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ABSTRACT

Resistive memories have gained high research attention for
enabling design of in-memory computing circuits and sys-
tems. We propose for the first time an automatic compilation
methodology suited to a recently proposed computer architec-
ture solely based on resistive memory arrays. Our approach
uses Majority-Inverter Graphs (MIGs) to manage the compu-
tational operations. In order to obtain a performance and re-
source efficient program, we employ optimization techniques
both to the underlying MIG as well as to the compilation pro-
cedure itself. In addition, our proposed approach optimizes
the program with respect to memory endurance constraints
which is of particular importance for in-memory computing
architectures.

1. INTRODUCTION

Resistive Random Access Memories (RRAMs) have gained
high attention for their promising applications in non-volatile
and ultra compact memories [8, 11, 14]. The resistive switch-
ing property of RRAMs have also made them of interest in
synthesis of primary logic gates enabling in-memory com-
puting [5, 12]. Logic circuits using the resistive switching
proposed so far are mostly based on logic implementation
that imposes long sequences of operations. Very recently
a majority oriented logic has been proposed for synthesis
of RRAM-based logic circuits that shows much lower la-
tency and area overhead compared to the sequential impli-
cation based approach [13]. In [7], a computer architecture
using only RRAMSs called Programmable Logic-in-Memory
(PLiM) was proposed. For programs executed on this archi-
tecture, the number of instructions and the required number
of RRAMs are important cost metrics to measure the quality.
The instruction set for the PLiM consists of a single in-
struction called RM3, which computes the majority-of-three
operation in which one input is inverted. This corresponds
directly to the physical implementation of the RRAM pro-
posed in [10]. Consequently, Majority-Inverter Graphs (MIG,
[3]), which are logic representations that use the majority-
of-three operation and inverters as only logic primitives, are
the natural abstraction to derive PLiM programs, i.e., se-
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quences of RM3 instructions. This idea has been originally
proposed in [7], but no automatic translation scheme has
been proposed.

One function can be represented by several structurally
different but functionally equivalent MIGs. Each MIG leads
to PLiM programs of different quality. Further, even for
the same MIG representation, there exists several ways to
translate it into PLiM programs that vary in their quality.

In this paper, we propose an efficient and fully automated
compilation procedure of Boolean functions to programs for
the PLiM architecture based on MIGs. The key contributions
of this paper are:

1. An optimization algorithm based on MIG rewriting [1,
13] that optimizes the MIG w.r.t. the expected number
of instructions and required RRAMs in the translated
PLiM program.

2. A smart automatic translation algorithm that traverses
the MIG in a way to minimize the costs of the resulting
PLiM program.

Our experimental evaluation shows that our proposed tech-
niques have a significant impact on the resulting programs
compared to a naive translation approach: (i) the number of
instructions can be reduced by up to 19.95% and the number
of required RRAMs can be reduced by up to 61.4%.

Our techniques unlock the potential of the PLiM archi-
tecture [7] to process large scale computer programs using
in-memory computing. This makes this promising emerging
technology immediately available for realistic applications.

2. BACKGROUND
2.1 Majority-Inverter Graphs

An MIG is a data structure for Boolean function repre-
sentation and optimization. An MIG is defined as a logic
network that consists of 3-input majority nodes and regu-
lar/complemented edges [1, 2, 3].

MIGs can efficiently represent Boolean functions thanks
to the expressive power of the majority operator (MAJ)
(abc) = abV acVbc = (aVb)(aVc)(bV ). Indeed, a ma-
jority operator can be configured to behave as a traditional
conjunction (AND) or disjunction (OR) operator. In the
case of 3-input majority operator, fixing one input to 0 re-
alizes an AND while fixing one input to 1 realizes an OR.
As a consequence of the AND/OR inclusion by MAJ, tradi-
tional And-Or-Inverter Graphs (AOIGs) are a special case
of MIGs and MIGs can be easily derived from AOIGs. An
example MIG representation derived from its optimal AOIG
is depicted in Fig. 1(a). AND/OR operators are replaced
node-wise by MAJ operators with a constant input.
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Figure 1: Example MIG representation (a) derived
by transposing its optimal AOIG representation,
and (b) after optimization

Intuitively, MIGs are at least as compact as AOIGs. How-
ever, even smaller MIG representation arise when fully ex-
ploiting the majority functionality, i.e., with nonconstant
inputs [3]. We are interested in compact MIG representa-
tions because they translate in smaller and faster physical
implementations. In order to manipulate MIGs and reach
advantageous MIG representations, a dedicated Boolean al-
gebra was introduced in [1]. The axiomatic system for the
MIG Boolean algebra, referred to as €2, is defined by the five
following primitive axioms.

