
over the past few decades and the current state-of-the-art
SAT solvers can solve millions of clauses in moderate time [25].
In order to show that two implementations are equivalent, a
miter circuit is created and the output of the miter is proved
to be always false using SAT.

2.3 Error Metrics
There are several error metrics proposed to evaluate the

quality of approximate synthesis [3, 27, 15]. The error met-
rics relevant to our work are briefly described below.

Let f : Bn → Bm be a Boolean function and f̂ : Bn →
Bm be the approximated version of it. Then, the worst-case
error is defined as the maximum among the absolute differ-
ences of f and f̂ over all the possible input combinations.
The worst-case error1 is given by the formula

ewc(f, f̂) = max
x∈Bn

∣∣∣int(f(x))− int(f̂(x))
∣∣∣ , (1)

where ‘int’ denotes the integer representation of the bit vec-
tor.

The maximum bit-flip error, ebf , is defined as the maxi-
mum hamming distance between f and f̂ .

ebf(f, f̂) = max
x∈Bn

m−1∑
i=0

∣∣∣fi(x)− f̂i(x)
∣∣∣
 , (2)

where m is the width of the output bit vector.
Finally, the error-rate

eer(f, f̂) =

∑
x∈Bn

[f(x) 6= f̂(x)]

2n

(3)

is the fraction of input assignments that lead to a different
output pattern out of total number of input patterns.

The bit-flip error and error-rate are not related to the
magnitude of the approximated output. In particular, error-
rate involves counting the correct solutions and the value
of error itself is immaterial. Furthermore all these error
metrics are independent quantities on their own and do not
necessarily correlate with each other. For e.g., a design with
very high worst-case error does not imply that the bit-flip
error or the error-rate is high.

3. OVERVIEW
Our approach applies network rewriting which allows to

change the functionality of the circuit, but does not allow

1also referred to as error-significance

Algorithm 1 Approximation Rewriting

1: function approx rewrite(AIG f , error behavior e)

2: set f̂ ← f
3: while continue do
4: set paths ← select paths(f̂)
5: for each p ∈ paths do
6: set cuts ← select cuts(p)
7: for each C ∈ cuts do
8: set f̂cnd ← replace C by Ĉ in f̂
9: if e(f, f̂cnd) then

10: set f̂ ← f̂cnd
11: end if
12: end for
13: end for
14: end while
15: return f̂
16: end function

to violate given error behavior. The error behavior is given
in terms of thresholds to error metrics. It is possible that a
combination of several error metrics is given.

The rewriting algorithm is outlined in Algorithm 1. The
description is generic and details on the important steps are
described in the next section. Input is an AIG that repre-
sents some function f . It returns an AIG that represents an
approximated function f̂ , which complies to the given error
behavior e. In the algorithm we model the error behavior as
a function that takes as input f and f̂ and returns 0, if the
error behavior is violated. As an example, we can define the
error behavior

e(f, f̂) = ewc(f, f̂) ≤ 1000 ∧ ebf(f, f̂) ≤ 5

in which the worst-case error should be less than 1000 and
the maximum bit-flip error should be less than 5.

The algorithm initially sets f̂ to f (line 2). It then selects
paths in the circuit to which rewriting should be applied
(line 4). Cuts are selected from the nodes along these paths

(line 6). For each of these cuts C, an approximation Ĉ is
generated, and inserted as a replacement for C. The result of
this replacement is temporarily stored in the candidate f̂cnd
(line 8). It is then checked, whether this candidate respects

the error behavior. If that is the case, f̂ is replaced by the
candidate f̂cnd (line 10). This process is iterated as long as
there is an improvement, based on a user provided limit on
number of attempts, or as long given resource limits have
not been exhausted (line 3).

4. IMPLEMENTATION
In this section, we describe details on how to implement

Algorithm 1. The crucial parts in the algorithm are (i) which
paths are selected, (ii) which cuts are selected, (iii) how
cuts are approximated, and (iv) how the error behavior is
evaluated.

The approximation rewriting algorithm is an iterative ap-
proach and a decision has to be taken on how many iter-
ations need to be run before exiting the routine. This is
implemented as effort levels (high, medium, and low) in the
tool corresponding to number of paths selected for approx-
imation. The user has to specify this option. Alternately
user can also specify the number of attempts tried by the
tool.

