
SAT-Based Combinational and Sequential
Dependency Computation

Mathias Soeken1(B), Pascal Raiola2, Baruch Sterin3, Bernd Becker2,
Giovanni De Micheli1, and Matthias Sauer2

1 EPFL, Lausanne, Switzerland
mathias.soeken@epfl.ch

2 University of Freiburg, Freiburg im Breisgau, Germany
3 UC Berkeley, Berkeley, CA, USA

Abstract. We present an algorithm for computing both functional
dependency and unateness of combinational and sequential Boolean func-
tions represented as logic networks. The algorithm uses SAT-based tech-
niques from Combinational Equivalence Checking (CEC) and Automatic
Test Pattern Generation (ATPG) to compute the dependency matrix of
multi-output Boolean functions. Additionally, the classical dependency
definitions are extended to sequential functions and a fast approximation
is presented to efficiently yield a sequential dependency matrix. Exten-
sive experiments show the applicability of the methods and the improved
robustness compared to existing approaches.

1 Introduction

In this paper we present an algorithm to compute the dependency matrix D(f)
for a given combinational or sequential multi-output function f . For every input-
output pair, the combinational dependency matrix indicates whether the output
depends on the input, and whether the output is positive or negative unate in
that input [21].

Several algorithms in logic design use the dependency matrix as a signa-
ture [23] to speed up computation, e.g., Boolean matching [14], functional veri-
fication [11,12], or reverse engineering [29]. Although most of these algorithms
make implicit use of the dependency matrix, the name has been used in this paper
for the first time. The name is inspired by the output format of functional depen-
dence and unateness properties in the state-of-the-art academic logic synthesis
tool ABC [4]. Functional dependency is also related to transparent logic [19,24].
Given a set of inputs Xd and a set of outputs Yd, the problem is to find a set
of inputs Xc that is disjoint from Xd and that distinguishes the output values
at Yd for different input assignments to Xd. In contrast, we consider functional
dependence without constraints for all input-output pairs.

Existing algorithms for computing the dependency matrix are based on
Binary Decision Diagrams (BDDs, [5]) and have been implemented in ABC [4].
It is important to point out that the term functional dependence is used
c© Springer International Publishing AG 2016
R. Bloem and E. Arbel (Eds.): HVC 2016, LNCS 10028, pp. 1–17, 2016.
DOI: 10.1007/978-3-319-49052-6 1



2 M. Soeken et al.

to describe a different property in a related context: In [12,13,16], the
authors refer to functional dependence as the question whether given a set
of Boolean functions {f1, . . . , fn}, there exists an fi, that can be written as
h(f1, . . . , fi−1, fi+1, . . . , fn). In other words, functional dependence is defined as
a Boolean function w.r.t. to a set of Boolean functions. In contrast, we con-
sider the functional dependence of a Boolean function w.r.t. a single variable as
functional dependence.

Our algorithm uses techniques from Combinational Equivalence Checking
(CEC, e.g., [22]) and Automatic Test Pattern Generation (ATPG, e.g., [15,26,
27]). We employ efficient incremental SAT-based solving techniques and extract
incidental information from solved instances to reduce runtime consumption on
complex functions.

We furthermore present an extension of the combinational dependency defi-
nition to sequential functions. We account the sequential counterpart of a func-
tional dependence relation to an input-output pair if the given relation constantly
holds after some finite number of steps. As an example, some output f may be
always positive unate in some input x after a certain number of iteration steps
of the circuit. In this case, we call f sequential positive unate in x, even if this
relation is not guaranteed in the first steps.

An established method to prove properties on sequential circuits is bounded
model checking (BMC) as first introduced in [1], used, e.g., in [8,25]. In BMC
a circuit is modelled iteratively for k steps as a combinational circuit. With
approaches such as k-induction [18] and Craig interpolation [20] BMC becomes
a complete model checking method. However, as such complete methods are
rather computationally expensive, we rely on an iterative approximation to com-
pute the sequential dependency matrix solely based on the combinational depen-
dency matrix. By iteratively analyzing the combinational dependency until a
fixed point is derived, we can accurately conclude structural dependency and
unateness.

In an extensive experimental evaluation we demonstrate the applicability of
our methods to various combinational and sequential benchmark sets. Within
reasonable amounts of computing time we are able to accurately compute the
combinational dependency matrix as well as an approximation of our sequential
dependency matrix with a small number of iterations. We further show the
robustness of our proposed algorithm compared to a previous state-of-the-art
algorithm that times out or suffers from memory explosion on complex functions.
Finally, we present a case study in which the dependency matrix is used as
a signature in reverse engineering to effectively reduce the search space and
improve the performance of the underlying application.

The rest of the paper is organized as follows. Section 2 presents the fundamen-
tals of the work. In Sect. 3 we introduce our SAT-based approach to compute
the dependency matrix of combinational circuits, and extend it in Sect. 4 to
sequential circuits. The experimental results are presented in Sect. 5 and Sect. 6
concludes the work.



