
Precise Error Determination of Approximated Components
in Sequential Circuits with Model Checking

Arun Chandrasekharan1 Mathias Soeken2 Daniel Große1,3 Rolf Drechsler1,3
1Group of Computer Architecture, University of Bremen, Germany

2Integrated Systems Laboratory, EPFL, Switzerland
3Cyber Physical Systems, DFKI GmbH, Bremen, Germany

{arun,grosse,drechsle}@cs.uni-bremen.de, mathias.soeken@epfl.ch

ABSTRACT
Error metrics are used to evaluate the quality of an approx-
imated circuit or to trade-off several approximated candi-
dates in design exploration. Precisely determining the error
of an approximated circuit is a hard problem since the er-
rors accumulate over time depending on the composition and
nature of individual components. In this paper, we present
methods based on model checking to precisely determine
error behavior in sequential circuits that contain approxi-
mated combinational components. Our experiments show
that such an analysis is very significant and crucial to prop-
erly deduce the effects of approximations.

1. INTRODUCTION
There is a high demand for approximate computing that

allows to achieve significant improvements in performance
by relaxing the requirements of correct functional or non-
functional properties (see, e.g., [20]). A large number of ap-
plications allow approximation including DSP, multimedia,
recognition, or mining. Reasons that allow approximation
are, e.g., the limited perceptual capability of humans or im-
precision due to non-available exact results.

In recent years, approaches have been presented for ap-
proximated building blocks (e.g, [18, 22, 3]) or synthesis
methods to derive approximated components from golden
designs (e.g., [16, 19, 13]). The degree and acceptance of ap-
proximation is measured with respect to error metrics, such
as error rate, worst-case error, or average-case error. Several
heuristic and statistical methods have been proposed to es-
timate the error of an approximated circuit. Precisely com-
puting error metrics is a hard problem, but it is inevitable
when aiming for high quality results or when trading off can-
didates in design space exploration. Exact methods based on
Boolean Satisfiability (SAT) or Binary Decision Diagrams
(BDDs) have been proposed in the past for combinational
circuits [20, 17].

Precisely determining the error metric of a combinational
circuit is already very helpful in the design of approximate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898069

computing, but the obtained numbers may not be accurate
when considering approximated components in sequential
circuits. As an example, although the worst-case can be
computed for the approximated component in isolation, the
accumulated worst-case in the sequential circuit may differ
significantly, since only a subset of the input patterns may
actually be assignable. Further, the sequence of successive
input patterns for the approximated component depends on
the sequential logic and composition of the overall circuit.

In this paper, we propose algorithms based on model check-
ing that are able to prove the absence of errors such as accu-
mulated worst-case, maximum worst-case, or average error-
rate—although theoretically possible when only considering
the approximated component in isolation. For this purpose,
we propose the concept of an approximation miter that in-
corporates both error computation and accumulation over
time in sequential circuits. State-of-the-art model checking
techniques can then be used to prove the presence or absence
of an error.

To summarize, the major contributions of this paper are:

• Presentation of a generic configurable approximation
miter; it enables the formulation of exact formal error
determination instances

• Reduction of exact error metric computation to deci-
sion or optimization problems using formal verification
techniques

• First exact approach to analyze the effect of errors in-
troduced by approximated components in sequential
circuits

The remainder of this paper is structured as follows. First,
in Section 2 the preliminaries are provided. Then, our ap-
proaches for precise error determination of approximated
components in sequential circuits are introduced. The ex-
perimental evaluation is given in Section 4. Finally, the
paper is concluded in Section 5.

2. PRELIMINARIES
This section gives the basics on formal verification already

with the focus on its application in the context of approx-
imate computing. The second part of the section briefly
reviews the basic error metrics typically used to measure
the quality of approximated combinational components.

2.1 Formal Verification
In the last decade formal verification techniques have been

intensively used in the industry. Essentially, formal verifi-
cation can be divided into model checking1 and (sequential)
equivalence checking. Based on the recent advancements us-
ing e.g. BDDs, SAT, induction, interpolation, and property-
directed reachalibity (PDR), model checking and sequential
equivalence checking have become quite similar.