4.1 Select Paths
The primary purpose of the proposed approximation tech-

niques is to reduce delay and area of the circuits. In order
to reduce delay, we select the critical paths, i.e., the longest
paths in the circuit. Replacing cuts on these paths with ap-
proximated cuts of smaller depth reduces the overall depth
of the circuit. In our current implementation, we select all
critical paths. The set of critical paths changes in each iter-
ation.

4.2 Select Cuts
While selecting critical paths potentially allows to reduce

the depth of the approximated circuit, selecting cuts allows
to reduce area. We select cuts by performing cut enumera-
tion on the selected paths. In our implementation the enu-
merated cuts are sorted based on the increasing order of cut
size. The rational for approximating the cuts based on in-
creasing order of cut size is as follows. For a given path
in the AIG, if we assume each node has equal probability
in inducing errors, the size of the cut can be related to the
perturbations introduced in the network and therefore the
least impact. Hence starting with a transformation that in-
troduce minimum errors has the best chance of introducing
approximations without violating error metrics and falling
into a local minima quickly. Although this assumption ap-
pears oversimplified, the error metrics (worst-case error, bit-
flip error, and error-rate) are independent quantities and do
not necessarily correlate with each other. Hence a quick
and efficient way to prioritize cuts is based on cut size going
along with the assumption. Our experimental results also
confirm the applicability of such an approach. This is the
default behavior of the tool. We have tried experiments with
maximum cut size first, but this scheme is observed to be
falling into local minima at a faster rate and the results are
inferior. This further confirms that prioritizing cuts based
on increasing order of size, per path, is the most acceptable
way. Sometimes selecting cuts randomly for approximation
benefits the rewriting procedure. In the current implemen-
tation of the tool, this behavior can be optionally enabled
by the user.

4.3 Approximate Cut
Each cut is replaced by an approximated cut to gener-

ate a candidate for the next approximated network. Ideally,
one would like to approximate the cut with a similar cut
of better performance, i.e., the error of the function of the
approximated cut has minimal errors wrt. to the original
cut function, but maximal savings in area and delay. In
our current implementation, we simply replace the cut by
constant 0, i.e., the root node of the cut is replaced by the
constant 0 node. This trivial routine is found to be sufficient
for good overall improvements in our experimental evalua-
tion. Investigating how to approximate cuts in a nontrivial
manner is a potential area of future research to gain further
improvement.

4.4 Evaluate Error
To compute whether the error behavior is respected, we

need a way to precisely compute the error metrics. For this
purpose, we make use of an approximation miter [4]. An ap-

proximation miter takes as input two networks C and Ĉ, an

C

Ĉ

E DPI

f

f̂

e bad?

Figure 2: Approximation Miter

Algorithm 2 Finding maximum bit-flip error

1: function find max bit flip error
2: lbound ← 0
3: ubound ← m− 1
4: while lbound < ubound do

5: X ←
⌈

(ubound + lbound)

2

⌉
6: s← SAT

(
ApproxMiter

(
m−1∑
i=0

(
fi ⊕ f̂i

)
, X

))
7: if s = satisfiable then
8: lbound ← X
9: else

10: ubound ← X − 1
11: end if
12: end while
13: return lbound
14: end function

error computation network E, and a decision circuit D. The
output of the miter is a single bit bad which evaluates to 1
if and only if the error is violated. The general configura-
tion of an approximation miter for combinational networks
is illustrated in Figure 2.

The error computation network E and the decision net-
work D can be configured to do the error analysis after ap-
plying approximation rewriting to AIG. In this work, the
worst-case error and bit-flip error are evaluated using the
approximation miter. The evaluation of error-rate involves
the counting of solutions in f̂ that differ from f . The al-
gorithm given in [24] is used for error-rate computations
using Binary Decision Diagram (BDD). The approach used
is an exact one, unique to BDD based representation and
so far there is no equivalent algorithm using AIG.2 A direct
consequence of this is extended run-times necessitated by a
conversion from AIG to BDD.

The error metrics ewc and eer can be precisely computed
for combinational circuits with the symbolic algorithms given
in [24]. However for ebf , we extend the concept outlined
in [4]. It is formulated as an optimization problem using
approximation miter and computed with binary search and
SAT. The binary search is shown in Algorithm 2. For a func-
tion f with output width m, X is set to one half of m in the
first loop, with lower bound 0 and upper bound m−1. SAT
is used to solve the approximation miter and if SAT returns
satisfiable, the lower bound is set to X, else the upper bound
is set to X−1. The binary search algorithm iterates further
until the bounds converge to ebf .

