Coverage of OCL Operation Specifications
and Invariants

Mathias Soeken2(®) Julia Seiter!, and Rolf Drechsler!-?

! Faculty of Mathematics and Computer Science,
University of Bremen, Bremen, Germany
{msoeken, jseiter,drechsle}@cs.uni-bremen.de
2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Abstract. We consider operation coverage of OCL operation specifica-
tions and invariants in class diagrams with respect to sequence diagrams.
The coverage criteria are based on the operations that are executed from
the sequence diagrams and their asserted OCL subexpressions. We pro-
pose an algorithm that automatically generates a set of sequence dia-
grams in order to maximise these coverage criteria. A model finder is
leveraged for this purpose. As a result, also operations and constraints
can be determined that can never be executed and asserted, respectively.
Our algorithm has been implemented in the UML specification tool USE.

1 Introduction

Given a class diagram with OCL operation specifications, invariants and a set of
sequence diagrams, we define two coverage metrics that measure (1) how many
operations of the class diagram have been called and (2) how many OCL subex-
pressions evaluated to true for this purpose. We define the coverage semantics on
top of the precise modelling approach that has been presented by Mark Richters
in [11]. As a result, the coverage metrics can readily be integrated in the context
of formal analysis tools.

We demonstrate this by utilising model finders for behavioural modelling
tasks to automatically generate sequence diagrams to increase coverage with
respect to the defined metrics. Since model finders traverse the complete search
space (and often efficiently), also “dead” operations or “dead” subexpressions
can be found with our algorithm. Analogously to “dead code” in software devel-
opment, these refer to operations that can never be called or subexpressions that
never evaluate to true.

We have integrated the coverage metrics in the UML specification tool USE [6].
When starting the program with a class diagram and some initial sequence dia-
grams, the initial coverage is reported. The user of the tool can then start the

This work was supported by the German Federal Ministry of Education and Research
(BMBF) (01IW13001) within the project SPECIfIC, by the German Research Foun-
dation (DFG) (DR 287/23-1), and by the University of Bremen’s graduate school
SyDe, funded by the German Excellence Initiative.

© Springer International Publishing Switzerland 2015

J.C. Blanchette and N. Kosmatov (Eds.): TAP 2015, LNCS 9154, pp. 191-207, 2015.
DOI: 10.1007/978-3-319-21215-9_12

192 M. Soeken et al.

model finder to generate new sequence diagrams which successively increase the
coverage or pinpoint the user to “dead” operations or subexpressions.

Coverage metrics for modelling languages have been considered in the past,
but rarely have methods been provided to automatically increase the proposed
coverage criteria. In [12] coverage criteria based on the execution traces of
sequence diagrams have been defined, but no algorithm has been provided that
generates input data to increase the coverage. An approach very similar to ours
has been proposed in [17] where model finders are exercised in order to find
sequence diagrams that adhere to a given specification. However, coverage has
not been considered in this context.

The remainder of the paper is structured as follows. The next section reviews
class diagrams, system states, and model finding and introduces the formal nota-
tion that is used as a basis in the paper. Section 3 proposes two coverage criteria
and in Sect. 4 it is described how model finding can be utilised in order to auto-
matically find sequence diagrams to increase the coverage of a class diagram. The
implementation in USE is illustrated in Sect. 5 before related work is discussed
in Sect. 6. Section 7 concludes the paper.

2 Preliminaries

This section introduces a notation that is used to describe class diagrams and
system states in the remainder of the paper. Also, model finding is reviewed.

2.1 Class Diagrams and System States

We are making use of the notation that has been introduced in [11]. Associations
have no immediate influence on our proposed coverage metric and therefore we
use simpler definitions that omit details on associations.

Definition 1 (Class diagram). A class diagram is denoted as
M = (CLass, ATT,, OP., <) , (1)
where

— CLASS is a finite set of class names,

— ATT,. are sets of attributes for each class ¢ € CLASS defined as signatures a :
t. — t, where a is the attribute name, t. is the type of class ¢, and t is the
attribute type,

— Op, are sets of operations for each class ¢ € CLASS defined as signatures w :
te X t1 X -+- X t, — t, where w is the operation name, t. is the type of
class ¢, t1,...,t, are the types of the operation’s n parameters, and t is the
operation’s return type,

— and < is a partial order on CLASS to reflect the generalisation hierarchy.

Coverage of OCL Operation Specifications and Invariants 193

Class diagram

iofE

Processar

Contraoller

c: Integer
Fnstructign' Integer | Processar address : Integer contraller Cell
e m dataout - Integer address © Integer
fper;i?]re sman! programMemory |y iteicontent © Integer) cells | content : Integer

read()

process()

Fig. 1. Class diagram

We define .
ops(./\/l)dze U Op, . (2)

ceCLASs

For ATT,. and OP, their reflexive closures
« def
AtT, = ATT, U U ATT, and

¢’ €parents(c)

def (3)
Op. = Opr. U U Opr.

