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Abstract—Motivated by the recent success of the algebraic
computation technique in formal verification of large and op-
timized gate-level multipliers, this paper proposes algebraic
equivalence checking for handling circuits that contain both
complex arithmetic components as well as control logic. These
circuits pose major challenges for existing proof techniques. The
basic idea of Algebraic Combinational Equivalence Checking
(ACEC) is to model the two compared circuits in form of
Gröbner bases and combine them into a single algebraic model.
It generates bit and word relationship candidates between the
internal variables of the two circuits and tests their membership
in the combined model. Since the membership testing does not
scale for the described setting, we propose reverse engineering to
extract arithmetic components and to abstract them to canonical
representations. Further we propose arithmetic sweeping which
utilizes the abstracted components to find and prove internal
equivalences between both circuits.

We demonstrate the applicability of ACEC for checking the
equivalence of a floating point multiplier (including full IEEE-
754 rounding scheme) against several optimized and diversified
implementations.

Index Terms—Formal Verification, Equivalence Checking,
Gröbner Bases, Reverse Engineering, Floating-Point Multiplier.

I. INTRODUCTION

Arithmetic circuits are typically difficult instances for clas-
sical Boolean reasoning approaches that are based on, e.g.,
Binary Decision Diagrams (BDDs) or Boolean Satisfiability
(SAT), as they suffer from exponential worst-case complexity.
Boolean reasoning based on Gröbner bases (available with
algebraic computation packages) offers a robust mechanism
that verifies arithmetic circuits at gate-level (see, e.g., [1],
[2]) and their power has recently been demonstrated in
formally verifying large and optimized gate-level multipliers [3].
However, circuits that also contain control logic pose a major
difficulty for algebraic computation based reasoning techniques
and no satisfactory solution has yet been presented. In this
paper, we show techniques that allow to reason over circuits
which combine data-path and control logic using symbolic
computation reasoning. To the best of our knowledge, this is
the first full automated technique that formally verifies binary
floating-point circuits without any kind of case splitting or
other manual effort.

So far, verification using algebraic computation models the
circuit under verification as polynomials G = {g1, . . . , gk}
and tests the membership of the specification polynomial pspec
in G. The polynomials in G contain internal variables for all
gates in the circuit, whereas pspec is expressed only in terms
of the primary inputs and primary outputs (n input bits and
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m output bits in total). pspec can be viewed as a map over
the finite integer space, i.e., pspec : Z2n → Z2m . Membership
testing is performed by reducing (dividing) pspec wrt. G. If
this reduction completes with no remainder, the circuit fulfills
the specification. During the reduction, it is possible that the
intermediate polynomials blow up which can be eluded by
applying intermediate rewriting strategies (see, e.g., [3]).

Motivated by the fundamental problem that not every circuit
specification pspec can be represented in a canonical and
abstract form over Z2n , we are interested in equivalence
checking, i.e., we want to prove the functional equivalence of
two circuits in the absence of a specification. This can be done
as follows: Assume the two circuits checked for equivalence
represent the functions f1(x1, . . . , xn) = (y1, . . . , ym) and
f2(x1, . . . , xn) = (z1, . . . , zm) and are given as two sets of
polynomials G1 and G2. Then we divide each polynomial
zj − yj for 1 ≤ j ≤ m—which formulates the equivalence of
each output bit—by polynomials from the combined model
G = G1 ∪G2. This naı̈ve method does not scale since during
the reduction the internal variables in the polynomials in G
cause for a tremendous overhead which can only be resolved
when the primary input variables xi appear in the polynomials.

This problem can be circumvented if one knows internal
equivalences in the two circuits which allows to put internal
variables into relation. Conceptually, this is similar to SAT
sweeping and as a consequence G is simplified. This ultimately
avoids a blow-up of the polynomials during reduction. The
difficulty is finding internal equivalences. To solve this problem
we propose reverse engineering techniques: First, expected arith-
metic word-level components such as multipliers and adders
are detected in the circuit using structural signatures. Then,
the proposed arithmetic sweeping uses the I/O boundaries of
detected word-level components to prove internal equivalences
and to prevent division blow-ups.

To further reduce verification runtime during the divisions
we propose decomposition and a general reduction rule that
allow more compact representations and semi-canonical repre-
sentations for different implementations of the same function.

The result is a new Algebraic Combinational Equivalence
Checking (ACEC) technique which is based on Gröbner bases.
In contrast to classical combinational equivalence checking [4],
[5], it can check the equivalence of two circuits which contain
different architectures of arithmetic units, e.g multipliers and
adders, as well as control logic parts. Our experimental
evaluation demonstrates the applicability of our algebraic
equivalence checking approach on several optimized floating-
point multipliers which cannot be verified by other proof
techniques.

II. PRELIMINARIES

Using concepts from algebraic geometry and symbolic
computation, we model the given combinational circuits with



a set of multivariate polynomials based on Gröbner bases and
we formulate the equivalence checking problem as testing the
membership of some relationships between these circuits using
the ideal membership concept. In the following, we define
common notations of these algebraic concepts based on [6].
Then, we present the Gröbner bases modeling and the ideal
membership testing algorithm.