2Explicit enumeration of solutions is not considered.

Table 1: Error Metrics comparison for Approximation Adders

Approximation Architecture Approximation Synthesis

Architecture Gates? Delay? Area? ewc eer ebf Synthesis Scheme† Gates? Delay? Area? ewc eer ebf run-time
(ns) (%) (ewc-in, ebf-in) (ns) (%) (sec)

8-bit Adders 8-bit Adders

RCA N8‡ 57 10.2 175 0 0.00 0 RCA N8‡ 57 10.2 175 0 0.00 0 0

ACA II N8 Q4 ± 39 7 137 64 18.75 5 appx1 (64, 5) 41 7 138 64 75.00 4 50
ACA I N8 Q5 52 7 175 128 4.69 4 appx2 (128, 4) 27 7 86 128 78.22 4 57

GDA St N8 M4 P2 ∓ 39 7 137 64 18.75 5 appx1 (64, 5) 41 7 138 64 75.00 4 50
GDA St N8 M4 P4 37 9 134 64 2.34 3 appx3 (64, 3) 36 8.6 121 64 50.00 3 68
GDA St N8 M8 P1 26 3.8 108 168 60.16 7 appx4 (168, 7) 13 3.8 33 128 96.94 7 11
GDA St N8 M8 P2 35 5.4 124 144 30.08 6 appx5 (144, 6) 15 5.4 45 144 94.75 6 56
GDA St N8 M8 P3 45 7 149 128 12.50 5 appx6 (128, 5) 19 7 64 128 88.33 5 22
GDA St N8 M8 P4 44 7 157 128 4.69 4 appx2 (128, 4) 27 7 86 128 78.22 4 57
GDA St N8 M8 P5 63 8 194 128 1.56 3 appx7 (128, 3) 31 8.6 104 128 62.70 3 58

GeAr N8 R1 P1 ‡‡ 26 3.8 108 168 60.16 7 appx4 (168, 7) 13 3.8 33 128 96.94 7 11
GeAr N8 R1 P2 35 5.4 124 144 30.08 6 appx5 (144, 6) 15 5.4 45 144 94.75 6 56
GeAr N8 R1 P3 47 7 153 128 12.50 5 appx6 (128, 5) 19 7 64 128 88.33 5 22
GeAr N8 R1 P4 52 7 175 128 4.69 4 appx2 (128, 4) 27 7 86 128 78.22 4 57
GeAr N8 R1 P5 43 8.6 147 128 1.56 3 appx7 (128, 3) 31 8.6 104 128 62.70 3 58
GeAr N8 R2 P2 39 7 137 64 18.75 5 appx1 (64, 5) 41 7 138 64 75.00 4 50
GeAr N8 R2 P4 37 8.6 132 64 2.34 3 appx3 (64, 3) 36 8.6 121 64 50.00 3 68

16-bit Adders 16-bit Adders

RCA N16‡ 93 13.4 303 0 0.00 0 RCA N16‡ 93 13.4 303 0 0 0.00 0

ACA II N16 Q4 ± 75 7 269 17472 47.79 13 appx8 (17472, 13) 41 7 120 8320 99.64 13 151
ACA II N16 Q8 104 10.2 331 4096 5.86 9 appx9 (4096, 9) 94 13.4 254 2038 99.80 9 229
ACA I N16 Q4 103 7 321 34944 34.05 13 appx10 (34944, 13) 41 7 120 8320 99.64 13 150

ETAII N16 Q4 †† 75 7 269 17472 47.79 13 appx8 (17472, 13) 41 7 120 8320 99.64 13 151
ETAII N16 Q8 104 10.2 331 4096 5.86 9 appx9 (4096, 9) 94 13.4 254 2038 99.80 9 229

GDA St N16 M4 P4 ∓ 110 10 358 4096 5.86 9 appx9 (4096, 9) 94 13.4 254 2038 99.80 9 229
GDA St N16 M4 P8 119 11.1 381 4096 0.18 5 appx11 (4096, 5) 95 13.4 277 496 96.88 5 201

GeAr N16 R2 P4 ‡‡ 81 8.6 284 16640 11.55 11 appx12 (16640, 11) 89 12.7 226 4090 99.90 11 187
GeAr N16 R4 P4 104 10.2 331 4096 5.86 9 appx9 (4096, 9) 94 13.4 254 2038 99.80 9 229
GeAr N16 R4 P8 89 11.8 301 4096 0.18 5 appx11 (4096, 5) 95 13.4 277 496 96.88 5 201
GeAr N16 R6 P4 114 10.2 375 1024 3.08 7 appx13 (1024, 7) 94 13.4 264 1024 99.22 7 220

? As reported by ABC [17] with library mcnc.genlib. Area reports normalized to INVX1
† ewc-in and ebf-in are the error criteria (ewc and ebf) given as input to the tool.

