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Abstract—The Toffoli gate, as originally proposed, had
only positive controls. It has been shown that mixed polar-
ity controlled Toffoli gates can be efficiently implemented.
In fact, their quantum cost is the same as for positive
controlled gates in most cases. Thus it is advantageous
to consider circuits with mixed polarity Toffoli gates.
Template matching has been successfully used to reduce
the number of Toffoli gates in reversible circuits. Little
work on templates with mixed polarity gates has been
reported. Unfortunately, the number of potential templates
increases dramatically, if mixed polarity is introduced.
Here we propose a dynamic template matching algorithm
that takes templates with few lines and dynamically extends
the lines to find matches. Experimental results show that
the proposed approach has a significant impact on reducing
the total number of gates (57% in the best case) in circuits.

I. INTRODUCTION

Applications of reversible logic are found in quantum

computation [1] where exponential speed up can be

achieved for some algorithms [2]. For classical reversible

functions (a special case of Boolean functions), a series

of synthesis and post-synthesis methods are employed to

obtain quantum circuits. The most common method to

obtain quantum circuits from reversible functions con-

sists of several steps. First, a circuit of Toffoli gates [3],

[4] is constructed. The Toffoli circuit is then optimized

with such methods as described in [5], [6]. Next, the

Toffoli circuit is transformed into a quantum circuit

by decomposing [7] Toffoli gates. Template matching

can be used to reduce the number of gates in Toffoli

circuits [8] as well as quantum circuits [9]. When the

Toffoli gate was first proposed [3], only positive con-

trols were considered. However, it has been shown that

using both positive and negative controls [10], [11] will

result in circuits with lower quantum cost. This is the

motivation for considering templates that traditionally

only considered positive controls, with mixed polarity

(positive and negative controls).

The objective of our work is to investigate the use and

effect of mixed polarities in templated-based optimiza-

tion. We first find a complete set of 2-line templates for

NOT and CNOT gates with mixed controls. It turns out

that the number of templates is very large. This has two

disadvantages: first, a large number of templates must

be stored; second, for each template the circuit must be

scanned for a potential match. We develop a dynamic

template matching that takes a set of templates for a few

lines as input. For a successful match on a subset of lines

in the circuit to be optimized it is checked whether the

template can be extended to match the remaining lines.

Note that the size of the set of matched gates must be

more than half of the size of the template. Experiments

show very good results in reducing the number of gates in

circuits in comparison to the best known results of MCT

benchmark circuits [12]. It is observed that the runtime

of the proposed heuristic is high since many possibilities

are checked by adding controls to the gates in a template.

Previous work has considered using negative con-

trol lines for reversible circuit optimization. Both [13]

and [14] present approaches, also called template match-

ing, to reduce the number of gates in reversible cir-

cuits. However, they neither present an algorithm to

create identities nor classify circuit identities. Hence,

the algorithms can better be described as rule-based

approaches. This is further justified by the fact that

such rules are presented in terms of a subcircuit and

its optimized form, rather than in terms of an identity

circuit. In fact, the technique described in [13] considers

sequences of gates that share the same target line and

can therefore be effeciently reduced using ESOP min-

imzation as demonstrated in [15]. In fact, all optimization

approaches that take negative controls into account are
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instances of rewriting according to the elementary rules

presented in [16]. This also explains the huge number

of templates when considering negative controls and

justifies a dynamic matching approach as presented in

this paper.

The remainder of the paper is structured as follows:

Section II briefly describes the fundamentals of reversible

logic and template matching. In Section III we discuss

the basis for constructing templates with positive and

negative controls. Section IV describes the dynamic tem-

plate matching method. The significance of the proposed

approach is shown with experiments. All 3-line MCT

circuits and 43 benchmarks are optimized and the results

are reported in Section V. The paper concludes with

some observations and directions for future research in

Section VI.

II. BACKGROUND

To keep this paper self-contained, this section briefly

describes the essentials for reversible logic, reversible cir-

cuits, and circuit optimization using template matching.

A Boolean logic function f : Bn → Bn over a set of

variables X = {x1, . . . , xn} is reversible if it is bijective.

Classical reversible functions [1] are the special case

of multiple-output Boolean functions. A mixed-polarity

multiple-controlled Toffoli (MPMCT) gate g(C, t) is

a reversible gate consisting of a set of control lines

C ⊂ {x, x̄ | x ∈ X} that are literals of X and a target

line t ∈ X such that {t} ∪ C = ∅. A literal can occur

with at most one polarity in C. A control line is called

positive if it occurs as positive literal in C and negative

if it occurs as negative literal in C. The semantics of

such a gate are as follows: The value at the target line

is inverted if all literals evaluate to true. All remaining

values are passed through the gate unchanged. Gates for

which |C| = 0 and |C| = 1 are known as NOT and

CNOT, respectively. In the literature, often only the case

of gates which have solely positive control lines has been

considered.