Commutativity — Q.C

(zyz) = (yzz) = (2yx)

Majority — Q.M
(zyz)y =z =y ifz=y
(zyz) = =z ife=g

2 { Associativity — Q.4

(ru(yuz)) = (zu(yuz))

Distributivity — Q.D

(zy(uvz)) = ((zyu)(zyv)z)

Inverter Propagation — Q.71

(ryz) = (2yZ)

The axioms are inspired from median algebra [9] and the
properties of the median operator in a distributive lattice [4].
A strong property of MIGs and their algebraic framework
concerns reachability. It has been proved that by using a
sequence of transformations drawn from €2 it is possible to
traverse the entire MIG representation space [3]. In other
words, given two equivalent MIG representations, it is pos-
sible to transform one into the other by just using axioms
in . This results is of paramount interest to logic synthe-
sis because it guarantees that the best MIG can always be
reached. Unfortunately, deriving a sequence of €2 transfor-
mations is an intractable problem. As for traditional logic
optimization, heuristic techniques provide here fast solutions
with reasonable quality [6].

By using the MIG algebraic framework it is possible to
obtain a better MIG for the example in Fig. 1(a). Fig. 1(b)
shows the MIG structure, which is optimized in both depth
(number of levels) and size (number of nodes). Such MIGs
can be reached using a sequence of € axioms starting from
their unoptimized structures. We refer the reader to paper [3]
for an in-depth discussion on MIG optimization recipes.

2.2 PLiM Architecture

Resistive memories have the capability of natively im-
plementing a universal majority-based logic operator [10].
Indeed, by denoting Z the value stored in the memory, after
the application of signals on its top and bottom terminals,
denoted P and @), it is possible to express the updated value
of Zas Z + PZVQZV PQ = (PQZ). This basic operation
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Figure 2: The PLiM architecture: The PLiM con-
troller operates as a wrapper over the RRAM array
and schedules the RM3 operations

Memory Array

natively embedding both a majority-of-three and an inver-
sion can be leveraged as a universal computing operator. We
refer to this operation as 3-input Resistive Majority (RMs)
with RM3(P,Q, Z) = (PQZ).

The Programmable Logic-in-Memory (PLiM) architecture
aims at enabling logic operations on a regular RRAM array.
While every memory node can implement basic operations,
the difficulty of operating logic on a memory array lies in
the distribution of signals and the scheduling of operations.
The PLiM controller consists of a wrapper of the RRAM
array (Fig. 2) and works as a simple processor core, reading
instructions from the memory array and performing com-
puting operations (majority) within the memory array. As
a wrapper, the PLiM uses the addressing and read/write
peripheral circuitries of the RRAM array. When LiM = 0,
the controller is off and the whole array works as a standard
RAM system. When LiM = 1, the circuit starts performing
computation. The controller consists of a simple finite state
machine and few work registers, in order to operate the RM3
instruction, as detailed in [7]. The instruction format consists
of the first operand A, the second operand B, and the desti-
nation address Z of the results. Single-bit operands A and
B are then read from constants or from the memory array,
and logic operation is performed during the write operation
to the memory location Z by setting P to A and @ to B.
The new value stored in the node Z is then Z < (ABZ).
When the write operation is completed, a program counter
is incremented, and a new cycle of operation is triggered.