Equivalence checking is the subclass of formal verification
where two different implementations of the same logic is ex-
haustively verified to be equivalent. The notion of equiv-
alence is that both implementations produce the same se-
quence of outputs under all possible sequences of input con-
ditions, starting from the same initial state [12, 14]. Equiva-
lence checking when applied to approximated hardware aims
to establish whether both of the implementations produce
outputs that do not differ beyond a certain predefined qual-
ity threshold, under all possible sequences of input combi-
nations.

When sequential elements are present in the design, the
number of states for equivalence checking increases expo-
nentially and becomes easily non tractable. To deal with
this state explosion problem several approaches have been
proposed. One such approach is Bounded Model Checking
(BMC) [4] where the length of the sequence over which the
formal verification is employed is finite. When applied to
sequential equivalence checking the circuit is unrolled to
a predefined number of time frames and the overall prob-
lem including the properties is solved using a SAT solver.
This approach is feasible as the current state-of-the-art SAT
solvers [8] can solve millions of clauses in moderate time.
Besides BMC, tools have evolved to use inductive reason-
ing [24] and more recently PDR [5, 1] techniques which give
vast improvements over the original method.

2.2 Error Metrics
Different error metrics have been proposed to qualitatively

and quantitatively measure the quality of approximations [2,
20, 10]. A brief overview of the metrics relevant to our work
is given below.

Let f : Bn → Bm be a Boolean function and f̂ : Bn →
Bm an approximation of it. Then, the worst-case error, also
called error significance, is defined as

ewc(f, f̂) = max
x∈Bn

∣∣∣int(f(x))− int(f̂(x))
∣∣∣ , (1)

i.e., the maximum among the absolute differences of f and f̂
over all the possible input combinations, where ‘int’ denotes
the integer representation of the bit vector.

Similarly, the average-case error

eac(f, f̂) =

∑
x∈Bn

∣∣∣int(f(x))− int(f̂(x))
∣∣∣

2n

(2)

gives the average error introduced by approximations per
input combination.

Finally, the error-rate

eer(f, f̂) =

∑
x∈Bn

[f(x) 6= f̂(x)]

2n

(3)

1also called property checking

counts the percentage of input assignments that lead to a
different output pattern. All these error metrics can be pre-
cisely computed for combinational circuits with the symbolic
algorithms given in [17].

3. PRECISE ERROR DETERMINATION
In this section the proposed approaches for exact error

determination for approximated components in sequential
circuits are presented. At first, we give the general idea in-
troducing the approximation miter. Afterwards, we explain
the components of the approximation miter and show its
generic configurable form. Altogether, we can ask different
questions which can be precisely answered based on suitable
configurations of the approximation miter and the reduction
to decision or optimization problems.

3.1 General Idea
Our proposed approach precisely computes accumulated

errors of combinational components in sequential circuits.
The main idea is to apply model checking to an approxima-
tion miter which is illustrated in Fig. 1. The approxima-
tion miter consists of five circuits: (i) the non-approximated

original circuit C, (ii) the circuit Ĉ that is obtained by re-
placing some combinational components with approximated
implementations, (iii) a circuit E to compute the error of

Ĉ’s outputs with respect to C’s outputs and a given error
metric, (iv) an accumulator A that accumulates the com-
puted errors in each cycle and (v) a decision circuit D. The
decision circuit exposes the single output ‘bad’ of the ap-
proximation miter, which is 1 if and only if the accumulated
error violates a given requirement. Formal model checking
techniques can be applied to show that the output signal
never evaluates to 1 either unbounded or within some given
number of cycles.

C

Ĉ

E A DPI

f

f̂

e a bad?

Figure 1: General idea

3.2 Approximation Miter
This section illustrates the components of the approxi-

mation miter in detail. Note that these are only selected
examples that can all be exchanged by user defined imple-
mentation to create custom scenarios. Some example sce-
narios based on the selected implementations are presented
in the end of this section.