Reversible circuits are realized by cascading re-

versible gates. An MPMCT circuit is realized by cascad-

ing MPMCT gates. A circuit for a function is minimal,
if no circuit with fewer gates realizes the same function.

The size of a circuit G, denoted by |G|, is the number

of gates in G.

Two adjacent gates g1(C1, t1) and g2(C2, t2) can be

interchanged if C1 ∩ {t2} = ∅ and C2 ∩ {t1} = ∅. That

is, a gate may move within the circuit by commuting

gates; this is known as moving rule [10]. If gates in

a circuit G can be brought together by the moving rule,

then they form a subcircuit of G. Let two gates g1(C1, t1)
and g2(C2, t2) in a circuit act on the same line(s) and

they realize the functions f and f−1 respectively. If they

can be made adjacent by using the moving rule, then

they both can be deleted; this is known as the deletion
rule. These rules origin from previous work in which

only postive control lines were considered. By allowing

negative control lines for the circuit description, one

gains more flexibility [16].

A. Templates and Template Matching

A template T is a circuit that realizes the identity

function. If a sequence of gates in a circuit matches with

a sequence of gates with size s1 > �|T |/2	 in a template

T , then the matched sequence of gates in the circuit can

be replaced with the inverse of the remaining sequence

of size s2 < �|T |/2	. This is called template matching.

Gates in a reversible circuit can often be reordered

without affecting the function of the circuit. The order

of gates in a template are considered to be circular and

the moving rule can also be applied. The process of

matching gates from a template to a circuit can start

from anywhere, and matching can be extended either in a

forward or backward direction of the template. Hence, if

a template can be applied to a circuit, by rearranging the

gates in the circuit as well as in the template, then such

match will be found in exact template matching. In this

context, in exact template matching, a gate g1(C1, t1) of a

template matches with a gate g2(C2, t2) of a circuit such

that g1 and g2 realize the same function. An example

of matching of the gates of a template to the gates of

a circuit is shown in Fig. 1. However, a graph-based

algorithm for exact template matching can be found

in [17].

Example 1: Let the circuit shown in Fig. 1(a) be

optimized with the template shown in Fig. 1(b). The gate

sequence 0, 1, 2, 3, 4, 5 of the template matches the gate

sequence 0, 1, 2, 5, 3, 6 in the circuit in exact template

matching. Therefore, the gate sequence of optimized

circuit would be the gate sequence 10, 9, 8, 7, 4 of the

template.

III. BASE TEMPLATES AND RULES FOR TEMPLATE

CONSTRUCTION

Templates can be constructed in many different ways

by using rewriting rules. However, some empirical results
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0 1 2 3 4 5

(a) Circuit G

0 1 2 3 4 5 6 7 8 9 10

(b) Template T

Fig. 1: (a) A circuit and (b) A template

show that the set of templates of more than 2 lines can be

very large. Moreover, applications of templates depend

on how circuits to be optimized are constructed, and

many templates may not be useful. For example, if a 3-

line function is synthesized by using the transformation-

based algorithm, then it is unlikely that the template in

Fig. 2(i) is applied to reduced the obtained circuit. In

this section, we first find a set of templates of 2 lines

which are referred to as base templates. From these base

templates, a set of rules is defined to reduce the template

set. We also present rules of deriving templates with a

large number of lines dynamically in template matching.

A heuristic for dynamic template matching is described

in the next section. For the NOT and CNOT gates with

both positive and negative controls, an exhaustive search

algorithm [18] finds a complete set of 2-line templates

which are shown in Fig. 2.

(a) (b) (c) (d) (e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Fig. 2: The set of all 2-line templates

In contrast to dynamic template matching, in exact

template matching, a gate g1(C1, t1) in a template can

only match a gate g2(C2, t2) in a circuit if |C1| = |C2|
and both C1 and C2 have same number of positive and

negative controls. That is, both g1 and g2 have to realize

the same function up to variable names.

This has a consequence that a large set of templates

must be known in advance for exact template matching.

However, if templates with MPMCT gates are consid-

ered, then a reduced set of templates obtained by the

rules in subsection III-A can be used in an exact template

matching. Moreover, templates with gates of a large

number of controls still require for optimizing circuits

with gates of a large number of controls. On the other

hand, the dynamic template matching takes a template

with few lines as an input and if the lines of gates in

the template partially match with the lines of gates in

the circuit then it will extend the lines of the template.