¢’ Eparents(c)

are defined with parents(c) Lf {d'|d €CLassAc <}

Ezample 1. Figure 1 shows a class diagram that will serve as running example
throughout the paper. It models the memory access part of a processor architec-
ture. The processor which has a program counter and a current instruction is
connected to a memory controller which offers operations to read and write to
memory which is represented in terms of cells.! The precise formal notation of
the class diagram is

Crass = { Processor, Controller, Cell }

ATTprocessor = { pc : Processor — Integer,
instruction : Processor — Integer }

ATT controtier = { address : Controller — Integer,
dataout : Controller — Integer }

ATT ey = { address : Cell — Integer,
content : Cell — Integer }

! The class diagram can be downloaded as a model for USE at www.informatik.
uni-bremen.de/agra/files/memory.use

www.informatik.uni-bremen.de/agra/files/memory.use
www.informatik.uni-bremen.de/agra/files/memory.use

194 M. Soeken et al.

gi;u Cbject diagram nxl:lz E
Cell2:Cell
Cello: cell address=2
address=0 content=0
content=0 | |..cells HasCells
Controllerd: Controller ProcessorQ:Processor
HasProgramMermory,
address=13 | pc=1
dataout=1 instruction=4
HasCells
HasCells
Celll:Cell
address=1
cantert=0 Cell3:Cell
address=3
content=0

Fig. 2. System state

OP processor = { prepareMemory : Processor — Void Type,
fetch : Processor — VoidType,
process : Processor — Void Type }

OP controtier = { write : Controller x Integer — VoidType,
read : Controller — VoidType } .

Definition 2 (Class domain). The set of object identifiers of a class ¢ € CLASS
is given by an infinite setoid(c) = {¢y, ¢y, ... }. Then, the domain of c is defined as

Ienss(0) = | {oid(d)} . (4)
¢’ €CLASS
¢ <e

In general, we will use the letter I to denote an interpretation mapping [11]
that defines the semantics of OCL expressions.

Definition 3 (System state). A system state for a class diagram M s a
structure

U(M) = (UCLASS7UATT) s (5)
with

— finite sets ocpass(c) C oid(c) containing all objects of class ¢ € CLASS in the
system state and

— functions oarr(a) : ocpass(c) — I(t) for each a :t. —t € ATT).
I(t) is an interpretation function for variables of types t.

If the context is clear, M can be omitted and a system state is simply written
aso.

Coverage of OCL Operation Specifications and Invariants 195

Example 2. A valid system state for the class diagram in Fig. 1 is shown in
Fig. 2.

Class diagrams can be accompanied by expressions in the object constraint
language (OCL, [15]) that is part of the UML standard. OCL allows the spec-
ification of formal constraints in the context of a model. Since constraints are
conditions on all system states and transitions between states, a set of constraints
therefore restricts the set of valid system states. In the extreme case, the set of
possible system states is empty; in this case the model is called inconsistent.
Constraints are primarily used to express invariants which are global constraints
that hold in every system state and operation specifications in terms of pre-
and postconditions that are evaluated locally in the context of an operation call.
An operation can only be called if the preconditions hold and must ensure that
after execution its postconditions evaluate to true. In general an OCL expression
that evaluates to a value of type t is an element of the set Expr,. The following
definitions provide notation for invariants and operation specifications.

Definition 4 (Invariants). All invariants of a class ¢ are contained in the
set I(c) C Exprggoean- All these Boolean OCL expressions contain a vari-
able self that is of type c. All invariants of a model are denoted

def
m= | 2, (6)
ceCLass
and as in the notation for system states the M can be omitted, i.e., we write Z,
if the use is clear from the context.
Example 3. One invariant for the memory controller model from Fig. 1 is:

context Controller
inv uniqueCells: cells->forAll(cl, c2 |
cl <> c2 implies cl.address <> c2.address)

This invariant states that the cells that are associated to a memory controller
must have a unique address.

Definition 5 (Pre- and postconditions). Given an operation w € ops(M),
the sets <(w) C EXprpoojean @Nd >(w) C EXprpooean 07€ the pre- and postcon-
ditions of w. The notation is borrowed from [13].

an

Ezample 4. The operation specification for the operation write of class Con-
troller is:

context Controller::write(content: Integer)

pre: address < 10

pre: content < 4

post: cells->one(c | c.address = address and c.content =
content)

post: cells->forAll(c | c.address = c.address@pre)

post: cells->forAll(c | c.address <> address implies

c.content = c.content@pre)