SAT-Based Combinational and Sequential Dependency Computation 3

2 Background

2.1 Functional Dependencies

A Boolean function f(x1, . . . , xn) is functionally dependent in xi if fx̄i
�= fxi

where the co-factors fxi
or fx̄i

are obtained by setting xi to 1 or 0 in f , respec-
tively. We call fxi

the positive co-factor and fx̄i
the negative co-factor. The

function f is said to be positive unate in xi, if

fx̄i
≤ fxi

(1)

and negative unate in xi, if
fx̄i

≥ fxi
, (2)

where the comparisons ‘≤’ and ‘≥’ are applied to the binary strings that rep-
resent the truth tables of fx̄i

and fxi
. f is said to be unate in xi if it is either

positive or negative unate in xi. Clearly, a function f is both positive and neg-
ative unate in xi, if f does not depend on xi. Hence, we call f strictly positive
(negative) unate in xi, if f is positive (negative) unate in xi and depends on xi.
If f is neither positive nor negative unate in xi, we say that f is binate in xi.

Example 1. The functions x1 ∧x2 and x1 ∨x2 are positive unate in both x1 and
x2. The function x1 → x2 is negative unate in x1 and positive unate in x2. The
function x1 ⊕ x2 is binate in both variables.

Let f : Bn → Bm be a multi-output Boolean function where each output is
represented by a Boolean function fj(x1, . . . , xn). The dependency matrix D(f)
is an m × n matrix with entries dj,i where

dj,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p if fj is strictly positive unate in xi,

n if fj is strictly negative unate in xi,

d if fj depends on, but is not unate in xi,

• otherwise.

(3)

Example 2. Let f : B5 → B3 with f1 = x1 ∧ x2, f2 = x3 → x5, and f3 =
x1 ⊕ x2 ⊕ x5. Then

D(f) =

⎡

⎣
p p • • •
• • n • p
d d • • d

⎤

⎦ .

2.2 Boolean Satisfiability

In our algorithm we translate decision problems into instances of the SAT prob-
lem [3]. SAT is the problem of deciding whether a function f , has an assignment
x for which f(x) = 1. Such an assignment is called a satisfying assignment. If f
has a satisfying assignment it is said to be satisfiable. Otherwise, f is said to be
unsatisfiable.



4 M. Soeken et al.

In general, SAT is NP-complete [6,17]. SAT solvers are algorithms that can
solve SAT problems and, while worst-case exponential, are nonetheless very effi-
cient for many practical problems. SAT solvers also return a satisfying assign-
ment if the instance is satisfiable. Most of the state-of-the-art SAT solvers are
conflict-driven and employ clause-learning techniques [10]. In incremental SAT
one asks whether f is satisfiable under the assumption of some variable assign-
ments. These assignments are only temporarily assumed, making it possible to
reuse the SAT instance and learned information when solving a sequence of sim-
ilar SAT problems. In the remainder of the paper, we refer to instances of SAT
as if they were calls to an incremental SAT solver. SAT?(f, α) is true if f is sat-
isfiable under the assumptions α, and UNSAT?(f, α) is true if f is unsatisfiable
under the assumptions α.

3 SAT-Based Dependency Computation

This section presents the SAT-based algorithm to compute the functional depen-
dencies of a function. We first describe the encoding into SAT, then an imple-
mentation of the algorithm, and finally possible optimizations.

3.1 SAT Encoding

We encode the test for functional dependence and unateness as an instance of
the SAT problem using the following theorem.

Theorem 1. Let f(x1, . . . , xn) be a Boolean function. Then

1. f is functionally dependent in xi, if and only if fx̄i
⊕ fxi

is satisfiable,
2. f is positive unate in xi, if and only if fx̄i

∧ f̄xi
is unsatisfiable, and

3. f is negative unate in xi, if and only if fxi
∧ f̄x̄i

is unsatisfiable.

Proof. We only show the direction of “if”; the “only if” direction follows imme-
diately from the definition of functional dependency and unateness.

1. Let x be a satisfying assignment to fx̄i
⊕ fxi

. Then, we have fx̄i
(x) �= fxi

(x).
2. Assume the function was satisfiable and let x be a satisfying assignment.

Then fx̄i
(x) = 1 while fxi

(x) = 0 which contradicts Eq. (1).
3. Analogously to (2). �

In the implementation, we make use of the following immediate consequence of
the theorem.

Corollary 1. f is functionally independent in xi, if and only if fx̄i
⊕ fxi

is
unsatisfiable.

In the following we consider multi-output functions f : Bn → Bm, where each
output is a function fj . In order to compute the full dependency matrix which
contains the dependency for each input-output pair, we transform the problem
to a sequence of SAT instances as illustrated by the generic miter in Fig. 1. The



SAT-Based Combinational and Sequential Dependency Computation 5

fx̄i

fxi

d1

p1

n1

dm

pm

nm

1

m

1

m

...

...

e1

en

x1

xn

x′
1

x′
n

...

...

...

Fig. 1. Generic miter to encode functional dependency as SAT instance

two boxes represent two copies of f . The upper copy, with inputs x1, . . . , xn,
is used as the negative co-factor, while the lower copy, with inputs x′

1, . . . , x
′
n,

is used as the positive co-factor of f . The groups of three gates on the lower
right hand side realize the XOR operation which connect the outputs of the two
copies. The signals of the AND gates are exposed as outputs and will be used
to encode the unateness problems. The XNOR gates in the upper right of the
figure are used to force all but one of the inputs, to have equal values.