‡, ±, ∓, ‡‡, †† Abbreviations are as given in the online repository : http://ces.itec.kit.edu/1025.php [7]
‡ RCA N8 and RCA N16 are 8-bit and 16-bit ripple carry adders. These adders are the non-approximated reference designs.
± ACA is Almost Correct Adder [9], ∓ GDA is Gracefully Degrading Adder [30]
‡‡ GeAr is Generic Accuracy Configurable Adder [21], †† ETA is Error Tolerant Adder [31]

5. EXPERIMENTAL RESULTS
We have implemented all algorithms in C++ as part of

our formal verification package.3 The program reads Ver-
ilog RTL descriptions of the the approximated and non-
approximated design using Yosys [28] to create the approx-
imation miter. We use ABC [17] to perform equivalence
checking of the miter. The experiments are carried out on
an Octa-Core Intel Xeon CPU with 3.40 GHz and 32 GB
memory running Linux 4.1.6.

In this section, we propose the results of two experimen-
tal evaluations. First, we compare the quality of approxi-
mate adders synthesized with our approach to state-of-the-
art manually architectured approximated adders. Second,
we demonstrate the generality and scalability of the ap-
proach by applying it to various designs including standard
synthesis benchmark networks such as LGSynth91 [29].

5.1 Approximate synthesis of adders
Approximate synthesis is carried out for adder circuits

with a high effort level. The results are given in Table 1.
These are compared with architecturally approximated adder
designs from the repository [7]. Many of these architectures

3The package and the benchmarks are available at the repos-
itory https://gitlab.com/arunc/approx synthesis.git

are specifically hand crafted to improve the delay of the cir-
cuit.

The case study is carried out as follows. The adders
from [7] are evaluated for worst-case error and bit-flip error,
and then synthesis is carried out by specifying these values
as limits, hence, the synthesis result obtained from our ap-
proach cannot be worse. The error-rate is left unspecified
and synthesis is allowed to capitalize on this.

The left side of Table 1 lists the error metrics for ar-
chitecturally approximated adders, evaluated as given in
Section 4.4. The performance metrics such as delay and
area are compared with the non-approximated Ripple Carry
Adder (RCA). The same RCA circuit is given as the input
to the approximation synthesis tool along with the ewc and
ebf achieved with the architecturally approximated schemes.
The synthesized circuits are subsequently evaluated for the
error metrics to get the achieved synthesis numbers.

For most of the approximation schemes, our synthesis ap-
proach is able to generate circuits with a better area and
closer delay compared to the architecturally approximated
counterparts, at the cost of error-rate. A large number of
schemes such as appx2, appx4, appx5, appx8, and appx10
have significantly improved area with delay numbers match-

ing those of architectural schemes.4 This study demon-
strates that our automatic synthesis approach can compete
with the quality obtained from handcrafted architecturally
designs.

5.1.1 Image Processing Application
In order to confirm the quality results of the proposed

approach, we show their usage in a real-world image com-
pression application. We have used the OpenCores image
compression project [13] to study the impact of approxima-
tion adders in signal processing. The experimental setup
is as follows. The adders in the color space transformation
module of the image compression circuit are replaced with
the approximation adders synthesized using our approach
and some of the architecturally approximated adders. The
input image is the well-known standard test image taken
from Wikipedia,5 trimmed to the specific needs of the im-
age compression circuits. The images generated using these
circuits are compared with the non-approximated design us-
ing ImageMagick.6 These images are shown in the Table 2.
Only the image obtained with appx-50k (an approximate
adder synthesized with ewc-in set to 50000) is heavily dis-
torted. All other generated images may still be considered as
of acceptable quality depending on the specific use case. For
comparison, we used ACA II N16 Q4 and ETAII N16 Q8 as
the architecturally approximated adders.7 The image qual-
ity is comparable to the synthesized approximate adders.
Both sets of images do not appear to have a big quality
loss despite the high error-rate in approximation synthesis
adders. This is due to human perceptual limitations.