196 M. Soeken et al.

The two preconditions ensure that a valid address and content have been assigned
to the attributes of the Controller object. The first postcondition ensures that
the cell at the given address has the new content after the operation has been
called. The second postcondition ensures that the cell’s addresses were not
changed by the operation call and the last postcondition ensures that the con-
tent of the non-addressed cells is not changed. The model finder cannot guess
the developer’s intention. To ensure that non-related attributes are not changed
frame constraints need to be added. Either automatic tools are used that assist
the developer in finding them [10] or they are provided manually:

post: processor.pc = processor.pc@pre
post: dataout = dataout@pre
post: address = address@pre

When evaluating OCL expressions in the context of a system state o one needs
to consider assignments to variables that appear in the OCL expressions. For this
purpose, let Var; be the set of variables of type ¢, then 8 : Var; — I(t) is a vari-
able assignment. A context for the evaluation of an OCL expression is given by an
environment 7 = (o, 3). Let ‘Env’ be the set of environments 7 = (o, 3), then the
semantics of an expression e € Expr, is provided by a mapping I[e] : Env — I(%).

In this paper we make heavy use of the notation that has been introduced
in [11] to formalise UML class diagrams and OCL expressions. The meaning
of the notation should be comprehensible from the context, however, for more
precise definitions the reader is referred to [11].

2.2 Model Finding

Model finding describes the problem of finding a system state o to a given
model M with invariants Z such that

Mz A A A\ Ilel((0,self — ¢)) = true | (7)

c€CLASS e€Z(c) cEocypass(c)

i.e., all invariants hold for all objects in the system state. Such a system state o
is called wvalid and witnesses the consistency of M. Usually the size of ocypags
is predefined such that the model finding problem becomes decidable [2]. This
assumption is reasonable, since often the size bounds of the model are known
in advance. Similar restrictions are assumed for associations, but not discussed
in this paper. We refer to this problem also as structural model finding since
only one system state is considered. Different implementations for the model
finding problem have been proposed in the past [3,7,9,14]. The problem can
be extended to consider the class diagram’s operations which is described in the
following. For this purpose, some additional notation to formalise operation calls
is required.

An operation call w = (¢,w) is a tuple consisting of an operation w € OP,
and an object ¢ € ocrass(c). How parameters are bound to operation calls
is described later in Sect. 3. For interpreting an operation call, both a pre-
state opre and a post-state and opes; Need to be considered. Consequently, also

Coverage of OCL Operation Specifications and Invariants 197

two environments Tpre = (Opre, Bpre) and Tpost = (Tpost, Opost) are required to for-
malise the semantics of a postcondition. Then, the interpretation of an operation
call w = (¢, w) is
def
Iwl(o,0) = N Ilel(more) N\ Tlel(Tore; Toost) (8)

ee<(w) eep(w)

with {self — c} € Opre and {self +— '} € Bpost Where ¢ refers to ¢ in the
post-state.
Given a Boolean expression eg.sk, the behavioural model finding problem [13]

asks to find a set of system states o1,...,07 and a set of operation calls
W1, .. wWp_q such that
T T—1
/\ I[Z](o¢) A /\ Iw,] (o, 0t41) A task = true . (9)
t=1 t=1

Also for this problem, T is usually predefined, since otherwise the problem is
undecidable. This assumption is reasonable, since one is interested in a short
sequence diagram. The common practice is to increase 7" in an iterative manner
until a solution is found. This is similar to reachability analysis with bounded
model checking [4]. Furthermore, the initial state o7 is typically preassigned
by the developer to exclude false positives, i.e., system states that cannot be
reached. Verification tasks in behavioural model checking can, e.g., be the check
for a deadlock, i.e., a final system state in which no operation can be called since
no preconditions can be asserted, or it can be checked whether an operation
is executable by preassigning one of the operation call variables. Besides these,
a variety of other reachability tasks can be formulated. Implementations for
behavioural model finders have been realised, e.g., in [5,13].

3 Operation Coverage

In this section, two coverage criteria are defined. Since coverage is witnessed
and increased in terms of sequence diagrams, we first need to formalise them
analogously to the definitions of the previous section. In this paper, we only
consider very simple sequence diagrams with no nested operation calls and no
control structures. Consequently, these can also be represented by a sequence of
operations.

Definition 6 (Operation sequence). Given a class diagram M and a
sequence of system states 0;(M) = (0crass,1,0arr,1) for 1 < i < n, an oper-
ation sequence is an ordered set

S=(r1 < wi(p1), r2 = ws(P2),-- -, Tn — W, (Pn)) - (10)

The ith operation call in the sequence S is of the form r «+ w(p) with w = (c,w)
stating that an operation w : t. X t; X --- X tp, — t € OP. is called on an

198 M. Soeken et al.

object ¢ € ocrass,i(c) of class ¢ with parameters p = (p1,...,px) with p; € t; and
returns a value r € t. We define

def
OpS(S) = {wla"'awn} . (11)
An operation sequence may not necessarily be executable since invariants and

operation specifications could prevent the OCL expressions from being asserted.