A. Notation and Definitions

The ring of integers modulo 2 (Z2) is called a Boolean
ring. As is shown in [7], [8], theory of Gröbner bases can be
applied on Boolean rings, it is referred as a Boolean Gröbner
bases. For a Boolean polynomial ring Z2(x1, . . . , xn) =
Z2[x1, . . . , xn]/〈−x21 + x1, · · · ,−x2n + xn〉 of n Boolean
variables, the polynomials 〈−x2i + xi〉 are added to the
polynomial ring Z2[x1, . . . , xn] to keep the variables xi in the
Boolean domain. A monomial M = xα1

1 · · ·xαn
n is the power

product over the variables x1, . . . , xn. As for Boolean variables
x2i = xi, the powers αi are always equal to one. A polynomial
p = c1M1 + · · ·+ ctMt is a finite sum of terms, where each
term is the product of an coefficient ci and a monomial Mi.
The monomials of a polynomial are ordered according to a
monomial ordering ‘>’, such that M1 > · · · > Mt, the leading
term of the polynomial is lt(p) = c1M1, the leading monomial
is lm(p) = M1, and the leading coefficient is lc(p) = c1. We
denote tail(p) = p− lt(p) = c2M2 + · · ·+ ctMt.

In this work, the monomial order follows the reverse
topological order of the variables of the modeled circuit and the
coefficient ci ∈ Z for all i 6= 1, where the leading coefficient
lc(p) = c1 ∈ {−1, 1}. The coefficients ci are not limited to
{0, 1} as in Galios Field GF2, they could be arbitrary as shown
in [7] or integers as in this work.

For a set of polynomials P = {p1, . . . , ps} ∈
Z2(x1, . . . , xn), an affine variety V (p1, . . . , ps) is the set of all
solutions of the polynomial equations p1(x1, . . . , xn) = · · · =
ps(x1, . . . , xn) = 0. The affine variety depends not just on the
given set of polynomials, but rather on the ideal generated by
the polynomials. An ideal I = 〈P 〉 = {

∑s
i=1 hi · pi : hi ∈

Z2[x1, . . . , xn]} is generated by this set of polynomials P , and
we call P the bases (generators) of the ideal I . The ideal I may
have many other bases. The bases are different representations
of the set of polynomials P . One of these bases is called
Gröbner bases G = {g1, . . . , gŝ}, for which V (G) = V (I).
Gröbner bases reveal the properties of the ideal that allow to
solve the ideal membership testing problem in an algorithmic
fashion.

Definition 1: A polynomial division of two polynomials p
and g denoted as p

g−−−→+ r is performed as r = p− cM
lt(g)g.

If a non-zero term cM of p is divisible by the leading term of
g, then p reduces to r modulo g. Similarly, p can be reduced
(divided) wrt. a set of polynomials P to obtain a remainder
r, denoted p P−−−→+ r, such that no term in r is divisible by
the leading term of any polynomial in P .

Definition 2: A polynomial reduction method named
S-polynomial of polynomials p and g in a polynomial set P ,
is the combination Spoly(p, g) = L

lt(p)p−
L

lt(g)g, where L is
the least common multiple LCM(lm(p), lm(g)).

To compute the Gröbner bases G = {g1, ..., gŝ} for an ideal
I〈p1, . . . , ps〉, Buchberger’s algorithm constructs G in a finite

the number of steps by applying Spoly(p, g)
G−−−→+ r in every

step. Gröbner bases are computed if all Spoly(p, g)
G−−−→+ 0.

Lemma 1: Given a finite set G ∈ Z2(x1, . . . , xn), suppose
that we have p, g ∈ G such that LCM(lm(p), lm(g)) = lm(p) ·
lm(g). In other words, the leading monomials of p and g are
relatively prime. Then Spoly(p, g)

G−−−→+ 0 [6].
According to Lemma 1, a given polynomial set is a Gröbner

basis, if the leading monomials of all polynomials in the set
are relatively prime. By combining this lemma with the affine
variety concept of an ideal, we define the Gröbner bases of an
ideal as follows:

Definition 3: A finite subset G = {g1, . . . , gŝ} wrt. a
monomial order of an ideal I is said to be a Gröbner basis
of I if V (G) = V (I) and all leading monomials in G are
relatively prime.

A given ideal may have different Gröbner bases, where one
basis can be reduced to other bases by eliminating (substituting)
some of ideal variables based on the Elimination Theorem [6],
in the following, this process is named model rewriting. These
bases can be reduced again to a canonical representation of
the ideal that is called reduced Gröbner basis.

Definition 4: A reduced Gröbner basis for a polynomial
ideal I is a Gröbner basis G for I , such that for all gi ∈ G, no
term in gi is divisible by the leading term lt(gj) for all i 6= j.

Lemma 2: Let I 6= 0 be a polynomial ideal. Then, for a
given monomial ordering >, I has a unique reduced Gröbner
basis [6].

We utilize the uniqueness property of the reduced Gröbner
basis for canonical polynomial abstraction in Section IV.

The Ideal Membership Testing (IMT) decides whether a given
polynomial p lies in the Gröbner basis ideal G = {g1, . . . , gŝ}.
It applies a division algorithm to check that the remainder r
on dividing p by G is equal to zero. The division is denoted
p

G−−−→+ r.

B. Modeling a Circuit as Gröbner Basis
Logic gates are modeled by polynomials and signals as

Boolean variables. The polynomials of basic Boolean gates
are

z = ¬a =⇒ g := −z + 1− a

z = a ∧ b =⇒ g := −z + ab

z = a ∨ b =⇒ g := −z + a + b− ab

z = a⊕ b =⇒ g := −z + a + b− 2ab.

Each logic gate is modeled in a way that the gate output
variable z is described in terms of the gate input variables a, b.
The polynomial x2−x is added to the model for each variable to
enforce the Boolean domain. In practice, the ideal polynomials
〈−x2 + x〉 are replaced by reducing xk to x every time its
degree becomes greater than one during any computational
step. For example, the monomial x21x

3
2x3 is equal to x1x2x3

in the Boolean domain.
By ordering each variable of the model according to its re-

verse topological level in the circuit, the generated polynomials
satisfy Definition 3 by construction. Every polynomial is of the
form pi := xi+ tail(pi), where xi is the gate’s output variable
and tail(pi) are terms consisting of the gate’s input variables,
describing the function implemented by the gate. According
to this polynomial form, all leading monomials of the model
are relatively prime.
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Fig. 1. A simple full adder.