3.2.1 Error computation
The stateless error computation E takes as input the out-

put results of C and Ĉ, accessible through the wires f and
f̂ . Not necessarily all outputs are of interest and therefore

not all outputs of C and Ĉ may be contained in f and f̂ .
Further, the order of bits is set to adhere the desired numeric
interpretation.

For worst case and average case type computations, E is
implemented as

e =
∣∣∣int(f)− int(f̂)

∣∣∣ . (E1)

For error rate type computations, E is

e = f ⊕ f̂ (E2)

or

e =

m∑
i=1

(
fi ⊕ f̂i

)
, (E3)

where the first equation computes a bit-string that is 1 at po-
sitions where the output results differ and the second equa-
tion computes the amount of that bits.

3.2.2 Accumulation
The accumulation has state and can store intermediate

results. A straight-forward implementation is to add all er-
rors:

a′ = a′ + e

a = a′,
(A1)

where a′ is a state variable that stores the current sum of
all errors and is initialized with 0. In the remainder of this
section, all state variables are primed and initialized with 0.
An accumulator can also track the maximum error:

a′ = max(a′, e)

a = a′.
(A2)

When dealing with error rate and bit masks, binary opera-
tions are of interest. As an example to accumulate changed
bits one can use the following implementation:

a′ = a′ | e
a = a′,

(A3)

where ‘|’ refers to bitwise OR. Additional state variables
can be employed for more complex computations. In order
to keep track of an average error, also the number of cycles
need to be tracked:

a′ = a′ + e

c′ = c′ + 1

a = a′/c′
(A4)

3.2.3 Decision
Typically the decision circuit implements a comparison

with respect to a threshold X, the most common one being

bad = a ≥ X, (D1)

that asserts ‘bad’ if the accumulated error is greater or equal
than the given threshold.

3.3 Approximation Questions
The approximation miter with the previous discussed im-

plementations for its components can now combined in sev-
eral different ways that allows to answer major questions, of
which five are presented in the following.

Question 1: What is the earliest time that I can exceed
an accumulated worst-case error of X?
This question can be answered by using the implementations
E1, A1, and D1 and then performing BMC. If BMC returns
a counter-example at time step t, one tries to find another
counter-example up to time step t − 1.2 This procedure is
repeated until BMC cannot find a counter-example anymore;
the earliest time is the latest found t.

Question 2: What is the maximum worst-case error?
This question is not a decision problem but an optimiza-
tion problem. For this purpose we use the approximation
miter with implementations E1, A2, and D1. The worst-
case error is found out using binary search with PDR. The
binary search is shown in Algorithm 1. X is set to one half
of 2m − 1 in the first loop, with lower bound 0 and upper
bound 2m − 1 where m is the bit-width of the considered
output vector. PDR is used to solve the miter and if PDR
returns True, the lower bound is set to X, otherwise the
upper bound is set to X − 1. The upper and lower bounds
are refined iteratively until they converge to the worst-case
error.

Algorithm 1 Finding maximum worst-case error

1: function find worst case error
2: lower bound← 0
3: upper bound← 2m − 1
4: while lower bound < upper bound do

5: X =
⌈ (upper bound + lower bound)

2

⌉
6: status = PDR(Miter(E1, A2, D1), X)
7: if status = True then
8: lower bound = X
9: else

10: upper bound = X − 1
11: end if
12: end while
13: return lower bound
14: end function

Question 3: What is the earliest time that I can reach
an accumulated error rate of X?
This question can be solved in the same way as Question 1,
but with E2, A3, and a decision circuit that takes into con-
sideration the number of bits in the accumulated error:

bad =

m∑
i=1

ai ≥ X

Question 4: What is the maximum error rate?
This question can be solved in the same way as Question 2
by only replacing E1 with E3, in the error computation. The
initial lower bound remains the same but the upper bound
is initialized to m, the bit-width of the output vector. We
use similar binary search as given in Algorithm 1 with the
PDR call on the Miter(E3, A2, D1).