Definition 7 (Validity of operation sequences). Operation sequences are
executed with respect to some given valid initial system state o1. An operation

sequence s called valid if, and only if there exist valid system states oa, ..., 0041
such that
n
/\ I[[gi]KO-?ﬁ Ui+1> = true . (12)
i=1

Ezxample 5. Figure 3 shows a valid system state for the running example written
in the USE syntax. First, the initial state is prepared which includes object cre-
ation and linking. The command !openter initiates the operation call and also
the preconditions are evaluated. Afterwards, the post-state is prepared before
the operation call is finished using !opexit, which also evaluates the operation’s
postcondition.

3.1 Operation Call Coverage

Now that operation sequences are formally defined, we can formalise the coverage
metrics. The first coverage metric, called operation call coverage, checks how
many of the model’s operations have been called in a given set of operation
sequences.

Definition 8 (Operation call coverage). Given a class diagram M and valid
operation sequences S1,...,Sy, the operation call coverage is defined as

| ops(S.
Z | ops(/\/l (13)

3.2 Subexpression Coverage

The second coverage metric is based on an expression’s subexpressions and
should first be illustrated by means of an example.

Example 6. The operation process from the class Processor has among other the
following two postconditions:

post: pc@pre < 9 implies pc = pc@pre + 1

post: pc@pre = 9 implies pc = 0

They ensure that the program counter pc overflows to 0 if its value is 9 before
the operation is called.

Coverage of OCL Operation Specifications and Invariants 199

lcreate Controller0O: Controller
!create CellO: Cell
lcreate Celll: Cell
lcreate Cell2: Cell
!create Cell3: Cell
!create Processor0O: Processor
!set Controller(O.address := 13
!set Controller(O.dataout := 1
= !set CellO.address := 0
% |!set CellO.content := 0
% |iset Celll.address := 1
.g !set Celll.content := 0
E Iset Cell2.address := 2
" |'set Cell2.content := 0

© |1set Cell3.address := 3
!set Cell3.content := 0
!set Processor0O.pc := 0
!set Processor0O.instruction := 4
linsert (ControllerO, CellO) into HasCells
linsert (Controller0O, Celll) into HasCells
linsert (Controller0O, Cell2) into HasCells
linsert (ControllerO, Cell3) into HasCells
linsert (Processor0O, Controller(0) into HasProgramMemory
lopenter ProcessorQ process()

C\,{!set ProcessorO.pc := 1 e
!set Processor0O.instruction := Undefined -
lopexit
lopenter ProcessorO fetch()

m{!set Processor0O.instruction := 1 I
!set Controller(O.dataout := Undefined
lopexit

Fig. 3. Valid operation sequence

An implication expression always evaluates to true if the antecedent is false.
Hence, one is interested in finding operation sequences that assert many subex-
pressions. The same argument holds for expressions of the form e; or e;. Even
expressions of the form e; and ey need to be considered although in this case,
both e; and es must have been true in order to assert the overall conjunction.
However, the expression can be more complicated if nested expressions are used
as, e.g., in (e; or ey) and (e3 or eq). Also here, it is desired that all subexpres-
sions have been asserted once in some sequence diagram.

For this purpose, we define a function ‘sub’ that returns all Boolean subex-
pressions of a given expression e € Expr:

sub(e) def {e} UJ{sub(e’) | ¢ is subexpression of e} if e € Expry,qjeans

(J{sub(e’) | ¢’ is subexpression of e} otherwise .
(14)

200 M. Soeken et al.

Before we define the second coverage metric, we define the evaluation of
a Boolean expression e € EXprgggean i the context of a valid operation
sequence S = (w; = (¢,w1),-..,w, = (¢,,wn)) as defined in (10) (For brevity
we omitted parameters and return values from the operation sequence). The
operation sequence implies n + 1 valid system states o1,...,0,4+1 as defined
n (12). The evaluation of e depends on whether it is part of an invariant, a pre-
condition, or a postcondition. If e is part of an invariant, it is checked whether e
evaluates to true in some of these system states for some object, i.e.,

Ln[e)(9) €N\ Ilel((04, 5015 —c)) . (15)

=1 c€ocrass(c)

If e is part of a precondition of some operation w, it is checked whether it
evaluates to true if the operation has been called, i.e.,

n

Lorele] (S) = \/ (wi = w) A I[e] (07, self — ¢;)) - (16)

i=1

Finally, if e is part of a postcondition of some operation w, it is checked whether
it evaluates to true in the state after the operation has been called, i.e.,

V(wi =w) A Ie]((o;,self — ¢;), (oir1,8elf —c})) , (17)

Lpost[€] (5) &

where gg refers to ¢; in state o;41.