Example 1: Consider the full adder circuit implementing
the function si + 2ci = ai + bi + ci−1 shown in Fig. 1. Its
algebraic model is
g1 := −ci − x4x3 + x4 + x3 g2 := −si − 2x1ci−1 + x1 + ci−1

g3 := −x4 + x2ci−1 g4 := −x3 + aibi
g5 := −x2 − aibi + ai + bi g6 := −x1 − 2aibi + ai + bi

The specification polynomial1 is pr := −2ci−si+ci−1+bi+ai.
Ordering the polynomial variables in the reverse topological
order of the circuit yields ci > si > x4 > x3 > x2 > x1 >
ci−1 > bi > ai. Following this order, the leading monomials
of all polynomials will be relatively prime. E.g., the leading
monomial of g1 is ci, and it is relative prime to all other leading
monomials. According to Definition 3, the extracted algebraic
model is therefore a Gröbner basis.

Modeling the circuit directly as Gröbner basis polynomials
avoids Buchberger’s algorithm and makes it computationally
feasible to apply the membership testing.

C. Ideal Membership Testing
Given a specification (or relationship) polynomial pr and a

circuit model in form of a Gröbner basis G, pr is divided in ev-
ery iteration by some polynomial g ∈ G (see Definition 1). The
polynomial division can be seen as substituting the variables in
pr with the corresponding tail terms of the respective polynomi-
als in G. For example, given pr := x4x3+x1 and a polynomial
g := −x4 + x2x1, then r = pr − x4x3

−x4
g = x3x2x1 + x1,

where the polynomial division substitutes x4 in pr with x2x1.
The division (substitution) iterations are executed according
to a certain order, the substitution order. As in [1], [9], the
substitution ordering follows the reverse topological order of
the circuit variables.

Following Example 1, the extracted algebraic model is a
Gröbner basis, therefore the ideal membership testing of pr
can be applied. The substitution order will follow the reverse
topological order of the circuit:
pr

g1−−−−→ −si + 2x4x3 − 2x4 − 2x3 + ci−1 + bi + ai
g2−−−−→ 2x4x3 − 2x4 − 2x3 + 2x1ci−1 − x1 + bi + ai
g3−−−−→ 2x3x2ci−1 − 2x3 − 2x2ci−1 + 2x1ci−1 − x1 + bi + ai
g4−−−−→ 2x2ci−1biai − 2x2ci−1 + 2x1ci−1 − x1 − 2biai + bi + ai
g5−−−−→ 2x1ci−1 − x1 + 4ci−1biai − 2ci−1ai − 2ci−1bi − 2aibi +

bi +ai
g6−−−−→ 0 Since the final division result is 0, pr has been

proven.

III. ALGEBRAIC COMBINATIONAL EQUIVALENCE
CHECKING

This section introduces the proposed algebraic combinational
equivalence checking approach. Given two circuits C1 and C2

that represent the functions f1(x1, . . . , xn) = (y1, . . . , ym)
and f2(x1, . . . , xn) = (z1, . . . , zm), respectively, our aim is

1Please note that later in the paper we use polynomials which relate different
bit or word variables, so we call them relationship polynomials.

to show the equivalence of C1 and C2, i.e., (y1, . . . , ym) =
(z1, . . . , zm) for all x1, . . . , xn. We propose to solve this
problem using symbolic computation. Since the specification of
C1 and C2 may be unknown or since it may not be expressible
in a canonical and an abstract form over Z2n , we cannot use
previous work [1]–[3] that performs ideal membership testing
with respect to a given specification.

Instead we propose to represent C1 and C2 as polynomial
sets G1 and G2 and combine them into a single model
G = G1 ∪G2. We then formulate the problem as testing the
membership of relations between variables in C1 and C2 wrt.
G. An obvious choice for such a relation is the equivalence of
output signals yi = zi which can be expressed in a polynomial
as yi − zi = 0. However, reducing such a polynomial wrt. G
causes a tremendous overhead since the substitution of all the
internal variables in G1 and G2 will blow up the sizes of the
polynomials in G.

To overcome this problem we suggest to find internal
equivalences, i.e., polynomials that express equivalence of two
internal signals in G1 and G2. Reducing these polynomials wrt.
G causes a smaller overhead and simplifies G. This technique
is similar to SAT sweeping in combinational equivalence
checking [4] and we call it arithmetic sweeping in the following.
Arithmetic sweeping works as follows: for each internal
variable v1 in G1 we search for an equivalent variable v2
in G2, i.e., v1 and v2 represent the same function wrt. to the
primary inputs. We call such a pair (v1, v2) bit equivalence and
are able to substitute v2 by v1 in all polynomials. For some
internal variables we will not be able to prove equivalence to
another variable. These variables are eliminated by substitution
with proved bit equivalent variables of their transitive fan-in.

However, performing arithmetic sweeping on the overall
combined model G is not scalable. First, the number of
candidates for bit equivalences is too large, and second,
checking a pair of variables for equivalence that have a
large transitive fan-in may be too difficult. To circumvent
this problem, we first apply reverse engineering for two
main goals i) extracting and abstracting arithmetic word-level
components to canonical polynomials; ii) partitioning the
circuits G1 and G2 into smaller parts. The algorithm works
as follows: First, we try to find an instance of an arithmetic
word-level component both in G1 and G2 and abstract them to
canonical polynomials. If this is successful, we obtain an input
boundary and an output boundary for the component in G1 and
G2. The pairs of input boundaries and output boundaries are
candidates for word equivalences. Having them, we perform
arithmetic sweeping only in the transitive fan-in of the input
boundaries. If this ultimately proves that the input boundaries
are equivalent and we have proven that abstracted polynomials
of the two arithmetic components found by reverse engineering
are equivalent, we can merge the transitive fan-in of the output
boundaries from G, making the model significantly smaller.