2This 2nd check may be required for advanced BMC im-
plementations which do not guarantee a counter-example of
minimal length.

Question 5: Can I guarantee that the average-case er-
ror does not exceed X?
Sometimes one is interested that the error does not grow too
large over time although some exceptions are tolerable. As
an example, if only small errors have been made for a long
time one can except a larger one. For this purpose, one needs
to track the average case error which is done by using the
approximation miter with E1, A4, and D1. The result is a
decision problem, for which we have: If no counter-example
can be found, the average-case behavior can be guaranteed.

In total, we have demonstrated that the proposed approx-
imation miter is generic and can be configured such that dif-
ferent major questions can be formulated. By reducing the
respective problems either as decision or optimization prob-
lem they can be answered using model checking techniques.

At this point we would also like to differentiate our work
with the techniques presented in [13], where the outputs
of original and approximated circuits are compared using
a user provided Quality Evaluation Circuit, QEC, which is
formally verified for liveness and safety properties. However
in [13], it is not clear how the individual error metrics are
evaluated and thus the quality is ensured. In particular,
the optimization problems addressed in our work are very
unlikely to be represented as a circuit in the form of QEC.

In the following section we demonstrate our approaches
on several examples.

4. EXPERIMENTAL RESULTS
We have implemented all algorithms in C++ as part of

our own formal verification package.3 The program reads
Verilog RTL descriptions of the the approximated and non-
approximated design using Yosys [21] to create the approx-
imate miter. We use ABC [11] to perform model checking
of the miter. In our experimental evaluation we tried to an-
swer Questions 1–4 from Section 3.3 on various open designs
from OpenCores and GitHub. Question 5 involves the use
of a divider as given in (A4) and the divider is hard to verify
formally [7]. Our initial experiments on Question 5 did not
conclude on practical designs and as a result the implemen-
tation of Question 5 is left out for future work. The experi-
ments are carried out on an Octa-Core Intel Xeon CPU with
3.40 GHz and 32 GB memory running Linux 4.1.6.

The experimental evaluation is described in two parts.
First, an extensive case study of approximated adders in se-
quential multipliers is discussed in Section 4.1. Second, the
generality and scalability of the approach is demonstrated
by applying it to various designs in Section 4.2.

4.1 Approximated Sequential Multiplier
We evaluated the different error metrics for several ap-

proximate adder architectures given in [6]. Several configu-
rations of the adders are possible depending on the applica-
tion and the required error characteristics. All these adders
are combinational circuits and Table 1 summarizes the error
metrics computed for these circuits. The short-form nota-
tions used are as given in the repository. Both 8-bit and
16-bit versions of the adders are given in the table. The
number of gates are taken from ABC [11]. Each category
has a Ripple Carry Adder entry given at the end. This is

3The package and the benchmarks are available at the repos-
itory https://gitlab.com/arunc/maniac verify.git

the normal non-approximated adder and serves as golden
reference model.

Table 1: Error Metrics for Approximation Adders

Architecture gates ewc eac eer

8-bit Adders

Almost Correct Adder [9]
ACA II N8 Q4 63 64 3.75 18.75%
ACA I N8 Q5 78 128 0.44 4.69%

Gracefully Degrading Adder [23]
GDA St N8 M4 P2 67 64 3.75 18.75%
GDA St N8 M4 P4 73 64 0.19 2.34%
GDA St N8 M8 P1 54 168 31.50 60.16%
GDA St N8 M8 P2 65 144 7.75 30.08%
GDA St N8 M8 P3 73 128 1.88 12.50%
GDA St N8 M8 P4 79 128 0.44 4.69%
GDA St N8 M8 P5 81 128 0.09 1.56%
GDA St N8 M8 P6 81 128 0.02 0.39%

Accuracy Configurable Adder [15]
GeAr N8 R1 P1 54 168 31.50 60.17%
GeAr N8 R1 P2 65 144 7.75 30.08%
GeAr N8 R1 P3 73 128 1.88 12.50%
GeAr N8 R1 P4 78 128 0.44 4.69%
GeAr N8 R1 P5 79 128 0.09 1.56%
GeAr N8 R1 P6 79 128 0.02 0.39%
GeAr N8 R2 P2 63 64 3.75 18.75%
GeAr N8 R2 P4 69 64 0.19 2.34%