A quantitative analysis of the distortions introduced due
to approximations can be done using the PSNR (Peak Signal
to Noise Ratio) plots given in the latter part of Table 2.
Using the plots, the difference can be better judged. As can
be seen, the synthesized adders show comparable measures
to the architectural adders.

In this application case study, the approximation adders
are used without considering the features and capabilities
of the compression algorithm in depth. A detailed study of
approximation adders in the context of image processing is
given in [22, 8, 16].

5.1.2 Note on Error-Rate
As can be seen from the results in Table 1, the synthesized

approximated adders have a higher error-rate. However, this
has no effect on the quality in many scenarios, as, e.g., shown
in the image compression case study. The error-rate is a met-
ric that relates to the number of errors introduced as a result
of approximation. In many signal processing applications in-
volving arithmetic computations (e.g., image compression),
designers may choose to focus on other error metrics such as
worst-case error [12]. Since the decision is already taken to
introduce approximations, the impact or the magnitude of
errors could be of more significance than the absolute total
number of errors itself. Besides, for a general sequential cir-
cuit, errors tend to accumulate over a period of operation.
Though it may be argued that circuits with higher error-
rate have higher chance of accumulating errors, in practice,
this is strongly dependent on the composition of the circuit

4This can be seen by a line-by-line comparison.
5https://en.wikipedia.org/wiki/Lenna
6http://www.imagemagick.org/
7We use the naming convention given in the repository [7].

Table 2: Image Processing with Approximation
Adders

appx12 appx8 appx9

appx-50k ACA II N16 Q4 ETAII N16 Q8

 15

 20

 25

 30

 35

 40

 45

ap
p

x1
2

ap
p

x8

ap
p

x9

ap
p

x1
0

ap
p

x1
1

ap
p

x1
3

ap
p

x-
5

0
k

ac
a_

ii_
n
1

6
_q

8

et
ai

i_
n
1

6
_q

8

(PSNR in dB)

(adder used)

Approximation adder schemes vs PSNR achieved

itself and the input data. Further details on estimating the
impact of errors in sequential circuits can be found in [4].
Nevertheless, there is a broad range of applications where
error-rate is an important metric in the design of approxi-
mate hardware [3, 12].

5.2 Generality and Scalability
We evaluated our method for a wide range of designs and

benchmark circuits. The results given in the Table 3 show
the generality and applicability of our method. A subset of
the LGSynth91 [29] circuits are given in the left side of the
table. Each circuit is synthesized in three flavors: (i) speci-
fying values of all the error metrics together, (ii) specifying
only the error-rate, and (iii) specifying both worst-case er-
ror and bit-flip error, leaving out error-rate. The achieved
delay and area in these three schemes are compared with
the original non-approximated circuit given as the first en-
try in each section. In a similar way, several other circuits
such as multipliers (Array, Wallace tree, and Dadda tree)
and multiply accumulators (MACs) are given next. Besides
these standard arithmetic designs, other circuits such as par-
ity generator, priority encoder, and BCD converters are also
synthesized and the results are given in Table 3. In almost
all the cases, the tool is able to optimize area exploiting
the flexibility in the provided error limits. In many cases,
delay is also simultaneously optimized along with area. As

Table 3: Approximate-Synthesis Results

LGSynth91 benchmark circuits Other Designs

Design†/Synthesis†† Gates? Delay? Area? ewc eer ebf time

(ewc-in, ebf-in, eer-in)†† (ns) (%) (sec)

cm163a (I:16,O:5) 34 5.70 78 0 0 0 0
appx1 (16, 3, 50) 15 4.10 25 14 43 3 7
appx2 (-1, -1, 25) 18 3.00 36 14 21 3 1
appx2 (10, 2, -1) 20 4.70 41 8 88 2 4

z4ml (I:7,O:4) 31 12.10 84 0 0 0 0
appx1 (8, 1, 75) 20 8.70 52 2 50 1 3
appx2 (-1, -1, 25) 31 12.10 84 0 0 0 7
appx3 (4, 3, -1) 5 3.80 13.00 4 82 2 3