Details on the algorithms of our ACEC are explained in
the remaining sections. In Section IV we show how to find
arithmetic word-level components using reverse engineering.
This also partitions the circuits into smaller parts based on
the word-level components and the respective transitive fan-in
of it. Both results are the input for the arithmetic sweeping.
Section V explains arithmetic sweeping to find (and prove)
internal equivalences in the transitive fan-ins of the detected



components’ input boundaries. Finally in Section VI, we
offer efficient polynomial representation based on functional
decomposition and a new general reduction rule to speed up
the different division steps.

IV. REVERSE ENGINEERING OF DATA-PATH UNITS

Key in ACEC is to find arithmetic components using reverse
engineering in order to reduce the model size in which
arithmetic sweeping is performed. Reverse engineering needs
to find equivalent components and abstract them to canonical
polynomials over integer field. The propagation of carry bits
between internal nets of data-path units is one of the main
properties that helps to locate such units. In the proposed
reverse engineering algorithm we exploit this property to extract
data-path units from the combined model G. According to our
observation, these carry bits are modeled as shared monomials
between polynomials of G. Continuing with Example 1,
the simple full adder can be modeled by two polynomials
g1 : −si+4ci−1biai−2ci−1bi−2ci−1ai−2biai+ci−1+bi+ai
and g2 : −ci − 2ci−1biai + ci−1bi + ci−1ai + biai. The
shared monomials ci−1biai, ci−1bi, ci−1ai, and biai model the
internal carry propagations of the full adder. The terms of these
shared monomials have another property. Their coefficients
have different signs, and they are multiples of each other. We
call terms with these properties carry terms.

To reveal carry terms, a rewriting scheme based on the
rewriting principles of [3] is proposed in Section IV-A. Note
that in the full adder example, carry terms are not visible in
the original model of the full adder. They can be only revealed
when the model is rewritten to two polynomials.

After rewriting the model, the reverse engineering algorithm
builds an adder network for every group of polynomials that
share carry terms. For each adder network which models a data-
path unit one canonical polynomial using Gaussian elimination
algorithm is derived, see Section IV-B.

A. Model Rewriting
The model rewriting schemes of [3] have shown an ability to

reveal vanishing monomials (monomials that always evaluate to
zero) as well as common monomials between the polynomials
model of a multiplier circuit. This revealing ability empowers
our reverse engineering algorithm to build adder networks for
different architectures of large scale multipliers and adders.
The proposed rewriting schemes combine the knowledge of the
circuit gates with the algebraic model. The first scheme XOR
rewriting rewrites the model using the S-polynomial method
such that the model depends only on inputs and output variables
of XOR gates whereas all other variables are substituted. The
second common rewriting scheme rewrites the model obtained
from XOR rewriting such that the model depends only on
variables that are used in more than one polynomial.

Applying these schemes on a control logic circuitry causes
a blow-up in the number of model terms since control
logic usually does not contain XOR gates which yields to
substitutions for large the number of the control logic variables.
To take advantage of these schemes for circuits which contain
data-path and control logic, we distinguish the control logic
part of a circuit by its multiplexers (MUXes) and disallow XOR
rewriting and common rewriting from substituting input and
output variables of MUXes. This guarantees that both schemes
will be applied only on the data-path logic. The polynomials

of the rewritten model describe functions of XORs, MUXes,
and the cone of gates which are bounded by inputs and outputs
of XORs and MUXes.

B. Abstracting Data-path Units to Canonical Polynomial
After rewriting G the algorithm builds different adder

networks from polynomials that share carry terms. It then
groups polynomials of G. A new polynomial joins a group, if
it shares a carry term with other polynomials in the group. For
example, the polynomials g0 and g1 are in the same group, if
one of them has the term −x0x1 and the second has the term
2x0x1. Groups of each extracted adder network are handled as
independent algebraic ideal. It is abstracted to one canonical
polynomial using Gaussian elimination.

Example 2: To illustrate the proposed approach, consider the
model of a 3-bit ripple carry adder implementing the function∑2
i=0 2isi =

∑2
i=0 2i(ai + bi).

s3 = c2 =⇒ g1 := −s3 + c2
c2 = (a2 ∧ b2) ∨ (a2 ∧ c1) ∨ (b2 ∧ c1) =⇒
g2 := −c2 −2c1b2a2 + c1b2 + c1a2 + b2a2

s2 = a2 ⊕ b2 ⊕ c1 =⇒
g3 := −s2 +4c1b2a2 − 2c1b2 − 2c1a2 − 2b2a2 + c1 + b2 + a2

c1 = (a1 ∧ b1) ∨ (a1 ∧ c0) ∨ (b1 ∧ c0) =⇒
g4 := −c1 −2c0b1a1 + c0b1 + c0a1 + b1a1