Let Π(fj) be the characteristic Boolean function which is obtained by encod-
ing the miter in Fig. 1 for the function fj using encodings such as Tseytin [32]
or EMS [9]. Also let Ei = {xi = 0, x′

i = 1} ∪ {ek = 1 | k �= i} be assignments
that lead to a correct interpretation of the miter for input xi, i.e., xi is set to 0,
x′

i is set to 1 and all the other inputs need to have the same value. We define
three problems on top of the incremental SAT interface:

DEP(fj , xi) = SAT?(Π(fj), Ei ∪ {dj = 1}) (4)
POS UNATE(fj , xi) = UNSAT?(Π(fj), Ei ∪ {pj = 1}) (5)
NEG UNATE(fj , xi) = UNSAT?(Π(fj), Ei ∪ {nj = 1}) (6)

Then the problems described in Theorem 1 and Corollary 1 can be solved
as follows. The function fj functionally depends on xi, if DEP(fj , xi) holds.
And the function fj is positive (negative) unate in xi, if POS UNATE(fj , xi)
(NEG UNATE(fj , xi)) holds.

3.2 Algorithm

Figure 2 displays the general flow of the algorithm. For each pair of an input
x = xi and an output y = fj the algorithm starts with a simple structural
dependency check. If x is outside of y’s structural cone of influence, it can be
concluded that y is independent of x. This is a very efficient check. Otherwise,



6 M. Soeken et al.

Fig. 2. Functional dependency and unateness computation flow

the algorithm proceeds with a functional dependency check DEP(y, x) as defined
in Eq. (4). We omit the arguments from the boxes.

If the instance is unsatisfiable, y is independent from x as no assignment exists
that results in different logic values for y under the side constraint of yx̄ ⊕ yx.
In case the instance is satisfiable, x and y are at least functionally dependent.
Additionally, the SAT solver returns a satisfying assignment which is analyzed
for the logic value of y. In case yx̄ is 1 (and therefore yx is 0), y cannot be
positive unate in x as a counter example for Eq. (1) is found. Likewise, negative
unateness can be falsified if yx̄ is 0. Note that one of the two cases must hold as
the original instance requires a difference between yx̄ and yx.

In a last step, the algorithm specifically checks for unateness with an addi-
tional call to the SAT solver, unless it has been ruled out previously. If this SAT
call is unsatisfiable, unateness can be concluded, otherwise the algorithm returns
functional dependence.

3.3 Optimizations

As discussed above, we use incremental SAT solving because many of the calls to
the SAT solver are very similar. Hence, instead of encoding a miter-like structure
as illustrated in Fig. 1 for each input-output pair in an individual instance, we
encode the complete output cone of a target input xi in a single instance to profit
from incremental SAT solving. We enforce the co-factors of xi as unit clauses in
this instance. As we target combinational circuits, the direction of the co-factors
does not influence the satisfiability of the instance. Hence, we can restrict the
search space by enforcing xi to logic 1 and x′

i to logic 0 without loss of generality.
Furthermore, XOR gates are encoded for output pairs to enforce them to differ
using assumptions in the SAT solver.



SAT-Based Combinational and Sequential Dependency Computation 7

On the output side, we iteratively run through each output in x’s cone of
influence and enforce a difference between fx̄i

and fxi
using an assumption. If

the resulting instance is UNSAT we can conclude independence. Otherwise, the
input-output pair is at least functionally dependent. By observing the direction
of the difference at the output, we consider the pair either as a candidate for
positive or negative unateness and run the respective check as described earlier.1

Additionally, we perform a forward looking logic analysis of each satisfiable
SAT instance to extract incidental information for future solver calls. In our
experiments we found quite often, that the difference not only propagates to
the target output, but also to multiple other outputs. Hence, we check the logic
values of all following outputs as well. Additionally, an output may incidentally
show differences in both directions and hence unateness can be ruled out without
additional SAT calls.

The described SAT instances are very similar to detecting a stuck-at-1 fault
at the input x. Hence, we employ encoding based speed-up techniques that are
known from solving such ATPG problems. By adding D-chains [31] that add
redundant information to the instance, the SAT solver can propagate the dif-
ferences more easily. Additionally, we tuned the SAT solver’s internal settings
towards the characteristics of the circuit-based SAT instances which are domi-
nated by a large number of rather simple SAT calls. For instance, we do not use
preprocessing techniques on the SAT instances.

4 Sequential Functional Dependency

While the prior definitions and algorithms are specified for combinational cir-
cuits, we also investigate the definition of dependency in sequential circuits.

To translate the properties from Sect. 2.1 to sequential circuits, we use a
similar approach as used in (un)bounded model checking: An output yj is called
sequential functionally dependent in an input xi if and only if there exists a num-
ber k ∈ N, such that f

(k)
j is functionally dependent in xi, where f

(k)
j represents

the Boolean function of the output modelled over k steps.
For f

(1)
j the sequential circuit can be treated as a combinational one. For f

(k)
j

with k > 1, the definition of sequential dependence follows the combinational one
if the sequential circuit is considered as an iterative logic array with an unlimited
number of time frames. Hence, such a definition allows to extend combinational
dependency in a natural way to sequential dependency.

In contrast to the complexity of the combinational dependency computa-
tion of a single input-output pair (which is NP-complete since it is an ATPG
problem), sequential dependency computation is identical to invariant check-
ing which can be expressed by an unbounded model checking approach and is
PSPACE-complete.
1 We also performed a structural check for each input-output pair if there potentially

exists an inverting path between them. If this is not the case, the additionally SAT-
call to check for unateness may be skipped. However, the performance impact was
insignificant and hence we did not employ this optimization.