alu2 (I:10,O:6) 259 32.20 627 0 0 0 0
appx1 (30, 3, 50) 236 32.20 570 16 45 2 37
appx2 (-1, -1, 25) 231 32.20 566 16 24 1 1
appx3 (20, 6, -1) 8 3.30 16 19 81 3 12

frg1 (I:28,O:3) 129 27.10 321 0 0 0 0
appx1 (3, 2, 50) 128 27.10 317 1 44 1 10
appx2 (-1, -1, 25) 126 27.10 313 2 16 1 1
appx2 (2, 1, -1) 128 27.10 317 1 56 1 3

alu4 (I:14,O:8) 519 40.00 1247 0 0 0 0
appx1 (128, 4, 50) 489 40.00 1172 64 22 1 139
appx2 (-1, -1, 25) 489 40.00 1172 64 22 1 1
appx3 (80, 6, -1) 239 34.70 557 79 95 5 55

unreg (I:36,O:16) 83 3.40 227 0 0 0 0
appx1 (32000, 8, 50) 80 3.40 214 512 38 1 45
appx2 (-1, -1, 25) 83 3.40 227 0 0 0 1
appx3 (10000, 12, -1) 46 3.40 90 9088 99 10 17

x2 (I:10,O:7) 30 5.80 74 0 0 0 0
appx1 (64, 4, 50) 23 5.70 53 64 37 3 7
appx2 (-1, -1, 25) 27 5.70 66 64 12 1 1
appx3 (50, 6, -1) 17 5.60 41 40 1 3 9

count (I:35,O:16) 120 14.60 261 0 0 0 0
appx1 (32000, 8, 50) 104 14.60 220 7 43 3 140
appx2 (-1, -1, 25) 53 3.00 110 65535 24 16 1
appx3 (10000, 12, -1) 101 14.40 209 8 97 4 141

term1 (I:34,O:10) 142 11.10 336 0 0 0 0
appx1 (500, 5, 50) 113 11.10 249 306 38 5 57
appx2 (-1, -1, 25) 84 8.10 179 1012 25 7 1
appx3 (300, 8, -1) 73 11.10 150 278 99 8 35

Design†/Synthesis†† Gates? Delay? Area? ewc eer ebf time

(ewc-in, ebf-in, eer-in)†† (ns) (%) (sec)

Multipliers and MAC‡

ArrayMul (I:16,O:16) 420 33.40 1193 0 0 0 0
appx1 (32000,4,50) 420 33.40 1188 128 49 1 759
appx2 (-1,-1,25) 435 31.60 1234 256 24 8 1
appx3 (20000,14,-1) 404 33.20 1086 16448 99 9 107

WallaceMul (I:16,O:16) 398 33.50 1156 0 0 0 0
appx1 (32000, 4, 50) 397 33.50 1146 512 49 1 1055
appx2 (-1,-1, 25) 391 31.50 1142 512 23 7 3
appx3 (20000, 14, -1) 352 33.50 1029 5952 99 10 82

DaddaMul (I:16,O:16) 383 30.20 1082 0 0 0 0
appx1 (32000, 4, 50) 382 30.20 1072 1024 47 1 1145
appx2 (-1, -1, 25) 368 30.20 1047 832 24 10 7
appx3 (20000, 14, -1) 331 30.20 933 2368 99 10 78

Mac8 (I:24,O:16) 434 32.30 1237 0 0 0 0
appx1 (32000, 4, 50) 433 32.30 1227 256 49 1 1483
appx2 (-1, -1, 25) 421 32.30 1208 768 23 8 79
appx3 (20000, 8, -1) 411 32.30 1127 16704 99 8 135

Mac32 (I:48,O:33) 519 48.10 1506 0 0 0 0
appx1 (-1, -1, 25) 485 34.20 1371 65536 24 17 1136

Parity� (I:32,O:36) 136 13.00 276 0 0 0 0
appx1 (-1, 1, -1)∗∗ 111 13.00 215 4G 50 1 29
appx2 (-1, 2, -1)∗∗ 86 13.00 154 12G 75 2 24
appx3 (-1, 3, -1)∗∗ 61 13.00 94 30G 88 3 24

Priority‡‡ (I:32,O:36) 96 26.30 225 0 0 0 0
appx1 (1, -1, -1) 78 19.60 176 1 83 1 168
appx2 (4, -1, -1) 45 16.90 91 4 96 3 69
appx3 (10, -1, -1) 43 12.10 94 8 40 4 12