s1 = a1 ⊕ b1 ⊕ c0 =⇒
g5 := −s1 +4c0b1a1 − 2c0b1 − 2c0a1 − 2b1a1 + c0 + b1 + a1

c0 = a0 ∧ b0 =⇒ g6 := −c0 +b0a0

s0 = a0 ⊕ b0 =⇒ g7 := −s0 −2b0a0 + b0 + a0

Rewriting the model yields that polynomials g2, g3 have
common non-linear monomials (colored green/dashed box in
the example). The similar structural property can be seen
for equally colored terms of the polynomials g4, g5 and
polynomials g6, g7, respectively. To cancel the carry terms
between g3 and g2, Gaussian elimination is applied. It multiples
g2 by 2 and adds it to g3. The result is the polynomial
h1 := −2c2− s2 + c1 + b2 + a2 which represents a full adder
function. Applying the same step on other related polynomials
yields another two full adders h2 := −2c1− s1 + c0 + b1 +a1
and h3 := −2c0−s0 +b0+a0. Applying Gaussian elimination
again on the three full adder polynomials to cancel shared terms
and achieve a reduced Gröbner basis, will multiply h1 by 2 and
adds to h2. The result will be h4 := −4c2 − 2s2 − s1 + 2b2 +
2a2+c0+b1+a1. Finally, the reduced Gröbner basis polynomial
h5 := −8c2−4s2−2s1−s0 +4b1 +4a1 +2b1 +2a1 +b0 +a0
is derived by multiplying h4 by 2 and adding it to h3 for
canceling the shared monomial c0.

Lemma 3: Let Gr = g1, · · · , gt denote the generated Gröbner
basis by Gaussian elimination wrt. a unique monomial order >.
As Gr contains the one and only polynomial g1, then g1 is the
unique canonical representation of the function f implemented
by the adder network ideal.
Proof: Based on Lemma 2, for every ideal there is a unique
reduced Gröbner basis. Since the adder network ideal Gr,
which has been generated by Gaussian elimination, has only
one polynomial g1, no term in g1 is divisible by the leading
term of any other polynomial in Gr. Therefore Definition 4
of reduced Gröbner basis holds for Gr and g1 is a canonical
abstracted representation of the function f implemented by the
adder network ideal.

Please also note that to avoid the blow-up in the number of
terms during Gaussian elimination of large scale multipliers,



as illustrated in [1], [9], the elimination order must follow the
reverse topological order of the circuit variables.

In addition to abstracting data-path units, the reverse
engineering algorithm determines their inputs and outputs
boundaries. This works as follows: The algorithm extracts
this information from the original polynomials (ideal) of the
adder network. It uses a property of a Gröbner bases model
that a variable of a leading monomial of a polynomial is the
output variable of this polynomial. Based on this property, for
the ideal of an adder network, output variables of polynomials
that are not used as inputs for other polynomials in the ideal
are identified as the output variables of this adder network.
Finally, an output word for each abstracted polynomial can be
derived.

V. ARITHMETIC SWEEPING

Arithmetic sweeping aims to find internal equivalences which
avoids prohibitive run time during the polynomial division.
Of course when having identified candidates for internal
equivalence, it is still necessary to prove their equivalence
(which is also done using the same division algorithm for the
relationship polynomials of the candidates). Hence, to gain
an overall benefit we need i) promising candidates and ii)
moderate runtimes for the equivalence proofs. Our proposed
arithmetic sweeping reaches both goals as follows.

For i), the reverse engineering step provides arithmetic
components. From this we generate promising candidates based
on the I/O boundaries of these components. The algorithm
uses the I/O boundaries to partition the variables of the
combined model G into groups. Simulation deduces word
equivalence (wE; for details see below) candidates between
outputs of the arithmetic components. For every nominated wE
the partitioning of model variables is performed by classifying
two groups of variables. One for the transitive fan-ins variables
of the input boundaries of wE and the other are internal
variables of the two related arithmetic components. Deducing
only internal bit equivalences (bE; see below) between variables
in the same group increases the potential of equivalence.

For ii), the equivalence proofs become feasible for several rea-
sons. Arithmetic sweeping generates two types of relationships
which are bit equivalence (bE) pair and word equivalence (wR)
pair. bE describes the equivalence of a pair of variables (vi,vj)
and is formulated by the polynomial g := −vi + vj . The word
equivalence (wE) polynomial is formulated as g := B − B̂ for
the word pair candidate (B,B̂), where B = 2n−1bn−1+· · ·+b0
and B̂ = 2n−1b̂n−1 + · · ·+ b̂0. For each arithmetic component
we have determined an abstract canonical polynomial in
the reverse engineering step. The major advantage over SAT
sweeping is that the proof for the internal equivalences is
performed by dividing wE polynomials wrt. the abstracted
polynomials. For doing this, a new word model GW is created
and the abstracted polynomials are added to it as follows: For
every abstracted polynomial, an integer word variable B is
created and a polynomial −B+f(a1, · · · , am) is added to the
word model. The polynomial −B + 2n−1bn−1 + · · · + b0 is
used to interpret the equivalence between two output words B
and B̂, as shown in Lemma 4 of Section V-B. To summarize,
dividing wE wrt. abstracted polynomials has a major influence
on the performance of the technique—it avoids the exhaustive
cost of searching for equivalences between internal variables

of the data-path units which usually have a large the number
of non-equivalent variables in their transitive fan-ins.

A. Generating Relationship Polynomials

The choice of relationship candidates is always the main
problem of different equivalence checking techniques. ACEC
draws on the simulation approach of [10] and the extracted
data-path polynomials to deduce bit and word relationships.
Four steps are performed to generate relationship polynomials i)
nominating wE polynomials, ii) classifying the model variables
to groups, iii) generating bE polynomials, and finally iv) sorting
wE and bE polynomials in a relationship list.

Based on a fixed size of global simulation over the primary
inputs of G, word relationships between the output words of
the data-path polynomials are deduced. Two words build a wE
polynomial, if their integer values are equal under all simulated
assignments.

The approach classifies the variables of G to groups
according to wE polynomials. One wE polynomial categorizes
two groups, the first consists of all transitive fan-in variables
of the polynomial; and the second contains internal variables
which are bounded by outputs and inputs variables of wE.