8 M. Soeken et al.

A C

B

Fig. 3. Example circuit

Sequential independence is defined as the contrary of sequential dependence.
An output yj is called (strictly) sequential positive/negative unate in xi, if there
exists a k0, such that for every number k ∈ N with k > k0, f

(k)
j is (strictly)

positive/negative unate in xi.

Example 3. Let f (k) be the Boolean function corresponding to the flip flop C in
the circuit in Fig. 3 in the kth step. Then C is alternating strictly positive and
negative unate in A. Thus, C is neither sequential positive nor negative unate
in A. However, C is sequential dependent in A.

4.1 Approximative Algorithm

We use the methods from Sect. 3 to compute the combinational dependency
matrix D(f) for f (0) and then initialize the sequential dependency Matrix Ds(f)
as D(f). For clarity, to refer to an entry of the dependency matrix with output
yj and input xi we write dyj ,xi

instead of dj,i. Respective entries of the sequential
dependency matrix are denoted as ds

j,i.
For each output y = fj and input x we check, if there exist xk and yl, such

that

– xk and yl correspond to the same flip flop ϕ,
– ds

y,xk
�= • and

– ds
yl,x

�= •.

The path-dependence of y in x over ϕ is defined with the equation

pdϕ(y, x) =

⎧
⎪⎨

⎪⎩

p if dy,xk
, dyl,x unate and dy,xk

= dyl,x,

n if dy,xk
, dyl,x unate and dy,xk

�= dyl,x,

d otherwise.
(7)

If pdϕ(y, x) �= ds
y,x, we may need to update the dependence value of the

sequential dependency matrix ds
y,x:

ds
y,x ←

{
pdϕ(y, x) if pdϕ(y, x) = ds

y,x ∨ ds
y,x = •,

d otherwise.
(8)

Now we choose different yl, xk, y and/or x and start from the top until
we reach a fixed point. Our algorithm focuses on positive unateness (p) and
negative unateness (n), in contrast to strict positive unateness (p) and strict
negative unateness (n).



SAT-Based Combinational and Sequential Dependency Computation 9

A C

B

D

E
x1

y2

y4

x2

x4

x3 y6

Fig. 4. Example circuit (2)

According to the definitions in the previous section, all dependencies marked
as seq. positive unate (p), seq. negative unate (n) or seq. independent (•) by our
approximation are correctly classified as we will show in Sect. 4.2.

However, the dependencies marked as seq. functionally dependent (d) may
be inaccurate as ds

j,i = d is an over-approximation. Hence, the algorithm allows
an accurate classification for three dependency conditions, while avoiding the
computational complexity of a completely accurate algorithm (that still can be
applied if completeness is needed).

To see that ds
j,i = d does not generally imply sequential dependence, see

Fig. 4, where ds
6,2 = d, ds

2,1 = p, ds
6,4 = d and ds

4,1 = p. Therefore ds
6,1 = d, but

because of the partly inverse reconvergence, y6 is sequentially independent in x1.
If the XNOR-Gate in Fig. 4 was replaced by an XOR-Gate, y6 would be

sequentially dependent in x1, while no values of its combinational dependency
matrix would differ from the combinational dependency matrix of the original
circuit. Since these two circuits have the same combinational dependency matrix,
but different sequential dependency matrices, it is not possible to build an exact
algorithm for sequential dependency, solely based on the combinational depen-
dency matrix.

4.2 Proof of Correctness for p, n and •
The correctness of the classification of an input-output pair as either p, n or •
can be shown as follows:

p: Proof by contradiction: For the correctness of the return value p, let the
algorithm return p for output (or flip flop) y and input (or flip flop) x, but
y is not sequential positive unate in x. Then there exists an (arbitrary high)
k ∈ N, such that f (k), the Boolean function of y, is not positive unate in
x. Following from the definition of unateness (cf. Sect. 2.1), there exists an
input sequence x̂, such that f

(k)
x (x̂) = 1 and f

(k)
x (x̂) = 0. For clarity, we use

the abbreviations x[x] = 0, y[x] = 1 and x[x] = 1, y[x] = 0 where [x] and
[x] indicate the logic value for the respective case. There must exist a path
from x to y, where the path follows x = p0, p1, . . . , pm−1, pm = y, all pi with
0 < i < m represent flip flops and ∀i ≤ m : p

[x]
i �= p

[x]
i .

For any i < m, pi+1 combinationally depends on pi, therefore the entry in
the combinational dependency matrix for pi+1 on pi (dpi+1,pi

) is not •, thus



10 M. Soeken et al.

d, p or n. As seen in Eq. 8, no dependency value gets overwritten by •, which
leads to ds

pi+1,pi
∈ {d, n, p} for all i. If ds

pi+1,pi
in any calculation step was

d, ds
pi+1,pi

would be d in the sequential dependency matrix, as d can not get
overwritten. Then, by Eq. 7, pdϕ(x, y) would be step-wise calculated as d,
which would result in ds

y,x = d in contradiction to the algorithm returning p.
Thus, for any i < m, it holds that ds

pi+1,pi
∈ {n, p}.