Bin2BCD± (I:8,O:10) 240 30.20 563 0 0 0 0
appx1 (-1, -1, 10) 231 28.00 529 576 6 2 1
appx2 (-1, -1, 20) 229 28.00 524 576 19 5 1
appx3 (-1, -1, 30) 214 27.50 492 110 28 7 1

BCD2Bin∓ (I:10,O:8) 64 16.10 209 0 0 0 0
appx1 (10, -1, -1) 62 16.10 194 8 9 3 33
appx2 (25, -1, -1) 62 16.10 189 22 93 4 31
appx3 (50, -1, -1) 61 16.10 182 46 97 5 19

† Design name given with primary-inputs (I) and primary-outputs (O) in parenthesis.
†† ewc-in, ebf-in and eer-in are the error criteria (ewc, ebf , eer) given as input to the tool. Value -1 indicates that this metric is not enforced.

eer-in is specified as a percentage value. Synthesized output circuits are appx1, appx2 and appx3. Tool runs are with effort level low.
? As reported by ABC [17] with library mcnc.genlib. Area reports normalized to INVX1

‡ Multipliers and multiply accumulate (MAC) designs are generated from : http://www.aoki.ecei.tohoku.ac.jp/arith [1].
� Parity Generator, (4 bits parity, 32 bits data). ∗∗ G stands for a multiplier of 109. Numerical precision omitted for brevity.
‡‡ 32 to 5 Priority Encoder. ±,∓ Binary to BCD and BCD to Binary converters; 3 digit BCD and 10 bit binary.

a consequence, the synthesis approximated circuits have a
substantially improved area-delay product value. In gen-
eral, as the circuit size (area and gate count) reduces, the
power consumed by the circuit also decreases. Hence these
approximated circuits also benefit from reduced power con-
sumption.

6. CONCLUSIONS
In this paper, we proposed an automatic synthesis ap-

proach for approximate circuits using AIG-based rewriting
as underlying technique. Our method can synthesize high
quality approximation circuits within user-specified error
bounds for worst-case error, bit-flip error, and error-rate.
Experimental evaluation on several applications confirm that
our methodology has a large potential and the synthesized
circuits are even comparable to hand-crafted architecturally
approximated circuits in quality. Besides, we presented case
studies where the ability of our method to significantly im-
prove circuit performance, capitalizing on less significant er-

ror criteria while respecting more stringent ones, is demon-
strated.

In future work we want to increase quality by finding bet-
ter strategies for cut replacement and path selection. Fur-
thermore, we want to increase applicability by restricting the
rewriting to user-defined parts of the circuit. The user can
then specify, e.g., to only approximate the data path but
not change the control path.

Acknowledgments. This work was supported by the Ger-
man Research Foundation (DFG) in the project MANIAC
(DR 287/29-1), by the University of Bremen’s graduate school
SyDe, funded by the German Excellence Initiative, by the
German Federal Ministry of Education and Research (BMBF)
in the project EffektiV (01IS13022E), by H2020-ERC-2014-
ADG 669354 CyberCare, and by the German Academic Ex-
change Service (DAAD).

References
[1] Aoki Laboratory - Graduate School of Information Sci-

ences. Tohoku University, 2016. http://www.aoki.ecei.
tohoku.ac.jp/arith.

[2] A. Bernasconi and V. Ciriani. 2-SPP approximate syn-
thesis for error tolerant applications. In EUROMICRO
Symposium on Digital System Design, pages 411–418,
Aug 2014.

[3] M. Breuer. Determining error rate in error tolerant
VLSI chips. In Electronic Design, Test and Applica-
tions, pages 321–326, Jan 2004.

[4] A. Chandrasekharan, M. Soeken, D. Große, and
R. Drechsler. Precise error determination of approx-
imated components in sequential circuits with model
checking. In Design Automation Conf., 2016.

[5] J. Cong and Y. Ding. Combinational logic synthesis for
lut based field programmable gate arrays. ACM Trans.
Des. Autom. Electron. Syst., 1(2):145–204, Apr. 1996.

[6] N. Een. Cut sweeping. Cadence Design Systems, Tech.
Rep, 2007.

[7] GeAr-ApproxAdderLib. Chair for Embedded Systems
- Karlsruhe Institute of Technology, 2015. http://ces.
itec.kit.edu/1025.php.