Example 3: To illustrate this idea, consider a model which
has four extracted data-path units (DPU1, DPU2, DPU3, and
DPU4), as shown in Fig. 2. The simulation nominates two wEs,
one relates the output word of DPU1 and DPU2, the other
one is between DPU3 and DPU4. The approach classifies the
model variables into 5 groups i) a group for transitive fan-in
variables of DPU1 and DPU2, ii) a group which contains
internal variables of DPU1 and DPU2, iii) transitive fan-in
variables of the wE between DPU3 and DPU4, iv) their internal
variables, and v) the remaining variables of C1 and C2 which
are not classified in groups.

Classified groups of G and global simulation are used to
determine for every model variable vi a set of variables φi. We
have vj ∈ φi, if Boolean values of vi and vj are the same under
each of input assignments; and therefore vi and vj belong to
the same classified group. Finally, bE polynomials between
vi and other variables of φi are generated. We call them bE
polynomials of the variable vi.

After classifying model variables and generating wE and
bE relationships, these nominated relationships are sorted
topologically wrt. the circuit and their leading variables. The
sorting procedure aims to test a wE polynomial after testing
all bE polynomials of variables in its transitive fan-in group.
First, the wE polynomials are sorted topologically. Next, the
procedure iterates over the wE polynomials for inserting in the
list for every wE i) bE polynomials of variables in the transitive
fan-in group of this wE, ii) the wE polynomial itself, then iii)
bE polynomials of variables in its internal group. Finally, the
bE polynomials of remaining variables that are not included
in groups that are related to wEs, are inserted in the end of
the list.

B. Testing Membership of Internal Relations

During the testing of internal relationships, the approach
calls the IMT algorithm to divide every polynomial pr from
the relationship list wrt. G or GW , if pr is a bE polynomial,
the division is done wrt. G, otherwise is performed wrt. GW .
Based on the remainder result of dividing pr, the approach
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Fig. 2. Schematic of a combined model including word relationships

eliminates or merges variables of pr from the models G and
GW .

The merging decision is taken, in the case that the remainder
result of dividing pr is equal to zero. The approach merges
every two variables of pr which are derived to be functionally
equivalent to one variable. In case that pr is a wE polynomial,
equivalence is derived based on the following lemma.

Lemma 4: Given the equivalent of two integer words A =
2n−1an−1 + · · ·+ a0 and B = 2n−1bn−1 + · · ·+ b0. If A and
B have the same number system and the number system is not
redundant, then the bit variables ai and bi which have same
weights (coefficients) are equivalent.

Merging results are reducing the number of polynomials
in G, these merged variables are considered new primary
inputs, therefore polynomials of their transitive fan-in variables
are removed from G. Continuing with the previous model
example, after deriving the equivalences between corresponding
output variables of DPU1 and DPU2, merging equivalent
variables will produce a compact version of G. Polynomials
that model DPU1 and DPU2 are removed, in addition to
those which model their transitive fan-in variables. In order
to avoid redundant divisions, the remaining bE polynomials
which test the already merged variables will be removed from
the relationship list.

A variable of the model that has no functional equivalences
is eliminated by substituting it with the leading terms of
its polynomials which are functions in proved bit equivalent
variables. The elimination decision will be taken for variables
vi of pr. If the remainder of dividing pr is not equal to zero,
and there are no more untested bE or wE polynomials in
the list which are related to vi. These eliminations facilitate
the division process of next relationships. It increases the
number of shared input variables of polynomials of G which
simplifies the division process of pr wrt. G. For example,
dividing pr : −vi + vj wrt. a model that has polynomials
g1 : −vi + x1x2 + x3 and g2 : −vj + x1x2 + x3 will be
simplified to a subtraction operation. The remainder of the
division will be x1x2 + x3 − x1x2 − x3 = 0.

VI. EFFICIENT POLYNOMIAL REPRESENTATION

The polynomial is the heart of the algebraic computation
technique. An efficient representation of a polynomial has a
major impact on the performance of any algebraic algorithm.
To circumvent a blow-up in the number of polynomial terms
for representing different Boolean functions, we propose i) a
decomposition method which reduces the number of terms
in polynomials significantly for some Boolean functions, and

ii) a general reduction rule to cancel redundant terms of the
polynomial. The decomposition method and the reduction rule
offer semi-canonical representations which simplify the division
of the IMT algorithm.

A. Different Decompositions
Inspired by decomposition types of decision diagrams [11],

we enhance representations of polynomials by considering two
decomposition types which are:

f = f|x=0 + x(f|x=1 − f|x=0) positive Davio (pD)
f = f|x=1 + (1− x)(f|x=0 − f|x=1) negative Davio (nD),

where x denotes a Boolean variable, the functions are combined
with addition, subtraction, and multiplication operations.

Our observation is that polynomials have been typically
represented by pD decomposition. This obstructs a compact rep-
resentation for some Boolean functions like a chain of OR gates.
For example, consider a 4-input OR function f(x0, x1, x2, x3),
its polynomial representation that follows only pD will be
f = x0 +x1 +x2 +x3−x0x1−x0x2−x0x3−x1x2−x1x3−
x2x3 + x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 − x0x1x2x3.
By decomposing f using nD for all of its variables, it will
be f = 1− x̄0x̄1x̄2x̄3, where x̄i = 1− xi. For the n-bit OR
function, a polynomial which follows pD consists of 2n − 1
terms, while nD polynomial has only two terms. Representing
a Boolean function with less the number of terms has a major
influence on reducing the number of addition, subtraction, and
multiplication operations, therefore it enhances significantly
the performance of any symbolic computation algorithm. For
applying these decompositions, we add to the model negation
version v̄i for every variable vi in the model, in addition to
the polynomials g := −v̄i − vi + 1.