Let ISame = {i < m : p
[x]
i = p

[x]
i+1} and IDiff = {i < m : p

[x]
i �= p

[x]
i+1},

then IDiff contains an odd number of elements, because p
[x]
0 �= p

[x]
m . For any

i ∈ ISame, it holds that ds
pi+1,pi

�= n resp. ds
pi+1,pi

= p in every calculation
step and similarly for any i ∈ IDiff , always ds

pi+1,pi
= n. The calculated

dependency pd for the given path along p0, . . . , pm will then be calculated
based on an odd number of n and otherwise only p, which will by Eq. 7 result
in path dependence n. Therefore, by Eq. 8, the algorithm does not return p,
a contradiction.

n: The proof of the correctness of the return value n is analogous to the proof
of the correctness of p. The major difference is that IDiff contains an even
number of elements. This will force a path calculation to result in p, making
impossible, that the algorithm returns n.

•: Proof by contradiction: For the correctness of the return value •, let the algo-
rithm return • for output y and input x, but y is not sequential independent
in x, i.e. sequential dependent in x. Following from a similar argument as for
p, there must exist a path, which follows x = p0, p1, . . . , pm−1, pm = y, all pi

with 0 < i < m represent flip flops and ∀i ≤ m : p
[x]
i �= p

[x]
i . By Eq. 8, every

ds
pi+1,pi

in any calculation step is not •. Then pdϕ(x, y) would by Eq. 7 be
step-wise calculated not as •, which would by Eq. 8 result in ds

pi+1,pi
�= •

in the sequential dependency matrix, in contradiction to the algorithm
returning •. �

5 Experimental Results

We implemented the proposed approach in C++ on top of the ATPG framework
PHAETON [26] and the SAT solver antom [28]. All experiments were carried out
on a single core of an Intel Xeon machine running at 3.3 GHz, 64 GB main mem-
ory running Linux 3.13. For the evaluations, we used combinational arithmetic
benchmarks from EPFL2 as well as sequential benchmarks from the ITC’99 [7]
benchmark suite and industrial benchmarks provided by NXP (starting with ‘b’
and ‘p’ followed by a number, respectively). Finally, we applied the method to
the OpenCore benchmarks from the IWLS’05 [2] family. In order to keep the
section compact, we skipped the benchmarks that had either negligible runtime
or that could not be solved within a timeout of 2 h.

2 lsi.epfl.ch/benchmarks.

http://lsi.epfl.ch/benchmarks


SAT-Based Combinational and Sequential Dependency Computation 11

Table 1. Combinational experiments

Circuit IO Dependencies Statistics Runtimes

Struct. Func. Pos. Neg. Incidental Instances Solves Unateness Total

adder 256129 0 16512 256 0 16512 256 17024 4.07 4.40

bar 135128 0 896 16384 0 777 135 33670 1.08 17.70

divisor 128128 0 12220 66 2082 13026 128 9519 4502.32 4871.53

log2 3232 0 1022 0 2 979 32 686 3746.98 3750.90

max 512130 32512 32512 1024 512 15271 512 82241 37.13 110.24

sin 2425 0 577 22 0 441 24 472 17.86 31.23

square 64128 0 6041 68 3 5956 64 3926 447.34 450.51

b14 277299 11 21803 705 68 18403 277 22368 20.74 27.71

b15 485519 19504 40704 3338 292 33017 485 57931 77.33 231.29

b17 14511511 44054 135906 11271 1225 109432 1451 177747 234.55 637.20

b18 33073293 1084 331223 22367 2250 266523 3307 326342 439.45 690.52

b20 522512 5298 51508 1212 370 42795 522 52742 120.06 232.61

b21 522512 5310 51508 1238 136 42171 522 53808 94.69 203.93

b22 735725 5313 78254 1740 359 65388 735 76254 163.15 280.46

p35k s 28612229 0 140676 10802 10697 123321 2861 147727 628.73 1090.66

p45k s 37392550 409 24910 13638 860 14256 3739 62307 20.84 59.95

p78k s 31483484 377 52338 6032 0 48970 3148 50197 47.34 73.73

p81k s 40293952 1380 387839 11724 18737 324849 4029 308638 419.38 897.82

p100k s 55575489 756 77829 24347 3406 51415 5557 147954 4959.58 5236.16

des area 367192 0 11328 288 0 9756 367 5623 2.78 6.16

spi 272273 16256 4205 982 117 1977 272 24649 1.54 10.03

systemcdes 312255 592 2341 590 8 1580 312 4222 0.61 1.57

wb dma 747748 1195 10880 2364 842 6674 747 19879 2.25 4.54

tv80 372391 9452 15265 1917 218 11906 372 28468 9.71 21.49

systemcaes 928799 14613 17158 939 44 13273 928 29743 7.43 19.21

ac97 ctrl 22532247 10 7940 7083 831 5315 2253 25510 0.87 2.67

pci bridge32 35173559 9906 59360 12179 2512 38839 3517 108600 57.35 106.20

aes core 788659 0 7290 541 29 6285 788 5636 2.17 4.43

wb conmax 18992186 1976 46132 23968 16346 37884 1899 125420 39.40 98.11

des perf 90418872 0 29344 7448 0 18627 9041 51718 16.63 68.60

All times are in seconds.

5.1 Combinational Dependency

Table 1 lists the results of the evaluation. The first three columns list the name
of the circuit as well as the number of inputs and outputs. The following four
columns list the identified dependencies. The number of only structural depen-
dencies (that are found to be independent) are given first followed by the number
of dependent classifications (excluding unateness) and finally the number of pos-
itive or negative unate classifications, respectively. The next three columns list
statistics of the proposed SAT-based approach: The number of functional depen-
dencies that were found incidentally followed by the number of generated SAT
instances and calls to the SAT solver. The final two columns list the runtime for
unateness checking and the total runtime in seconds.