3. MOTIVATION

The main idea of this work is leveraging MIGs in order to
derive RM3 instruction sequences, which can run as programs
on the PLiM architecture. In its current form, the PLiM
architecture can only handle serial operations [7]. Therefore,
only one MIG node might be computed each time and the to-
tal number of instructions is equal to the sum of instructions
required to compute each MIG node. Accordingly, reducing
the size of the MIG is considered to have a significant impact
on the PLiM program with respect to the number of steps.
However, still further MIG optimization is possible to lower
the costs caused by complemented edges. While the presence
of a single complemented edge in an MIG node is of interest
for benefiting from the intrinsic majority operation inside an
RRAM, a second or third complemented edge imposes extra
costs in both number of instructions and required RRAMs.
Hence, MIG area rewriting, besides reducing number of nodes
with multiple complemented edges, can be highly effective
for optimizing the number of instructions, while the latter
can also lower the number of required RRAMs.

As an example, consider the two equivalent MIGs in
Fig. 3(a), before optimization on the left and after optimiza-
tion on the right. Translating them into RM3 instructions
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Figure 3: Reducing the number of instructions and

RRAMs, after (a) MIG rewriting and (b) node se-
lection and translation

yields:

Before MIG optimization | After MIG optimization
01: 0, 1, @X; X1+ 0 01: 0,1, @X; |X; « 0

02: 1, i3, @X; | X1 « i3 02: i3, 0, @X; | X1 « i3

03: iy, in, @X1 | X1 < Ny 03: is, i1, @X1 | X1 « Ni

04: 0, 1, @X2 X2 +— 0 04: i4, i2, @X1 Xl < N2

05: 1, @Xl, @X2 X2 %Nl
06: ig, i4, @X2 Xz < N2

Here @QX; refers to the address of RRAM X; and N; refers
to the result of the MIG node j. Program addresses are bold
in front of the RM3 instruction A, B, C, and the second and
fourth column comment the action of the instruction.
It can be seen that after optimization both the number of
instructions and RRAMs are decreased, from 6 to 4 and from
2 to 1, respectively. The effect of multiple complement edge
elimination is much larger when translating a large MIG.
Not only the MIG structure has an effect on the PLiM
program, but also the order in which nodes are translated
and which of the node’s children are selected as operands A,
B, and destination Z in the RM3s instruction. As example,
consider the MIG in Fig. 3(b). Translating it in a naive way,
i.e., in order of their node indexes and selecting the RM3s
operands and destination in order of their children (from left
to right), will result in the following program:

01: 0, 1, @X; X1+ 0 11: 0, 1, @X5 X5+ 0
02: 1, i1, @X; | X1 « 41 12: i3, 0, @X5 X5 + i3
03: 0, 1, @X» X5 <0 13: i1, @X4, @X5 | X5 « N3
04: ’ig, O, @X2 X2 < i2 14: 07 1, @X5 X6 +— 0
05: 0, @X1, @X5 | Xo « N7 15: 1, i3, @Xg Xg + i3
06: 0, 1, QX3 X3+ 0 16: 1, 0, QX, X7+ 1

07: i3, 0, @Xg X3 i3 17: @}(27 @Xe,, QX7 | X7« Ny
08: 1, o, QX3 X3 < No 18: QXo, @){37 QX5 | X5 < N5
09: 0, 1, @X4 X440 19: @X,, @X5, QX2 | Xs « Ng
10: 1, 'L-27 @X4 X4 < 52

By changing the order in which the nodes are translated
and also the order in which children are selected as operands
and destination for the RM3 instructions, a shorter program
can be found (for the same MIG representation):

01: 0,1, @X; |X; 0 09: i3, 0, @X, X5 « i3
02: iz, O, @X1 X1 < i2 10: 7;1, @Xg, @X4 X4 < N3
03: ’il, 1, @X1 X2 < N1 11: @Xl, @Xz, @X4 X4 < N5
04: 1, 0, QXo X2+ 1 12: 0, 1, @Xo X2+ 0
05: ’I:g7 ig, @X2 X2 < NQ 13: ig, 07 @X2 X2 A i3
06: 0,1, @X3 |X3+« 0 14: @X;, 0, @Xo Xo < Ny
07: 1, ’L'27 @X3 X3 < 22 15: @){17 @X4, @X2 X2 < N6
08: 0,1, @X, |X4+« 0

Based on this observations, the next section describes algo-
rithms for automatically finding a good MIG representation
and for translating an MIG representation in an effective
way to get a small PLiM program.