Ripple Carry Adder
RCA N8 72 0 0 0%

16-bit Adders

Almost Correct Adder
ACA II N16 Q4 131 17472 1023.75 47.79%
ACA II N16 Q8 152 4096 15.94 5.86%
ACA I N16 Q4 161 34944 511.88 34.05%

Error Tolerant Adder [25]
ETAII N16 Q4 131 17472 1023.75 47.79%
ETAII N16 Q8 152 4096 15.94 5.86%

Gracefully Degrading Adder [23]
GDA St N16 M4 P4 160 4096 15.94 5.86%
GDA St N16 M4 P8 170 4096 0.06 0.18%

Accuracy Configurable Adder [9]
GeAr N16 R2 P4 149 16640 63.94 11.55%
GeAr N16 R4 P4 152 4096 15.94 5.86%
GeAr N16 R4 P8 158 4096 0.06 0.18%
GeAr N16 R6 P4 155 1024 3.94 3.08%

Ripple Carry Adder
RCA N16 161 0 0 0%

The study of bounds of error metrics for these adder ar-
chitectures by itself is interesting. A more significant infor-
mation is their impact within a circuit. The isolated com-
binational behavior of an approximate adder could be very
different from when used as a building block in a bigger (se-
quential) circuit. We present the case study of 8-bit sequen-
tial multipliers using these approximate adder architectures
as a motivation. Although these circuits are simple to con-
struct, their error analysis reveals the need and usefulness
of our approach.

The design used in this experiment is an unsigned 8-bit
sequential multiplier with 4-bit inputs. Partial products are
computed in each clock cycle and added using an 8-bit adder.
The number of clock cycles taken to complete the multipli-
cation4 is input data dependent with extra checking for the
operands being 1 or 0. The adder used in the circuit is
instantiated with the published approximation adders from
the repository [6]. Several adders are chosen from this repos-

4The OE signal which indicates the availability of a valid
output has to be additionally specified to the tool in this
case.

itory with similar approximation architectures and different
configurations. While the design of the non-approximated
multiplier is straight forward, several interesting results can
be deduced from the approximate versions.

The approximated multiplier designs are evaluated for the
questions presented in Section 3.3. The results are given in
the upper half of Table 2. In this table, the design details
such as Area, Delay, Gates and Regs are taken from the
corresponding synthesis run of ABC [11] with the command
resyn. Delay is the worst timing delay achieved and Regs is
the number of sequential elements in the design. The next
four columns are the results of the Questions presented in
Section 3.3. In Q1 and Q3, X is the error assumed and t is
the corresponding clock-cycles determined by the tool. The
subsequent four columns are the run-times in seconds taken
to answer these questions. The last entry in the upper half
of the table is the Multiplier with Ripple Carry Adder which
is the non-approximated reference design.

Some multipliers with approximation adder architectures
such as ACA I N8 Q5, GDA St N8 M8 P4 etc. are equiv-
alent to the non-approximated multiplier. In this case, the
designer can safely choose any of them for the given applica-
tion. This differs drastically from the error behavior of the
individual adders given in Table 1.

Another interesting aspect is the maximum error rate of
the circuits (result of Q4). For example, even though the
multiplier using the adder GeAr N8 R1 P3 has a faster er-
ror accumulation (result of Q1) compared to the multiplier
with adder GeAr N8 R2 P2 (36 cycles are less than 41 which
makes it faster), the maximum error rate possible (result of
Q4) is better with the former one. This is useful in designing
circuits such as the one used for error detection and correc-
tion since such circuits rely on the error rate rather than
the magnitude of the error introduced. Multipliers using
the adders GDA St N8 M8 P1 and GeAr N8 R1 P1 have
the worst accumulation tendency (result of Q2) and this
correlates with their combinational error behavior.