As can be seen, our approach is able to completely compute the depen-
dency matrix on a wide range of mid-sized circuits taken from various academic
and industrial benchmark circuits within a maximum computation time of 2 h
(7200 s).



12 M. Soeken et al.

Interestingly, the number of input-output pairs that are positive unate are
roughly an order of magnitude higher than those that are negative unate. This
is most prominent for the barrelshifter circuit ‘bar’ from the EPFL benchmarks
that contains mostly positive unate pairs but no negative one.

The effect of the optimizations described in Sect. 3.3 can be witnessed by
the high number of dependencies identified incidentally as well the high ratio
between the number of instances as well as the calls to the SAT solvers. Hence,
these methods effectively keep the runtimes in check.

5.2 Comparison to Existing Approach

We compared our approach to the BDD-based implementation in ABC [4] where
identical circuit definitions readable for both tools were available. We listed the
results in Table 2.

The proposed SAT-based approach shows superior performance for the rather
complex benchmark sets of the EPFL as well as the ITC’99 benchmarks where
the approach does not suffer from excessive memory usage. For complex func-
tions, the BDD-based approach did not terminate due to insufficient memory
requirements.

For the EPFL benchmarks, the BDD-based approach did not terminate due
to a timeout which we set to 7200 s. 7 of the 10 arithmetic EPFL benchmarks
can be solved using the SAT-based approach, and for 6 of them the SAT-based

Table 2. Comparison to the BDD-based approach from ABC [4]

Runtimes ABC [4]

Circuit In/Out Unate. Total Unate. Total

adder 256/129 4.07 4.40 0.01 0.54

bar 135/128 1.08 17.70 18.96 19.05

divisor 128/128 4502.32 4871.53 TO TO

log2 32/32 3746.98 3750.90 TO TO

max 512/130 37.13 110.24 TO TO

sin 24/25 17.86 31.23 0.15 866.99

square 64/128 447.34 450.51 TO TO

b14 277/299 20.74 27.71 74.17 120.07

b15 485/519 77.33 231.29 199.45 368.25

b17 1451/1511 234.55 637.20 MO MO

b18 3307/3293 439.45 690.52 MO MO

b20 522/512 120.06 232.61 MO MO

b21 522/512 94.69 203.93 MO MO

b22 735/725 163.15 280.46 MO MO

All times are in seconds; MO: memory out; TO: timeout
(≥7200 s).



SAT-Based Combinational and Sequential Dependency Computation 13

approach found the solution faster. The three remaining benchmarks cannot be
solved within 7200 s by both approaches. It is worth noting that for benchmarks
that are rather small or structurally simple (such as the adder) the BDD-based
approach performs faster than the SAT-based approach.

5.3 Sequential Dependency

Table 3 shows the results of the sequential dependency computation algorithm
as presented in Sect. 4 that was executed on the sequential versions of the bench-
mark circuits from the previous experiment where possible. At first, the name of
the circuit, the number of flip flops as well as the number of inputs and outputs
are given. Following, as in the previous section we list the different dependen-
cies as well as the number of iterations through the combinational dependency
matrix. Finally, the runtimes for the generation of the combinational dependency
matrix, the extension to the sequential matrix as well as the total runtime (all
in seconds) are given.

As can be seen, the sequential algorithm needs only a few iterations to con-
clude the sequential dependency for all benchmarks. Hence, the overall impact
on the runtime is limited and for most of the circuits less than the runtime of
the combinational method. When comparing the results of the dependencies, one

Table 3. Sequential experiments

Circuit FFs IO Sequential dependencies Runtime SAT-based

Struct. Func. Pos. Neg. Iterations Comb. Sequential Total

b14 245 3254 62 60702 108 1 3 27.71 0.06 27.77

b15 449 3670 18112 161327 282 4 3 231.29 0.40 231.69

b17 1414 3797 3020 1680385 217 0 3 637.20 17.27 654.47

b18 3270 3723 0 10575260 87 2 3 690.52 362.10 1052.62

b20 490 3222 0 246240 38 2 3 232.61 0.85 233.46

b21 490 3222 0 246240 38 2 2 203.93 0.57 204.50

b22 703 3222 0 487257 59 3 3 280.46 5.21 285.68

p35k s 2173 68856 0 243835 10786 10712 3 1090.66 2.39 1093.05

p45k s 2331 1408219 90 1826005 1093874 3253 5 59.95 208.98 268.94

p78k s 2977 171507 0 616075 26788 0 5 73.73 28.76 102.50

p81k s 3877 15275 1566 2974664 6693 8024 3 897.82 85.70 983.51

p100k s 5395 16294 92 4797360 1091341 5894 5 5236.16 301.64 5537.80

des area 128 23964 0 70464 0 0 3 6.16 0.03 6.19

spi 229 4344 27456 21010 1050 11 3 10.03 0.05 10.08

systemcdes 190 12265 0 47603 3202 2 4 1.57 0.04 1.61

wb dma 533 214215 0 128209 1268 79 4 4.54 0.89 5.43

tv80 359 1332 0 132696 59 2 3 21.49 0.23 21.72

systemcaes 670 258129 0 716373 1 0 3 19.21 2.32 21.53

ac97 ctrl 2199 5448 5 132290 155065 658 3 2.67 7.11 9.79

pci bridge32 3358 159201 20030 3825065 12332 155 3 106.20 138.70 244.90

aes core 530 258129 0 285777 390 4 3 4.43 2.00 6.43

wb conmax 770 11291416 0 647425 13152 512 3 98.11 5.39 103.50

des perf 8808 23364 0 13852506 116088 0 3 68.60 1129.18 1197.78



14 M. Soeken et al.

can note that the number of functional dependencies increases at the cost of the
other classifications. This is expected as many structural dependencies get func-
tional when considering multiple timeframes. Additionally, the requirements for
sequential positive as well as sequential negative unateness are much harder to
meet than their combinational counterparts and hence such classifications tend
to be changed to a functional dependency.