4. THE PLiM COMPILER

This section describes the compilation process and the
optimization approaches we employed. The first subsection
describes the customized MIG rewriting algorithm that opti-
mizes MIG structures to be more convenient for compiling
into RMj3 instructions. The second subsection describes
compilation in detail.

4.1 MIG Rewriting

As discussed in Section 3 both the size of an MIG and
the distribution of complemented edges have an effect on
the PLiM program in number of instructions and number
of RRAMs. Hence, we are interested in an MIG rewriting
algorithm that (i) reduces the size of the MIG, and (ii) reduces
the number of MIG nodes with multiple complemented edges.

1 for (cycles = 0; cycles < effort; cycles++) do
2 Q.M; Q.DR%L;

3 0.A; Q.C,

4 Q.M; Q‘DRHL;

5 Q-[R—>L(1—3)§

6 Q.JIr-1;

7 end

Algorithm 1: MIG rewriting for PLiM architecture

The proposed MIG rewriting approach is given in Algo-
rithm 1 and follows the rewriting idea of [1]. It can be iterated
for a certain number of times, controlled by effort. The first
three lines of Algorithm 1 are based on the conventional MIG
area rewriting approach proposed in [1]. It is clear that Q.M
reduces the size of MIG by eliminating the unnecessary nodes.
Distributivity from right to left (2.Dr— 1) also reduces the
number of nodes by one. These node elimination techniques
are repeated after reshaping the MIG by applying Q2.4; Q.C,
which may provide further size reduction opportunities.

To reduce the number of nodes with multiple inverted
edges, we first apply an extended inverter propagation axiom
from rlght to left denoted by Q.]R*)L(lfg). Q-IR%L(173)

includes the three transformations (1) (Zgz) = (zyz), (2)
(@72) = (xy2), and (3) (272) = (@y?).

Transformation (1) decreases the number of required nega-
tions for computing the node from two to one. Since the
node still lacks the single complemented edge after transfor-
mation, it might be favorable by possibility of creating the
ideal single complement case for the node at its fanout target.
Nevertheless, transferring a complemented edge can be also
unfavorable if the target node already has a single comple-
mented edge. Transformations (1) and (2) make the node
ideal for computation. The same arguments about moving
a complemented edge to the node at the fanout target or
removing it also exist for (2) and (3). At the end, since the
MIG might have been changed after the three aforementioned
transformations, 2./r_ 1, is applied again to ensure the most
costly case is eliminated. In general, applying the last two
lines of Algorithm 1 over the entire MIG repetitively can
lead to much fewer instructions and RRAM cost.

4.2 Compilation

In this section we describe how an optimized MIG is com-
piled into a PLiM program. Algorithm 2 gives an overview of
the algorithm, details are explained in the remainder of this
section. The algorithm keeps track of a map COMP [v] that
stores for each MIG node v whether it has been computed or
not. Initially, all leafs, i.e., primary inputs and the constant,
are set to be computed. A priority queue @ keeps track of
all vertices that can possibly be translated, called candidates.



Input :MIG M
Output: PLiM program P = {I1,I>,..., I}

1 foreach leaf in M do

2 | set COMP[v] < T;

3 end

4 foreach MIG node in M do

5 if all children of v are computed then
6 | Q.enqueue(v);

7 end

8 end

9 while @ is not empty do

10 set ¢ < Q.pop();

11 set P + P U translate(c);

12 set COMP [c] < T;

13 foreach parent of ¢ do

14 if all children of v are computed then
15 | Q.enqueue(v);

16 end

17 end

18 end

Algorithm 2: Outline of compilation algorithm

A vertex is a candidate if all its children are computed. The
sorting criteria for @) is described in Section 4.2.1.

The main loop of the algorithm starts by popping the best
candidate ¢ from the priority queue and translating it into a
sequence of PLiM instructions. Section 4.2.2 describes the
translation process in detail. Afterwards, for each parent, it
is checked whether it is computable, and if this is the case,
it is inserted into Q.