We also define a partition over all subexpressions in a model based on their
context, i.e., whether the expression is part of an invariant or of an operation
specification:

subipy def U sub(e),
ecT

subpre et U U sub(e), and

weops(M) ee<(w)

subpost def U U sub(e)

weops(M) eep>(w)

Definition 9 (Subexpression coverage). Given a class diagram M and valid
operation sequences S1,...,Sy, the subexpression coverage is defined as

U {e € sub, | 35; : L;[e](S:)}

z€{inv,pre,post}

18
| subiny Usubpre Usubpost | (18)

The formal definition for subexpression coverage is a bit tedious, however,
the intuitive idea can readily be stated in an informal manner. We take all

Coverage of OCL Operation Specifications and Invariants 201

subexpressions from the model’s invariants and operation specifications. Then
for each of them we check whether they evaluate to true in some intermediate
state of the given operation sequences. The number of such subexpressions is
divided by the total amount of subexpressions. It is important to ensure that a
subexpression of a pre- or postcondition is only checked for a positive evaluation
if the respective operation has been called.

Ezample 7. The operation sequence in Fig. 3 leads to an operation call coverage
of 0.4 since 2 out of 5 operations have been called. Furthermore, the subexpres-
sion coverage is approximately 0.3 as 14 out of 46 subexpressions are asserted. For
instance, the second postcondition of Example 6 is not covered by the operation
sequence in Fig. 3 since the program counter pc is initially set to 0. Consequently,
the subexpression pc@pre = 9 evaluates to false.

4 Algorithm to Automatically Enhance Coverage

Now that the coverage criteria have been defined, in this section we are proposing
methods that aim at automatically increasing the coverage by generating new
sequence diagrams. Since model finders are used for this purpose, always the
whole solution space is considered. Consequently, the algorithm either yields a
sequence diagram that indeed increases the coverage or finds that some operation
is not executable or some subexpression cannot be asserted by any sequence dia-
gram. Hence, the algorithm is able to determine “dead” model code (analogously
to dead code in programs that can never be executed).

The model finder is utilised by choosing an appropriate expression for egasxk
as described in (9). To increase operation call coverage the model finder is used
to find an operation sequence that contains an operation w that has not been
executed thus far. In order to constrain the model finder to call an operation in
an operation sequence one needs to assign

T-1

Ctask = \/ (W =w) . (19)

t=1

When increasing subexpression coverage a task needs to be formalised for
each subexpression e that is not covered yet. Again, the description of the task
expression depends on the origin of the subexpression. If e is part of an invariant
of class ¢, we assign

Ctask = \/ \/ I[e]((o¢, self — ¢)) . (20)

t=1 EGUCLASS(C)

For the case if e is part of an operation specification, we could also find a
suitable task expression, however, instead we are making use of a small trick.
We are using the same task expression as in (19) but additionally add e as pre-
or postcondition to the considered model. Since the task forces the operation to
be called also e must evaluate to true.

202 M. Soeken et al.

It can easily be seen that many sequence diagrams may need to be generated
in order to obtain full coverage if initially many operations and subexpressions
are uncovered. The first measure to avoid this is to recompute the coverage
metrics after each generated sequence diagram, since other uncovered elements
may be covered by the newly generated sequence diagram. Furthermore, one
can also try to cover multiple uncovered elements at once by combing the task
expressions that have been introduced above. As an example one can try to
find a sequence diagram in which three uncovered operations wi, wo, and ws are
called by assigning

T-1

T-1 T-1
Etask = \/ (we =wi) A \/ (Wt = wa) A \/ (W = w3)
t=1 t=1

t=1

However, this approach needs to be applied with care since it may lead to
false negatives, since operations may be executable independently but not in
combination. A strategy can be to first try to generate sequence diagrams that
cover a lot of operations and then decrease the number if no more sequence
diagrams can be found.

Alternatively, one can make use of Boolean select variables s1, ..., sy for each
uncovered operation w1, ...,wy. Then these can be considered at once in a single
task expression and let the model finder decide which ones to use in the sequence
diagram and which ones not:

¢ T-1 ¢
Ctask = /\ (si = \/ (wy = wl)> A Zsi >k . (21)

=1 t=1

If a select variable s; is assigned 1, then the operation w; must be called in
the sequence diagram. Since eg,g can easily be satisfied by assigning all select
variables to 0, a cardinality constraint ensures that at least k select variables must
be assigned 1 and hence at least k operations must be called in the operation
sequence. The value for k£ can be initially set high and then decreased successively
if erasx cannot be satisfied.

5 Tool Support

We implemented the proposed algorithm as a plugin of the UML specification
tool USE [6]. Consequently, models in the form of class diagrams as well as
sequence diagrams are to be provided in the USE format (.use and .cmd to
specify class diagrams and operation sequences, respectively). We have used the
SMT-based behavioural model finder that has been proposed in [13].

The features realised in the plugin are the following:?