As known from the field of decision diagrams, the choice
of the type of the decomposition and the order of the variables
plays a key role for the size of the diagram. In this work, we
fix the order of the variables to the reverse topological order
and we propose an approach to determine the Decomposition
Type (DT) of each variable. As the main goal of applying
different decompositions is reducing the number of polynomials
terms, the decision of DT is taken based on this factor and the
structure of the circuit.

For this purpose, we modify the modeling way of the circuit
that is explained in Section II-B as follows:

z = ¬a =⇒ g := −z + ā

z = a ∧ b =⇒ g := −z + ab

z = a ∨ b =⇒ g := −z + 1− āb̄

z = a⊕ b =⇒ g := −z + a + b− 2ab,

such that the DT of input variables of inverters and OR gates
is nD, for AND and XOR gates, it is pD. As shown in
this modeling, one variable may have more than one DT in
the model. During model rewriting, see Subsection IV-A, a
polynomial g is rewritten by substituting one of its variables
vi, as result of this step, another variable vj in g may have
different decomposition types – the variable vj and its negation
v̄j are within the same polynomial g. In this case, we unify the
DT of vj based on the one which achieves the higher reduction
on number of terms in g. In case of n variables with different
DTs within same polynomial, the possible combinations of DTs
for these variables are 2n. For example, consider a polynomial
with two variables v1 and v2, the possible decomposition



combinations will be (v1, v2), (v1, v̄2), (v̄1, v2), or (v̄1, v̄2).
Trying all combinations to find the best representation leads
to a prohibitive run time because of calling the decomposition
algorithm 2n times. To bypass this problem, our approach takes
the decomposition decision of every variable independently
from others. This restriction on choosing DTs accelerates
significantly the run time of the proposed approach to find
compact representations for polynomials. In this work, we have
used an implemented decomposition algorithm which designed
for decision diagrams [12]. For this, we have implemented a
two directions parser. It parses a function from a polynomial
to a K*BMD and vice versa.

B. General Reduction Rule

A key observation in [3] is the significance of applying
a logic reduction rule to cancel redundant terms and avoid
blow-up of these terms during the division algorithm. The
rule exploits that (a ⊕ b) · (a ∧ b) = 0 for all a and b and
therefore can be used to remove terms from polynomials. If,
e.g, f = a⊕ b and h = a∧ b, any term containing both f and
h can be removed. We propose to generalize this rule.

Let X be a set of variables and let f and h be two Boolean
functions over the variables X1 ⊆ X and X2 ⊆ X , respectively,
with X1 ∩X2 6= ∅. If there exists exactly one assignment to h
such that it evaluates to true, it may be possible that g simplifies
to a constant value when assigning the common variables
according to that assignment. To illustrate the concept consider
a multiplexer function f(a, b, c) = ac−bc+b and h(a, b) = ab.
Clearly h = 1, only if a = b = 1, and f(1, 1, c) = 1. Therefore,
we conclude that fh = h and we can simply polynomials
accordingly. For a polynomial g := −v1v2fhv3 + v1v2hv3,
by applying this rule on the monomial v1v2fhv3, it simplifies
to v1v2hv3 and the polynomial g will be evaluated to g =
−v1v2hv3 + v1v2hv3 = 0. This reduction rule is called one
assignment rule.

An approach to apply the one assignment rule is as follows:
1) Searching for monomials in the algebraic model that

have two variables of functions f and h which shared
some of their inputs, such that the function h has one
satisfiable assignment.

2) Reducing f after assigning values to shared inputs which
evaluate h to one.

3) If f is equal to zero or one, then rewriting the monomial
by substituting f with its value.

VII. EXPERIMENTAL EVALUATION

ACEC is implemented in C++. We compared it to the
equivalence checkers of ABC [13] tool and a commercial
tool (OneSpin EC-360). The experiments were carried out on
an Intel(R) Core(TM) i5-3320M CPU (2.6 GHz, 16 GByte)
running Linux.

We applied ACEC to the problem of verifying a floating-
point (FP) multiplier. It computes the operation P = A×B for
two FP operands A = (−1)sa × 2ea × fa and B = (−1)sb ×
2eb × fb. sa denotes the sign, ea the exponent, and fa the
significand including the implicit bit of the operand A (similarly
for B and P ). The operation can be defined as sp = sa ⊕ sb
and 2ep × fp = RND(2ea+eb × fa × fb). RND is the round
and normalize function according to the IEEE standard for
floating-point arithmetic (IEEE Std 754-2008).

Simple
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Adder

EXP
Adder

Normalize & Round
Optimized

Normalize & Round
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eaeb eaebfafb fafb
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Fig. 3. Compared FP Multiplier Circuits

We have scaled and modified the structure of the FP
multiplier unit of the open cores design module DOUBLE-
FPU [14] for building dissimilar FP instances. As shown
in Fig. 3, the compared circuits have different multiplier
architectures and their control logic units are optimized
distinctively. The multiplier units are generated using the
online tool Arithmetic Module Generator [15]. These generated
circuits2 were synthesized from Verilog to gate level netlists
using Yosys [16].

The multiplier architectures are categorized according to 1)
the type of the partial products generator, 2) the partial products
accumulator, and 3) the last stage adder. In our experiments, we
use a partial products generator, namely simple partial products
(SP). The types of partial products accumulators are array (AR),
(4,2) compressor tree (CT), and wallace tree (WT). The last
stage adder are ripple carry adder (RC), carry look-ahead
adder (CL), and brent-kung adder (BK).