4.2.1 Candidate Selection

Our candidate selection strategy is based on two principles:
(i) releasing the RRAMs in-use as early as possible, and (ii)
allocating RRAMs at the right time such that they are
blocked as short as possible. We show two example MIGs
to clarify the principles. Fig. 4(a) shows an MIG with two
candidates u and v, for which all of their children nodes are
already computed. Candidate u has two releasing children,
i.e., children who have single fan-out, while v has only one
releasing child. In the case that u is selected for computation
first, the RRAMSs keeping its releasing children can be freed
and reused for the next candidate.

Fig. 4(b) shows a small MIG with two candidates u and
v to illustrate the second principle. The output of w is
only required when v is already computed. In other words,
the number of RRAMs in use can increase if u is computed
before v since the RRAM keeping u cannot be released before
computing the root node of the MIG. This way, v is computed
when a RRAM has been already allocated to retain the value
of u. The number of additional RRAMs required in such
condition can be considerable for large number of nodes.

In order to sort nodes in the priority queue in Algorithm 2,
two nodes u and v are compared. Node u is preferred over v
if (i) its number of releasing children is greater, or (ii) if u’s
parent with the largest level (ordered from Pls to POs) is on
a lower level than v’s parent with the smallest level. If no
criteria is fulfilled, v and v are compared according to their
node index.

4.2.2 Node Translation

This section explains how a node in the MIG is translated
into a RM3 instruction with operands A and B, and destina-
tion Z. The operands A and B can be RRAMs or constants
and the destination Z is a RRAM. Recall that the instruction

@
()
candidates — Q“Q candidates — () (@
computed — €2)) €2 ) computed — (€2) () ()

(a) (b)

Figure 4: Reducing the number of RRAMs by select-
ing the candidate with (a) more releasing children
and (b) smaller fanout level index

computes Z < (ABZ). In the ideal case each each MIG
node can be translated into exactly one RMs instructions
and can reuse one of its children’s RRAMSs as destination. In
other cases additional RM3 instructions and/or additional
RRAMs are required.

Select operand B. We first select which of the node’s chil-
dren should serve as operand B, i.e., the second operand of
the RM3 instruction. In total, four cases with subcases are
checked in the given order which are illustrated in Fig. 5.
Only the last two subcases require two additional instructions
and one additional RRAM.

(a) There is exactly one complemented child: B is the RRAM
storing this complemented child.

(b) There is more than one complemented child, but also
a constant child: The nonconstant complemented child is
selected for B, since constants allow for more flexibility when
selecting the remaining operands.

(¢) There is no complemented child, but there is a constant
child: B is assigned the inverse of the constant. Since we
consider MIGs that only have the constant 0 child, B is
assigned 1.

(d) There is more than one complemented child, but at least
one with multiple fan-out: We select the RRAM of the child
with multiple fan-out, as this excludes its use as destination.
(e) There is more than one complemented child, none with
multiple fan-out: The RRAM of the first child is selected.
(f) There is no complemented child, but for one child there
exists a RRAM with its complemented value: Each node
is associated with an RRAM which holds or has held its
computed result. In addition, if its inverted value is computed
once and stored in an additional RRAM X, it is remembered
for future use. In this case B can be assigned X;.

(g) There is no complemented child, but one child has multiple
fan-out: The child with multiple fan-out is selected with the
same argumentation as above. Since it is not inverted, an
additional RRAM X; needs to be allocated, loaded with 0,
and then set to the complement of X,,. As described above,
X is associated to the child for future use.

(h) There is no inverted child and none has multiple fan-out:
The fist child is selected and an additional RRAM X is
allocated to store the complement of X,,.

Select destination Z. After the inverter selection, the des-
tination RRAM, i.e., the third argument of the RMg3 instruc-
tion is selected. The aim is to reuse one of the children’s
RRAMs as work RRAM instead of creating a new one. In
total, four cases (with subcases) are checked which are il-
lustrated in Fig. 6. Only the first case allows to reuse an
RRAM of the children for the destination, all the other cases
require one or two additional instructions and one additional
RRAM. Note that one of the children has already been se-
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Figure 5: Selecting operand B
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Figure 6: Selecting destination Z

lected as operand B and that this is implicitly considered in
the following descriptions.