1. computation of the initial coverage of operations and constraints based on
the provided sequence diagram(s) (Fig. 4)

2 A USE plugin for computing and displaying coverage information can be downloaded
from www.informatik.uni-bremen.de/agra/files/coverage-plugin.zip

www.informatik.uni-bremen.de/agra/files/coverage-plugin.zip

Coverage of OCL Operation Specifications and Invariants 203

I Cowverage e E
[T coverage 1M Goverage |
read Mot Covered
pred; self. address.isDefined Mot Covered
postd: self.cells-=forallic : Cell | lic.address = c.address@pre] and [c.content = c.content@pre)) Mot Covered
postd: self.cells-=onelc : Cell | {{c.address = self. address@pre) and {c.content = self.dataout))) Mot Covered
postlo: self. address isUndefined Mot Covered
postll: (self processor.instruction = self processor instruction@pre) Mot Covered
postl2: (self processor.pc = self processor.pci@prel Mot Covered
write Mot Covered
prel: (self address < 101 Mot Covered
pre2; [content - 4] Mot Covered
postl: self.cells-=onelc : Cell | ({c.address = self address) and ic.content = content))) Mot Covered
post2: self.cells-=forallic : Cell | (c.address = c.address@prel) Mot Covered
postd: self.cells-=forallic : Cell | (ic.address <= self.address) implies [c.content = c.content@prel) Mot Covered
postd: (self. processor.instruction = self processor.instruction@pre) Mot Covered
postsS: (self.processor.pc = self. processor.pc@pre) Mot Covered
posté: (self. dataout = self. dataout@pre) Mot Covered
post?: (self. address = self. address@pre) Mot Covered
fetch Mot Covered
pre5. self.programtemory. dataout.isDefined Mot Covered
postlé: (self instruction = self. programMemory. dataout@pre) Mot Covered
postld: (self pc = self pc@pre) Mot Covered
post20: self prograrmMernony. cells-=forallic : Cell | (ic. address = c.address@prel and (o content = ¢ content@prell] Mot Covered
post21: (self programMermaory. address = self programMemory. address@pre) Mot Covered
post22: self. programMemory. dataout. isUndefined Mot Covered
prepareMemory Mot Covered
pred: self. programMemory. address.isUndefined Mot Covered
postl3: (self programMemony. address = self.pcl Mot Covered
postld: (self.instruction = self.instruction@pre) Mot Covered
postls: (self.pc = =elf. pc@pre) Mot Covered
postle: (self programtemory. dataout = self programmemaory. dataout@pre) Mot Covered
postlT: self. programMernory.cells-=forallic : Cell | (lc.address = c.address@pre) and (c.content = c.content@pre))) Mot Covered
process Covered
preé. self.instruction.isDefined Covered
post23: ([self.pc@pre < 9) implies (self.pc = (self.pc@pre + 1)1 Maybe Covered
post24: [[self pc@pre = 9) implies (self. pc = 01 Maybe Covered
post25: self prograrmMernony. cells-=forallic : Cell | (ic. address = c.address@prel and (o content = ¢ content@prell] Covered
post26: self.instruction. isUndefined Covered
post27: (self programMermaory. address = self programMemory. address@pre) Covered
post28: (self programMemory. dataout = self programMemary. dataout@prel Covered
Initial: Covered 6/39 Elernents 15%
Maximum: Covered 14/39 Elements 36%
—

Fig. 4. Initial coverage

2. computation of the maximal possible coverage of operations and constraints
using a model finder in the background (Fig. 5)
3. display of the results

Both types of coverage are computed upon start of the plugin in the back-
ground if a model is provided. Without given sequence diagrams, the initial
status of each operation and each constraint is displayed as not covered. If cov-
erage of the respective operation or constraint has been reached, the mark is
changed to covered. The remaining constraints are marked as maybe covered in
the initial computation and as partially covered in the final state.

A constraint is maybe covered if the respective operation has been executed
but the constraint contains subexpressions which might not hold, e.g., a part
of a disjunction where the whole constraint can evaluate to true while a single
subexpression evaluates to false. A constraint is eventually partially covered when
it was not possible to find an operation sequence such that all subexpressions