In Table I, we demonstrate the runtimes of checking the
equivalences of divergent FP multipliers against the same circuit
reference. The reference consists of a simple multiplier (SP-
AR-RC) and unoptimized normalize round unit. While the
compared circuits contain complex multipliers and round units
which are optimized using the Yosys option share3. The first
column of Table I shows the type of the multiplier architecture.
The second and the third columns give the number of bits
of an FP operand of the circuit in addition to the size of its
significand and its exponent according to the IEEE standard.
The next three columns provide the runtimes. The timeout (TO
in the table) is set to 24 hours. The experimental results clearly
demonstrate the advantage of ACEC in verifying circuits that
include data-path and control logic. While other equivalence
checking tools can verify the correctness up to 16 bits, we
are able to verify the correctness of a single precision binary
floating-point multiplier (32 bit).

Table II shows some statistics about the algorithms of ACEC
for checking the equivalence of the FP multiplier instances that
contain the multiplier architecture SP-WT-CH. For the reverse
engineering algorithm, it shows the runtime of rewriting the
combined model G; the runtime of extracting and abstracting
data-path units; and the number of the extracted units. These
results show that the reverse engineering algorithm extracts

2The benchmarks, binary of our tool, and log files are available at
http://www.informatik.uni-bremen.de/agra/eng/asc.php

3It merges shareable resources into a single resource. A SAT solver is used
to determine if two resources are shareable



TABLE I
RUNTIMES FOR CHECKING FP MULTIPLIERS EQUIVALENCES

Multiplier FP operand Significand/Exponent Commercial ABC ACEC
Architecture # bits # bits (h:m:s) (h:m:s) (h:m:s)

SP-CT-BK 16 13/3 00:08:50 TO 00:01:42
SP-WT-CH 16 13/3 00:09:08 TO 00:01:44

SP-CT-BK 24 21/3 TO TO 00:17:49
SP-WT-CH 24 21/3 TO TO 00:25:58

SP-CT-BK 32 25/7 TO TO 02:24:01
SP-WT-CH 32 25/7 TO TO 03:41:43

TABLE II
STATISTICS OF ACEC FOR EQUIVALENCE CHECKING OF FP MULTIPLIERS

# bits ACEC Algorithms
Reverse Engineering

Model Rewriting Extract & Abstract # Data-path
(h:m:s) (h:m:s) Units

16 00:00:46 00:00:23 21
24 00:11:56 00:10:04 23
32 00:32:50 02:10:30 23

Arithmetic Sweeping

# Variables # Proved Runtime
of G Equivalences (h:m:s)

16 1888 401 00:00:27
24 4440 666 00:03:36
32 5889 854 00:58:04

Efficient Polynomial Representation

Decomposition Logic Reduction
# Reduced Terms # Eff./Total Calls # Canceled Terms

16 2400 514/3477 2916
24 9732 1013/8684 17153
32 16317 1345/12477 36390

more candidates for data-path units than the expected number.
For two combined FP multipliers, six data-path units should
be extracted, two significand multipliers, two exponent adders,
and two incrementers in the rounding stages. Also, the results
show that most of the run-time of ACEC is spent in reverse
engineering (on average about 65%).

For arithmetic sweeping, Table II gives total the number of
variables of the combined model; the number of proved equiva-
lences between variables of the two compared circuits; and the
time spent by the sweeping algorithm. The results demonstrate
that variables of G which have functional similarities between
each other account for less than 45% of the total the number
of variables. Further, the table shows the number of saved
terms by the decomposition of polynomials; the number of
effective (Eff.) calls for the decomposition algorithm wrt. the
total calls for the algorithm (effective calls are those which
save terms of polynomials), and the number of canceled terms
by the reduction rule.

VIII. RELATED WORK

One noteworthy challenge is developing a fully automated
technique which proves that a floating-point design is in
consistence with the IEEE Standard for Floating-Point Arith-
metic (IEEE Std 754-2008). Theorem provers have been
applied extensively to verify the properties of floating-point
designs. Although a lot of automation has been added and
floating-point libraries have been created to avoid repetition
of proofs, theorem proving methodology still requires an
enormous amount of manual effort, expert knowledge, and high
understanding of the design [17]. The paper by Jacobi [18] is
the most automated work up to today, however, it skips the
hardest part to verify, the multiplier.

As mentioned already in the paper all the existing works
(e.g. [1]–[3], [9]) using Gröbner bases for circuit verification
only target pure arithmetic components w/o control logic.

The recently proposed reverse engineering algorithms [19],
[20] for the extraction of arithmetic word level components
from a gate-level netlists are not applicable to designs with a
non-arithmetic combinational logic attached to the output.

IX. CONCLUSION

In this paper we have presented a new algebraic equivalence
checking technique for checking the equivalence of circuits
that combine data-path and control logic. The technique
utilizes a new reverse engineering algorithm to extract and
abstract arithmetic components from the combined model of the
Gröbner bases representation of the compared circuits. Based
on input and output boundaries of the abstracted components
the proposed arithmetic sweeping deduces less and promising
candidates for bit and word equivalences between the compared
circuits. The technique circumvents the blow-up in the number
of terms of polynomials during the utilized algorithms by
offering different types of decompositions for polynomials
and using an efficient reduction rule. Experimental results
demonstrated the efficiency of our technique for the equivalence
checking of large floating-point multipliers which cannot
be verified with existing Boolean combinational equivalence
checking techniques.

For future work we want to investigate canonization for
control logic as well as managing the membership testing for
non-equivalent circuits.
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bases,” Journal of symbolic computation, vol. 46, no. 5, pp. 622–632, 2011.

[8] A. Nagai and S. Inoue, “An implementation method of boolean Gröbner bases and
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