(a) There is a complemented child with one fan-out, and
there exists an RRAM with its complemented value: The
existing RRAM X; for the complemented value can be used
and it is safe to override it, since the child does not fan out
to other parents.

(b) There is a noncomplemented child with one fan-out: The
RRAM of this child can be used as destination and it is safe
to override it. Note that case (a) is preferable compared to
this one to avoid complemented children for operand A.

(c) There is a constant child: If there is a constant child (with
or without multiple fan-out) a new RRAM is allocated and
initialized to the constant value (considering complemented
edges into account).

(d) There is a complemented child: If there is an inverted
child X4 (with or without multiple fan-out), a new RRAM
X, is allocated and initialized to the complement of X4 using
two RMg3 instructions.

(e) There is a noncomplemented child with multiple fan-out:
The first child Xy is selected and it’s value is copied into a
new allocated RRAM X, using two RM3 instructions.

Select operand A. The child that is selected as operand A
is uniquely determined at this point since operand B and
destination Z have been selected. Consequently, there is no
case distinction w.r.t. to preference. However, there are still
different actions to be taken depending on the child node.
(a) The child node is constant: A is set to the constant taking
the complement edge into account.

(b) The child node is noncomplemented: A is set to the

B+ @X; 0,1,@X; 0,1, QX;
1. @X,, @X; 1, @X,, QX;
(e) (f) B+« @QX, B+« QX;

(8) (h)

RRAM of the child node.

(¢) The child node is complemented, and there exists an
RRAM with its complemented value: A is set to the com-
puted RRAM of the complemented value.

(d) The child node is complemented, but there does not exist
an RRAM with its complemented value: A new RRAM X;
is allocated and assigned to the inverted value of the node.
A is set to X;.

At least one instruction is required and no additional RRAM
needs to be allocated in order to translate one node. In the
worst case, six additional instructions and three additional
RRAMs are required, e.g., cases (h), (e), and (d) for selecting
operand B, destination Z, and operand A, respectively.

4.2.3 RRAM Allocation

We are interested in finding programs with a small number
of instructions and a small number of RRAMs, i.e., optimized
w.r.t. time and space. The rewriting algorithm that has
been described in Section 4.1 addresses and affects both
optimization criteria whereas the node translation described
in Section 4.2.2 mainly targets the number of steps. In order
to reduce the number of RRAMS, we have added a RRAM
allocation. It implements an interface with two operations:
(1) request, which returns an RRAM that is ready to use, and
(ii) release, which releases an RRAM that is not required
anymore. We implement this interface by using a free list that
is populated with released RRAMs. Whenever an RRAM is
requested, first it is checked whether a free released RRAM
exists that can be re-used, or a new fresh RRAM is allocated.

RRAMs are requested whenever more than one instruction
is required to translate a node (e.g., cases (g) and (h) for
selecting operand B). RRAMs are released whenever all
parents of a child have been computed. In order to address
endurance constraints of the in-memory computing architec-
ture, we implemented the interface based on a FIFO strategy,
i.e., the oldest released RRAM is returned on request. Re-
cently released RRAMs are released later this way.

S. EXPERIMENTAL RESULTS

The results of evaluating our approach for the EPFL bench-
marks® is given in Table 1. The second column includes
results for a naive translation, where only the candidate se-
lection scheme is disabled, based on the initial nonoptimized
MIGs. The third and the forth columns represent results
after MIG rewriting and both rewriting and compilation,
respectively. The number of iterations of the MIG rewriting
algorithm is set to 4 during all experiments. The instructions
and required RRAMs are shown by I and R, and the number
of MIG nodes N is provided to give a better understanding
of the MIG before and after rewriting. It is clear that N
also shows the number of MIG nodes for the compiled PLiM,
since the same MIG after rewriting has been used.