204 M. Soeken et al.

I Coverage ° Sl i |
| st Caverage T Hesimum Coversge |
read Mot Covered
pred. self address.isDefined Mot Covered
postd: self.cells-=forallic : Cell | {{c.address = c.address@pre) and (c.content = c.content@pre))! Mot Covered
postd: self.cells-=onelc : Cell | ({c.address = self address@pre) and (c.content = self. dataout))) Mot Covered
postlO: self. address. isUndefined Mot Covered
postll: {self. processor.instruction = self. processor.instruction@pre) Mot Covered
postlZ: (self. processor.pc = self. processor. pci@pre] Mot Covered
write Mot Covered
prel: (self address < 10} Mot Covered
pre2: [content =< 4] Mot Covered
postl: self cells-=oneic : Cell | ((c.address = self address) and (c.content = content])) Mot Covered
post2: self cells-=farAllic : Cell | (c.address = c.address@prel) Mat Covered
postd: self.cells-=fordllic : Cell | ((c.address == self.address) implies (c.content = c.content@prell) Mot Covered
post4: (self. processor instruction = self processor.instruction@prel Mot Covered
posts: (self.processor pc = self. processor.pc@pre) Mot Covered
poste: (self. dataout = self. dataout@pre) Mot Covered
post?: (self. address = self address@pre) Mot Covered
fetch Covered
pre5: self programMermory. dataout.isDefined Covered
postlé: (self.instruction = self. programMemony. dataout@pre) Covered
postla: (self.pc = self pc@pre] Covered
post20: self. programMemory.cells-=forallic : Cell | ic.address = c.address@pre) and (c.content = c.contenti@prel)) Covered
post21: (self. programitemory. address = self. programtemory. address@pre) Covered
post?2: self pragramMemony. dataout isUndefined Covered
prepareMemory Mot Covered
pred: self. programMemory. address.isUndefined Mot Covered
postl3: (self. programMemory. address = self.pc) Mot Covered
postld: (self.instruction = self.instruction@pre) Mot Covered
postls: iself.pc = self pc@pre) Mot Covered
postle: (self. programMemory. dataout = self programMemary. dataout@prel Mot Covered
postl7: self. programMernory.cells-=forallic : Cell | (ic.address = c.address@pre) and (c.content = c.content@prel) Mot Covered
process Covered
pre6: self.instruction. isDefined Covered
post23: ({self poc@pre < 9) implies (self.pc = iself.pc@pre + 110} Covered
post24: ([self.pc@pre = 9) implies (self.pc = 01} Fartially Covered
post25: self. programMemory.cells-=forallic : Cell | ic.address = c.address@pre) and (c.content = c.contenti@prel)) Covered
post2é: self.instruction. isUndefined Covered
post27: (self. programitemony. address = self. programtemory. address@pre) Covered
post28: (self. programMerary. dataout = self. programMemory. dataout@pre] Covered
Initial: Covered 6/39 Elements 15%
Maxirnurn: Covered 14/39 Elernents 6%

Fig. 5. Maximised coverage

eventually hold, i.e., one part of the constraint is covered and one part of it is
not covered.

During computation of the maximum coverage, sequence diagrams for the
not yet covered operations and constraints are produced and printed to the USE
shell. The overall results of the coverage enhancement are always displayed at the
bottom of the window. Here, the amount of initially and finally covered elements
are provided as well as a progress bar depicting the coverage percentage.

5.1 Experimental Evaluation

For an experimental evaluation, the approach has been applied to several models
which have been provided with the tool USE or have been written by the authors.
Table 1 shows the results of said evaluation. The first column gives the names of
the models. In the second and third column, their initial and maximal coverage
is stated. Then, the amount of generated sequences is provided and the last
column contains the required run-times.

Coverage of OCL Operation Specifications and Invariants 205

In all cases except for one, an increase in coverage up to 94-100% could
be achieved. Only for the test case CPU, the initial coverage of 0% remained
unchanged. This means that no operation sequences could be generated and,
consequently, none of the constraints were triggered. This scenario may occur due
to two reasons: (1) The initial state may be chosen poorly so that no operation’s
pre-condition evaluates to true. (2) The post-conditions of the operations may
be contradictory, preventing the operation’s execution even if a pre-condition is
satisfied. In both cases, the model as well as the initial state have to be revised.

With regard to the run-time, it can be stated that only the test case Memory
required a slightly longer execution time than the remaining examples. Since
this example is by far the largest one in terms of OCL constraints and has a
relatively low initial coverage of 15%, a slight increase in run-time was to be
expected.

Overall, it was possible to reach high coverage percentages in negligible run-
time by generating a maximum of 6 operation call sequences. In two cases, con-
straints and/or operations could be detected thanks to our approach which
could not be covered by sequences starting in the initial state. These con-
straints /operations would result in dead code, so by uncovering them, the quality
of the resulting implementation can be improved.

6 Related Work

In [12] coverage criteria are defined based on sequence diagrams which are
extracted by reverse engineering of existing Java source code. Branches in the
source code are mapped to guarded messages in the sequence diagram and there-
fore each sequence diagram defines a set of possible execution paths. Coverage
criteria are based on these paths. The authors have not provided methods to
automatically increase the coverage criteria.

The authors of [1] propose three test coverage criteria for class diagrams.
These criteria specify a certain structure of an object diagram which has to
be created by a test case in order to reach full coverage. In two cases, this
structure is determined by constructing representative values for association-
end multiplicities and attributes. The third criterion considers generalisation
relationships. All three criteria do not consider behavioural aspects and only
one criterion takes OCL constraints into consideration.