4.2 Generality and Scalability
To demonstrate generality and scalability of our proposed

approach, various further benchmarks and approximation
scenarios are provided in the lower half of Table 2. It has to
be noted that in these examples, the approximations intro-
duced are rather arbitrary without any proper design prin-
ciples involved. The first design is a 16-bit IIR filter in
which the Multiply and Accumulate (MAC) unit is replaced
by a smaller one. The coefficients and the MAC unit of
the original filter are 18-bit wide and the design is a Direct
Form-II Transposed IIR filter. In the approximated ver-
sion, the width of the MAC unit is simply reduced to 17-bit.
The filter has a maximum worst-case error (result of Q2) of
31542, which is less than one half of the maximum output
value of 215 − 1 (since the output represent a signed value).
But it takes at least 19 cycles for the error to accumulate
and cross 50,000 mark. Furthermore, the maximum number
of bit-flips (not necessarily the lower bits of the output) in
any given clock cycle for this design is 11.

The second design in the lower half of the Table 2 is a
17-bit output FIR filter, with approximations introduced in
the values of coefficients. In this case, the error introduced
is higher with accumulated error crossing 100,000 within 3
cycles of operation and at most 16 bits among the 17 bits
toggle for this design in any clock cycle. Similar interpreta-

tions can be obtained from the error behavior of the other
designs shown in the table such as Quantizer, Stepper Motor
and Binary to BCD converter.

The results confirm the applicability of our proposed ap-
proach. The run-times heavily depend on the underlying
model checking algorithms. Improvement in model checking
therefore has a direct positive effect on our methodology as
well.

5. CONCLUSIONS
In this paper we proposed a methodology together with

tools that are able to argue precisely about the error behav-
ior of approximated combinational components in sequen-
tial circuits. This is of high importance, because (i) there
exists a large number of design and synthesis methods for
approximate computing without providing precise error met-
rics (even in the combinational case), and (ii) the error can
vary significantly when approximated components are em-
bedded into sequential circuits.

We presented an approximation miter that can be config-
ured in various ways to answer a variety of verification ques-
tions. These questions can be answered by solving model
checking problems. We have evaluated the usefulness, effec-
tiveness, and scalability of our approach in an experimental
evaluation with realistic designs. Our methods allow for a
higher quality and better possibilities for design space ex-
ploration in design for approximating computing.

Acknowledgments. This work was supported by the Ger-
man Research Foundation (DFG) in the project MANIAC
(DR 287/29-1), by the University of Bremen’s graduate school
SyDe, funded by the German Excellence Initiative, by the
German Federal Ministry of Education and Research (BMBF)
in the project EffektiV (01IS13022E), by H2020-ERC-2014-
ADG 669354 CyberCare, and by the German Academic Ex-
change Service (DAAD).

6. REFERENCES
[1] A. Bradley. Incremental, inductive model checking. In 2013

20th International Symposium on Temporal Representation
and Reasoning (TIME), pages 5–6, 2013.

[2] M. Breuer. Determining error rate in error tolerant vlsi chips. In
Electronic Design, Test and Applications, pages 321–326, Jan
2004.

[3] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Anal-
ysis and characterization of inherent application resilience for
approximate computing. In Design Automation Conf., pages
1–9, May 2013.

[4] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System
Design, 19(1):7–34, 2001.

[5] N. Een, A. Mishchenko, and R. Brayton. Efficient implementa-
tion of property directed reachability. In Int’l Conf. on Formal
Methods in CAD, pages 125–134, 2011.

[6] GeAr-ApproxAdderLib. Chair for Embedded Systems - Karl-
sruhe Institute of Technology, 2015. http://ces.itec.kit.edu/
1025.php.

[7] M. Haghbayan, B. Alizadeh, P. Behnam, and S. Safari. Formal
verification and debugging of array dividers with auto-correction
mechanism. In VLSI Design and 2014 13th International Con-
ference on Embedded Systems, 2014 27th International Con-
ference on, pages 80–85, Jan 2014.