5.4 Application to Reverse Engineering

We show the applicability of functional dependency and unateness information
in a small case study of reverse engineering. We consider the Permutation-
Independent Subset Equivalence Checking (SPIEC) problem [29]: Given a block
fb : Bn → Bm and a component fc : Br → Bs with n ≥ r and m ≥ s, SPIEC
asks whether there exists a mapping from all primary inputs and primary out-
puts of fc to primary inputs and primary outputs in fb such that the block
realizes the same function as the component w.r.t. this mapping.

The algorithm presented in [29] solves this problem by finding subgraph iso-
morphisms of simulation graphs for the block and the component. A simulation
graph has input vertices, output vertices, and vertices for some characteristic
simulation vectors. A subgraph isomorphism in these graphs provides a candidate
mapping that can be verified using combinational equivalence checking [22]. Sub-
graph isomorphism is translated into a constraint satisfaction problem according
to [30] while additionally considering application-specific information extracted
from the circuits, e.g., functional dependency and unateness properties.

The constraint satisfaction implementation starts by creating a domain for
each vertex in the component’s simulation graph. The domain is a set of possible
candidate vertices in the block’s simulation graph. Filtering methods then try
to reduce the size of the domains such that eventually either (i) some domain
is empty and therefore no matching exists, or (ii) all domains contain a single
element from which the mapping can directly be extracted. If the filtering tech-
niques cannot advance to any of these two cases, one has to start branching
using a backtracking algorithm. The aim is to avoid backtracking, which can be
achieved by effective filtering methods.

In our experiment we considered the impact of the dependency matrix by
comparing three different scenarios: (i) no information is provided, (ii) the depen-
dency matrix is provided for the component which allows the use of structural
dependency information as a signature, and (iii) the dependency matrix is pro-
vided for both the block and the component allowing the use of functional depen-
dency and unateness properties as signatures for filtering. We measure the qual-
ity by comparing the accumulated domain sizes after all filtering methods are
exhausted right before backtracking is initiated.

Table 4 shows the results of our experiments. The circuits for blocks (c1–
c10) and components (adder, multi, shift,3 and subtract) are the same that were
3 In [29] shift-left and shift-right are considered separately. Since these operations are

equivalent under permutation, the measured numbers in the experiment also do not
differ.



SAT-Based Combinational and Sequential Dependency Computation 15

Table 4. Reverse engineering experiment

adder multi shift subtract

c1-8 0/0/0 730/661/609 44/44/44 0/0/0
c2-8 890/770/482 1753/706/612 1217/595/578 860/639/428
c3-8 489/24/24 797/455/425 577/256/240 0/0/0
c4-8 712/0/0 1280/0/0 1024/421/421 26/26/26
c5-8 690/462/24 1405/423/401 1089/44/44 26/26/26
c6-8 1234/1140/273 1820/0/0 1600/930/930 719/989/422
c7-8 141/25/25 796/0/0 576/401/401 27/27/27
c8-8 368/0/0 576/0/0 427/44/44 0/0/0
c9-8 1291/984/24 1885/566/476 1665/645/636 951/881/388
c10-8 131/24/24 1596/0/0 456/253/253 0/0/0

evaluated in [29] in their 8-bit variant. Each cell in the matrix represents the
application of SPIEC to the block and component of the respective row and
column, respectively. Each cell shows three numbers. These numbers are the
accumulated domain sizes of primary inputs and outputs for each of the three
considered scenarios. The cell is shaded gray if the component is contained in the
block. As can be seen in the table, the dependency matrix has a strong influence
on the results since the domain sizes can be significantly reduced, often resulting
in a matching that provides a solution. For example, in the case of c9 and the
adder a mapping has been found only if the dependency matrices for both the
block and the component are provided. In the case of c4 and the adder one needs
to compute at least the component’s dependency matrix to conclude that it is
not contained in that block without backtracking.

6 Conclusions

We presented a SAT-based algorithm to compute functional dependence proper-
ties of combinational as well as sequential Boolean functions. We inspect which
outputs in a multi-output function are functionally dependent on which inputs.
Furthermore, the algorithms checks whether the input-output pair is unate if it
is dependent, which is a stronger property. Furthermore, incremental encoding
techniques known from ATPG problems are employed to speed up the algorithm.
Additionally, we extended the classical dependency classifications to sequential
circuits and presented an iterative approximative algorithm to compute such
sequential dependencies.

In extensive experimental studies on different benchmarks suites we detailed
the robustness of the algorithms especially for hard combinational as well as
sequential benchmarks. Additionally, our methods show better performance com-
pared to previously presented BDD-based approaches with which many of the
instances cannot be solved due to memory limitations or timeouts.