Table 1. Experimental results

Model [Initial [Maximal [#Sequences [Run-time

CPU 0% 0% 0 <0.01s
Traffic | 35% 94% 4 <0.01s
Memory| 15% | 97% 6 0.22s
Car 0% 100% 4 <0.01s
Life 0% 100% 3 <0.01s

206 M. Soeken et al.

Scenario-based design analysis (SUDA) is defined in [16]. The authors intro-
duce snapshot models to transform a class model with operations into a static
model of behaviour which can be verified against a sequence of operation calls.
Based on this technique an automatic approach is presented in [17]. Given a UML
class diagram with OCL operation specifications and invariants and a specifica-
tion for a desired scenario, a scenario is automatically generated using model
finding techniques.

In [8] a technique is presented that allows animation of UML class diagrams
with OCL operation specifications and invariants. Given a current state, a post-
state is computed that satisfies the class diagram’s invariants and underspecified
postconditions.

7 Conclusions

We concerned ourselves with the question of how to formalise coverage criteria of
class diagrams with respect to a set of sequence diagrams in terms of operation
sequences. We have defined two coverage criteria, one which checks how many
operations are called and another one which considers whether all subexpressions
in the involved OCL constraints evaluate to true. Based on the formalisation of
UML class diagrams and OCL expressions introduced in [11] we formalised the
coverage criteria to enable their application in formal analysis.

We demonstrated how model finders can be utilised in order to automatically
generate new sequence diagrams that increase overall coverage of the class dia-
gram. By using the model finder the developer is also pinpointed to operations
and OCL subexpressions that can never be executed or asserted, respectively.
Our algorithm has been implemented in the UML specification tool USE.

It is a well-known fact that model finders cannot be applied to arbitrarily
large models and face scalability problems as the number of classes and con-
straints increases. Consequently, the efficiency of our approach for automatically
generating sequence diagrams heavily depends on the efficiency of the model
finder. For now, we have evaluated the generation approach to class diagrams
similar to the running example of the paper. For these, sequence diagrams can be
generated within a few seconds. In future work we want to evaluate the scalability
of the approach in more detail by comparing different model finders. Alterna-
tively, model finders can be tuned to perform well for these kind of problem.
Furthermore, more advanced sequence diagrams, e.g., with nested operations,
will enhance the usability of the approach.

References

1. Andrews, A., France, R.B., Ghosh, S., Craig, G.: Test adequacy criteria for UML
design models. Software Testing, Verification and Reliability 13, 95-127 (2003)

2. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70-118 (2005)

10.

11.

12.

13.

14.

15.

16.

17.

Coverage of OCL Operation Specifications and Invariants 207

Cabot, J., Clarisd, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Int’l. Conference on Software Testing Verification and
Validation Workshop, pp. 73-80. IEEE (2008)

Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
Frias, M.F., Galeotti, J.P., Pombo, C.L., Aguirre, N.: DynAlloy: upgrading alloy
with actions. In: Int’l Conf. on Software Engineering, pp. 442-451. ACM (2005)
Gogolla, M., Biittner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69, 27-34
(2007)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2006)

Krieger, M.P., Knapp, A.: Executing underspecified OCL operation contracts with
a SAT solver. Electronic Communication of the European Association of Software
Science and Technology 15 (2008)

Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of OCL models by
integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 290-306. Springer, Heidelberg (2011)

Niemann, P., Hilken, F., Gogolla, M., Wille, R.: Assisted generation of frame con-
ditions for formal models. IEEE (2015)

Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints.
Ph.D. thesis, University of Bremen, Logos Verlag, Berlin, BISS Monographs, No.
1 (2002)

Rountev, A., Kagan, S., Sawin, J.: Coverage criteria for testing of object inter-
actions in sequence diagrams. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442,
pp. 289-304. Springer, Heidelberg (2005)

Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models.
In: Design, Automation and Test in Europe. pp. 1077-1082. IEEE (2011)

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using Boolean satisfiability. In: Design, Automation and Test
in Europe, pp. 1341-1344. IEEE (2010)

Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley Longman (1999)

Yu, L., France, R.B., Ray, I.: Scenario-Based static analysis of UML class models.
In: Czarnecki, K., Ober, L., Bruel, J.-M., Uhl, A., Volter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 234-248. Springer, Heidelberg (2008)

Yu, L., France, R.B., Ray, 1., Sun, W.: Systematic scenario-based analysis of UML
design class models. In: Int’l Conf. on Engineering of Complex Computer Systems,
pp. 86-95. IEEE Computer Society (2012)

	Coverage of OCL Operation Specifications and Invariants
	1 Introduction
	2 Preliminaries
	2.1 Class Diagrams and System States
	2.2 Model Finding

	3 Operation Coverage
	3.1 Operation Call Coverage
	3.2 Subexpression Coverage

	4 Algorithm to Automatically Enhance Coverage
	5 Tool Support
	5.1 Experimental Evaluation

	6 Related Work
	7 Conclusions
	References