[8] http://www.satcompetition.org/. The international sat compe-
titions, 2014.

[9] A. Kahng and S. Kang. Accuracy-configurable adder for approx-
imate arithmetic designs. In Design Automation Conf., pages
820–825, June 2012.

[10] J. Miao, A. Gerstlauer, and M. Orshansky. Approximate logic
synthesis under general error magnitude and frequency con-

Table 2: Evaluation of Questions in Section 3.3 for various designs

Design Details Questions Asked Run-time Comparison

Circuit Approximation Area?,† Delay? Gates? Regs? Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
architecture used (ns) (X, t) (X, t) (sec) (sec) (sec) (sec)

Multiplier (8-bit) Almost Correct Adder
ACA II N8 Q4 507 9.60 205 39 (1000, 41) 128 (5, 11) 3 5.12 7.62 2.72 3.20
ACA I N8 Q5 530 11.20 222 39 (1000, 0) 0 (3, 0) 0 14.02 11.27 7.90 4.11

Gracefully Degrading Adder
GDA St N8 M4 P2 507 9.60 205 39 (1000, 41) 128 (5, 11) 3 3.93 9.26 1.70 3.93
GDA St N8 M4 P4 540 10.30 219 39 (1000, 0) 0 (3, 0) 0 21.89 12.56 1.77 4.27
GDA St N8 M8 P1 526 7.40 205 39 (1000, 26) 224 (6, 11) 4 0.97 5.22 1.00 4.14
GDA St N8 M8 P2 578 8.00 239 39 (1000, 36) 144 (5, 11) 3 1.40 8.50 0.76 3.71
GDA St N8 M8 P3 588 8.80 241 39 (1000, 36) 160 (4, 11) 2 2.60 7.77 2.78 5.29
GDA St N8 M8 P4 569 9.40 229 39 (1000, 0) 0 (3, 0) 0 18.12 12.92 6.20 4.76
GDA St N8 M8 P5 614 9.10 244 39 (1000, 0) 0 (3, 0) 0 17.91 12.24 6.13 6.22
GDA St N8 M8 P6 609 10.30 248 39 (1000, 0) 0 (3, 0) 0 15.15 16.57 8.62 4.93

Accuracy Configurable Adder
GeAr N8 R1 P1 526 7.40 205 39 (1000, 26) 224 (6, 11) 4 1.67 5.56 1.52 4.72
GeAr N8 R1 P2 578 8.00 239 39 (1000, 36) 144 (5, 11) 3 3.50 9.68 2.32 3.68
GeAr N8 R1 P3 532 9.60 220 39 (1000, 36) 160 (4, 11) 2 3.23 7.92 4.02 5.32
GeAr N8 R1 P4 530 11.20 222 39 (1000, 0) 0 (3, 0) 0 14.03 12.69 7.89 4.80
GeAr N8 R1 P5 551 11.20 229 39 (1000, 0) 0 (3, 0) 0 14.39 11.78 7.93 4.75
GeAr N8 R1 P6 539 11.20 223 39 (1000, 0) 0 (3, 0) 0 11.39 24.02 7.42 4.26
GeAr N8 R2 P2 507 9.60 205 39 (1000, 41) 128 (5, 11) 3 5.14 11.43 2.72 4.65
GeAr N8 R2 P4 530 11.20 219 39 (1000, 0) 0 (3, 0) 0 14.64 12.64 7.32 4.28

Ripple Carry Adder
RCA N8 526 12.00 217 39 (1000, 0) 0 (3, 0) 0 0 0 0 0

IIR Filter (16-bit) ‡ Smaller MAC unit 2292 28.30 912 168 (50000, 19) 31542 (16, 33) 11 2.31 272.05 2.34 231.68

FIR Filter (17-bit) � Modified coefficients 2149 38.49 827 64 (100000, 3) 65536 (16, 2) 16 1.01 15.78 6.00 2.00

Quantizer (11-bit) ± Change in quantization value 4984 7.30 2078 568 (10000, 40) 274 (9, 5) 9 72.98 17.95 3.01 13.86