16 M. Soeken et al.

Acknowledgments. The authors wish to thank Robert Brayton and Alan
Mishchenko for many helpful discussions. This research was partially financed by
H2020-ERC-2014-ADG 669354 CyberCare and the Baden-Württemberg Stiftung
gGmbH Stuttgart within the scope of its IT security research programme.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model check-
ing using SAT procedures instead of BDDs. In: Design Automation Conference,
pp. 317–320 (1999)

2. Albrecht, C.: IWLS 2005 benchmarks. In: International Workshop for Logic Syn-
thesis (IWLS) (2005). http://www.iwls.org

3. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

4. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 24–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 5

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

6. Cook, S.A.: The complexity of theorem-proving procedures. In: Symposium on
Theory of Computing, pp. 151–158 (1971)

7. Corno, F., Reorda, M., Squillero, G.: RT-level ITC’99 benchmarks and first ATPG
results. IEEE Des. Test Comput. 17(3), 44–53 (2000)

8. Saab, D.G., Abraham, J.A., Vedula, V.M.: Formal verification using bounded
model checking: SAT versus sequential ATPG engines. In: VLSI Design, pp. 243–
248 (2003)

9. Een, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501,
pp. 272–286. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0 26

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24605-3 37

11. van Eijk, C.A.J., Jess, J.A.G.: Exploiting functional dependencies in finite state
machine verification. In: European Design and Test Conference, pp. 9–14 (1996)

12. Jiang, J.-H.R., Brayton, R.K.: Functional dependency for verification reduction.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 268–280. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-27813-9 21

13. Jiang, J.R., Lee, C., Mishchenko, A., Huang, C.: To SAT or not to SAT: scalable
exploration of functional dependency. IEEE Trans. Comput. 59(4), 457–467 (2010)

14. Katebi, H., Markov, I.L.: Large-scale Boolean matching. In: Design, Automation
and Test in Europe, pp. 771–776 (2010)

15. Larrabee, T.: Test pattern generation using Boolean satisfiability. IEEE Trans.
CAD Integr. Circuits Syst. 11(1), 4–15 (1992)

16. Lee, C., Jiang, J.R., Huang, C., Mishchenko, A.: Scalable exploration of functional
dependency by interpolation and incremental SAT solving. In: International Con-
ference on Computer-Aided Design, pp. 227–233 (2007)

17. Levin, L.A.: Universal sequential search problems. Probl. Inf. Transm. 9(3), 115–
116 (1973)

http://www.iwls.org
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1007/978-3-540-72788-0_26
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-27813-9_21


SAT-Based Combinational and Sequential Dependency Computation 17

18. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). doi:10.1007/3-540-40922-X 8

19. Marhöfer, M.: An approach to modular test generation based on the transparency
of modules. In: IEEE CompEuro 1987, pp. 403–406 (1987)

20. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45069-6 1

21. McNaughton, R.: Unate truth functions. IRE Trans. Electron. Comput. 10(1), 1–6
(1961)

22. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to com-
binational equivalence checking. In: International Conference on Computer-Aided
Design, pp. 836–843 (2006)

23. Mohnke, J., Molitor, P., Malik, S.: Limits of using signatures for permutation
independent Boolean comparison. Form. Methods Syst. Des. 21(2), 167–191 (2002)

24. Murray, B.T., Hayes, J.P.: Test propagation through modules and circuits. In:
International Test Conference, pp. 748–757 (1991)

25. Reimer, S., Sauer, M., Schubert, T., Becker, B.: Using MaxBMC for pareto-optimal
circuit initialization. In: Conference on Design, Automation and Test in Europe,
pp. 1–6, March 2014

26. Sauer, M., Becker, B., Polian, I.: PHAETON: a SAT-based framework for timing-
aware path sensitization. IEEE Trans. Comput. PP(99), 1 (2015)

27. Sauer, M., Reimer, S., Polian, I., Schubert, T., Becker, B.: Provably optimal test
cube generation using quantified Boolean formula solving. In: ASP Design Automa-
tion Conference, pp. 533–539 (2013)

28. Schubert, T., Reimer, S.: antom (2013). https://projects.informatik.uni-freiburg.
de/projects/antom

29. Soeken, M., Sterin, B., Drechsler, R., Brayton, R.K.: Reverse engineering with
simulation graphs. In: Formal Methods in Computer-Aided Design, pp. 152–159
(2015)

30. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism. Artif. Intell.
174(12–13), 850–864 (2010)

31. Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Combinational test gen-
eration using satisfiability. IEEE Trans. CAD Integr. Circuits Syst. 15(9), 1167–
1176 (1996)

32. Tseytin, G.: On the complexity of derivation in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logic (1968)

http://dx.doi.org/10.1007/3-540-40922-X_8
http://dx.doi.org/10.1007/978-3-540-45069-6_1
https://projects.informatik.uni-freiburg.de/projects/antom
https://projects.informatik.uni-freiburg.de/projects/antom

	SAT-Based Combinational and Sequential Dependency Computation
	1 Introduction
	2 Background
	2.1 Functional Dependencies
	2.2 Boolean Satisfiability

	3 SAT-Based Dependency Computation
	3.1 SAT Encoding
	3.2 Algorithm
	3.3 Optimizations

	4 Sequential Functional Dependency
	4.1 Approximative Algorithm
	4.2 Proof of Correctness for p, n and 

	5 Experimental Results
	5.1 Combinational Dependency
	5.2 Comparison to Existing Approach
	5.3 Sequential Dependency
	5.4 Application to Reverse Engineering

	6 Conclusions
	References