[8] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan,
and K. Roy. Impact: Imprecise adders for low-power
approximate computing. In Low Power Electronics and
Design (ISLPED) 2011 International Symposium on,
pages 409–414, Aug 2011.

[9] A. Kahng and S. Kang. Accuracy-configurable adder for
approximate arithmetic designs. In Design Automation
Conf., pages 820–825, June 2012.

[10] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading ac-
curacy for power with an underdesigned multiplier ar-
chitecture. In VLSI Design, pages 346–351, Jan 2011.

[11] N. Li and E. Dubrova. AIG rewriting using 5-input
cuts. In Computer Design (ICCD), 2011 IEEE 29th
International Conference on, pages 429–430, Oct 2011.

[12] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and
C. Piguet. Energy parsimonious circuit design through
probabilistic pruning. In 2011 Design, Automation Test
in Europe, pages 1–6, March 2011.

[13] D. Lundgren. OpenCore JPEG Encoder - Open-
Cores community, 2016. http://opencores.org/project,
jpegencode.

[14] S. Malik, A. R. Wang, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Logic verification using bi-
nary decision diagrams in a logic synthesis environment.
In , IEEE International Conference on Computer-Aided
Design, 1988. ICCAD-88. Digest of Technical Papers,
pages 6–9.

[15] J. Miao, A. Gerstlauer, and M. Orshansky. Approxi-
mate logic synthesis under general error magnitude and
frequency constraints. In International Conference on
Computer-Aided Design, pages 779–786. IEEE, 2013.

[16] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Mod-
eling and synthesis of quality-energy optimal approxi-

mate adders. In 2012 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), pages
728–735, Nov 2012.

[17] A. Mishchenko, M. Case, R. K. Brayton, and S. Jang.
Scalable and scalably-verifiable sequential synthesis. In
International Conference on Computer-Aided Design,
pages 234–241, Nov 2008.

[18] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Dag-
aware aig rewriting a fresh look at combinational logic
synthesis. In Proceedings of the 43rd Annual Design
Automation Conference, DAC ’06, pages 532–535, New
York, NY, USA, 2006. ACM.

[19] P. Pan and C.-C. Lin. A new retiming-based technology
mapping algorithm for LUT-based FPGAs. In Proceed-
ings of the 1998 ACM/SIGDA Sixth International Sym-
posium on Field Programmable Gate Arrays, FPGA ’98,
pages 35–42, New York, NY, USA, 1998. ACM.

[20] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and
A. Raghunathan. ASLAN: Synthesis of approximate
sequential circuits. In Design, Automation and Test in
Europe, pages 1–6, March 2014.

[21] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. A low
latency generic accuracy configurable adder. In Design
Automation Conf., pages 1–6, June 2015.

[22] D. Shin and S. Gupta. Approximate logic synthesis for
error tolerant applications. In Design, Automation and
Test in Europe, pages 957–960, March 2010.

[23] D. Shin and S. K. Gupta. A new circuit simplification
method for error tolerant applications. In Design, Au-
tomation and Test in Europe, pages 1–6, 2011.

[24] M. Soeken, D. Große, A. Chandrasekharan, and
R. Drechsler. BDD minimization for approximate com-
puting. In ASP Design Automation Conf., 2016.

[25] http://baldur.iti.kit.edu/sat-race-2015/. SAT-Race
2015, International Conference on Theory and Appli-
cations of Satisfiability Testing, 2015.

[26] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy,
and A. Raghunathan. Salsa: Systematic logic synthesis
of approximate circuits. In Design Automation Conf.,
pages 796–801, June 2012.

[27] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghu-
nathan. MACACO: modeling and analysis of circuits
for approximate computing. In International Confer-
ence on Computer-Aided Design, pages 667–673, 2011.

[28] C. Wolf. Yosys - Yosys Open SYnthesis Suite, 2015.
http://www.clifford.at/yosys/about.html.

[29] S. Yang. Logic synthesis and optimization benchmarks
user guide version 3.0, 1991.

[30] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu.
On reconfiguration-oriented approximate adder design
and its application. In International Conference on
Computer-Aided Design, pages 48–54, Nov 2013.

[31] N. Zhu, W. L. Goh, and K. S. Yeo. An enhanced low-
power high-speed adder for error-tolerant application.
In Integrated Circuits, ISIC ’09. Proceedings of the 2009
12th International Symposium on, pages 69–72, Dec
2009.