Stepper Motor (4-bit) Counters with reduced width 1479 14.20 658 115 (100, 30) 11 (4, 18) 4 1.00 87.01 1.01 350.15

Binary to BCD (4-bit)∓ Skipped value in conversion 829 7.60 360 61 (200, 41) 8 (4, 17) 4 3.01 12.05 1.01 2.44

Questions:

Q1: What is the earliest time (t) that I can exceed an accumulated worst-case error of X?
Q2: What is the maximum worst-case error?
Q3: What is the earliest time (t) that I can reach an accumulated error rate of X?
Q4: What is the maximum error rate?

? As reported by ABC [11] with synthesis command resyn and library mcnc.genlib
† ABC reports area normalized to INVX1

‡ IIR Filter is Direct-form-II Transposed ∓ 16-bit binary input to 5x4-bit BCD output
� FIR Filter parameters N=16, M=17 ± Design has 8 x 11-bit outputs. Only one is verified

straints. In International Conference on Computer-Aided De-
sign, pages 779–786. IEEE, 2013.

[11] A. Mishchenko, M. Case, R. Brayton, and S. Jang. Scalable and
scalably-verifiable sequential synthesis. In International Con-
ference on Computer-Aided Design, pages 234–241, Nov 2008.

[12] M. N. Mneimneh and K. A. Sakallah. Principles of sequential-
equivalence verification. IEEE Design & Test of Comp.,
22(3):248–257, 2005.

[13] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghu-
nathan. Aslan: Synthesis of approximate sequential circuits. In
Design, Automation and Test in Europe, pages 1–6, March
2014.

[14] H. Savoj, D. Berthelot, A. Mishchenko, and R. Brayton. Combi-
national techniques for sequential equivalence checking. In Int’l
Conf. on Formal Methods in CAD, pages 145–149, 2010.

[15] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. A low la-
tency generic accuracy configurable adder. In Design Automa-
tion Conf., pages 1–6, June 2015.

[16] D. Shin and S. Gupta. Approximate logic synthesis for error tol-
erant applications. In Design, Automation and Test in Europe,
pages 957–960, March 2010.

[17] M. Soeken, D. Große, A. Chandrasekharan, and R. Drechsler.
BDD minimization for approximate computing. In ASP Design
Automation Conf., pages 474–479, 2016.

[18] S. Venkataramani, K. Roy, and A. Raghunathan. Substitute-
and-simplify: A unified design paradigm for approximate and
quality configurable circuits. In Design, Automation and Test
in Europe, pages 1367–1372, March 2013.

[19] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and

A. Raghunathan. Salsa: Systematic logic synthesis of approx-
imate circuits. In Design Automation Conf., pages 796–801,
June 2012.

[20] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.
MACACO: modeling and analysis of circuits for approximate
computing. In International Conference on Computer-Aided
Design, pages 667–673, 2011.

[21] C. Wolf. Yosys - Yosys Open SYnthesis Suite, 2015. http://www.
clifford.at/yosys/about.html.

[22] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Na-
gendrakumar, S. Sethuraman, K. Ramkrishnan, N. Ravindran,
R. Jariwala, A. Rahimi, H. Esmaeilzadeh, and K. Bazargan.
Axilog: Language support for approximate hardware design. In
Design, Automation and Test in Europe, pages 812–817, March
2015.

[23] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On
reconfiguration-oriented approximate adder design and its ap-
plication. In International Conference on Computer-Aided De-
sign, pages 48–54, Nov 2013.

[24] L. Zhang, M. Prasad, and M. Hsiao. Incremental deductive in-
ductive reasoning for SAT-based bounded model checking. In
International Conference on Computer-Aided Design, pages
502–509, 2004.

[25] N. Zhu, W. L. Goh, and K. S. Yeo. An enhanced low-power
high-speed adder for error-tolerant application. In Integrated
Circuits, ISIC ’09. Proceedings of the 2009 12th International
Symposium on, pages 69–72, Dec 2009.