"http://1si.epfl.ch/benchmarks



Table 1: Experimental Evaluation

Benchmark PI/PO naive MIG rewriting Rewriting and compilation
#N #1 #R #N #I  impr. #R impr. #I impr. #R  impr.
adder 256/129 1020 2844 512 1020 2037 28.38% 386 24.61% 1911 32.81% 259 49.41%
bar 135/128 3336 8136 523 3240 5895 27.54% 371 29.06% 6011 26.12% 332 36.52%
div 128/128 57247 146617 687 50841 147026 -0.03% 771 -12.22% 147608 -0.68% 590 14.12%
log2 32/32 32060 78885 1597 31419 60402 23.43% 1487  6.89% 60184 23.71% 1256 21.35%
max 512/130 2865 6731 1021 2845 5092 24.35% 867 15.08% 4996 25.78% 579 43.29%
multiplier 128/128 27062 76156 2798 26951 56428 25.91% 1672 40.24% 56009 26.45% 419 85.03%
sin 24/25 5416 12479 438 5344 10300 17.09% 426 2.73% 10223 18.08% 402 8.22%
sqrt 128/64 24618 60691 375 22351 47454 21.81% 433 -15.46% 49782 17.97% 323 13.87T%
square 64/128 18484 54704 3272 18085 33625 38.53% 3247  0.76% 33369 39.00% 452 86.19%
cavlc 10/11 693 1919 262 691 1146 40.28% 236 9.92% 1124 41.43% 102 61.07%
ctrl 7/26 174 499 66 156 258 48.29% 55  16.66% 263 47.29% 39 40.91%
dec 8/256 304 822 257 304 783 4.74% 257  0.00% 7T 5.47% 258 -0.39%
i2c 147/142 1342 3314 545 1311 2119 36.05% 487 10.64% 2028 38.81% 234 57.06%
int2float 11/7 260 648 99 257 432 33.33% 83 16.16% 428 33.95% 41 58.59%
mem_ctrl 1204/1231 46836 113244 8127 46519 85785 24.25% 6708 17.46% 84963 24.97% 2223 72.65%
priority 128/8 978 2461 315 977 2126 13.61% 241 23.49% 2147 12.76% 149 52.70%
router 60/30 257 503 117 257 407 19.09% 112 4.27% 401 20.28% 64 45.30%
voter 1001/1 13758 38002 1749 12992 25009 34.19% 1544 11.72% 24990 34.24% 1063 39.22%
> 236710 608655 22760 225560 486324 20.09% 19383 14.83% 487214 19.95% 8785 61.40%

#N: number of MIG nodes, #I: number of RM3 instructions, #R: number of RRAMS, improvement is calculated compared to naive

As expected, the number of MIG nodes have been reduced
or remained unchanged for a few cases after MIG rewriting.
Although, the number of nodes after MIG rewriting does
not show a significant reduction, the sum of the number of
instructions is reduced up to 20.09% compared to the naive
translation. This besides the 14.83% reduction achieved in
the total number of RRAMs imply the effectiveness of the
employed techniques for removing multiple inverted edges.

Performing both MIG rewriting and our optimized com-
pilation approach, the number of required instructions and
RRAMs reduces notably. The sum of the number of instruc-
tions and RRAM for the compiled PLiM are reduced by
up to 19.95% and 61.4%, respectively in comparison with
the corresponding values obtained for the naive PLiM. This
represents a significant reduction in both the latency and
especially storage space metrics.

6. CONCLUSION

‘We have presented algorithms to automatically translate
large Boolean functions into programs for the in-memory
computing PLiM architecture. We observed that both the
MIG representation and the way in which an MIG is com-
piled has a large impact on the resulting PLiM programs—in
terms of required instructions as well as number of RRAMs.
Experiments show that compared to a naive translation ap-
proach the number of instructions can be reduced by up to
19.95% and the number of required RRAMs can be reduced
by up to 61.40%. Our algorithm unlocks for the first time
the potential of the PLiM architecture to process large scale
computer programs using in-memory computing. This makes
this promising emerging technology immediately available for
nontrivial applications. Endurance constraints are addressed
by RRAM allocation algorithms in our proposed compilation
approach. As part of our future research we want to inves-
tigate the problem’s complexity and consider constraints in
the optimization, e.g., a limited number of RRAMs.
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