That is, a gate g1(C1, t1) in a template matches a gate

g2(C2, t2) in a circuit if |C1| ≤ |C2| as well as both

g1 and g2 do not necessarily have to realize the same

function.

A. Equivalence of Templates

Let T be a l-line template of size n, then the following

rules can be applied to reduce the set of templates.

1) All polarities of the controls of gates in a tem-

plate can be flipped. For instance, the templates

in Fig. 2(g) and (h) can be considered as equiv-

alent in template matching.

2) On a line where no gate has a target, all polar-

ities of the controls on that line can be flipped.

For instance, the templates in Fig. 2(b) and (c)

can be considered as equivalent.

According to these equivalence rules, the set of tem-

plates in Fig. 2 can be reduced to the set of templates

which are shown in Fig. 2(a), (b), (d), (e), (f), (g), (i),

(k), and (n).

B. Extension of Lines in Templates

Let T is an l-line template of size n, then the

following rules can be applied to derived new templates.

1) Adding a line to T results in a template of l+1
lines.

2) If the removal of a subset S of m (2 ≤ m ≤
n) gates in T results in an identity, then a new

control of each gate of S in T can be added

and placed into a new line. All new controls of

gates in S must either all be positive or all be

negative. This results in a new template.

According to these rules, it follows that the templates

in Fig. 2(a), (b), and (c) can be considered as equivalent

in dynamic template matching. In summary, we obtain a

reduced set of templates as shown in Fig. 3.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Fig. 3: The reduced set of 2-line templates

IV. DYNAMIC TEMPLATE MATCHING

In this section, we present an algorithm for dy-

namic template matching. To illustrate the algorithm

in Fig. 4, we consider the circuits in Fig. 5. Let the

procedure DynamicTemplateMatching() take the circuit

G in Fig. 5(a) and the template T in Fig. 5(b) as input;

n = 5 and l = 2. The procedure match() returns

true and sets the values of m, ml, ul, and u if more

than half of the gates of I , can be mapped into a sub-

circuit of G. For instance, for the gates {0, 1} in the

template T , lines a and b are mapped into the circuit

lines x1 and x4. The gates in the inner rectangle in C are

the candidates for matching with the gates {0, 1} in T .

Therefore, m = {3, 4}, ml = {1, 4}, ul = {0, 2, 3}, and

u = {2}. Now for the line x0, there are controls of gates

in the set m = {3, 4} in G. Therefore, the procedure

addConInNewLine() will add a new line c to the circuit

I and also add controls with respect to the gates set

m = {3, 4} and i = 0. The resulting circuit I is shown

in Fig. 5(c) in which the unmatched gate 2 of T remains

unchanged. Now for the gate u = {2} in the circuit

shown in Fig. 5(c), the procedure addConcheckID()
checks whether any identity can be found by adding

controls to the gate u = {2} in I in all possible ways.

In this case two possibly generated circuits are shown

in Fig. 5(d) and (e). Since the circuit in Fig. 5(e) is an

identity, the procedure addConcheckID() returns true.

Since lines {2, 3} in the circuit have no controls for the

gates set m = {3, 4}, the inner for loop in the algorithm

will terminate without changing succ = true. Now

succ = true, hence, the procedure doReplacement()
replaces the gates set m = {3, 4} with the gate 2 of

the identity circuit of Fig. 5(e). The resulting optimized

circuit is shown in Fig. 5(f).

V. EXPERIMENTAL RESULTS

We implemented exact template matching and the

dynamic template matching heuristic using C++. Along

(1) circuit& DynamicTemplateMatching(G, T )
(2) G is a circuit of n lines
(3) T is a template l lines
(4) /* Let m be an array for index of matched gates in the

circuit */
(5) /* Let u be an array for index of unmatched gates in the

template */
(6) /* Let ml and ul be arrays of matched lines in the

circuit where |ml| = l and |ul| = n− l */
(7) Let I = T is a circuit
(8) while match(G, I , &m, &ml, &ul, u)
(9) if |m| = |I|

(10) if isIdentity(G, m) /* whether the whole sub-circuit
for m in G is identity */

(11) G = doReplacement(G, I , m, ml);
(12) else
(13) bool succ = true;
(14) for each i ∈ ul

(15) if line i has controls of the gates in m
(16) I = addConInNewLine(I,m, i);
(17) /* number of lines of I is increased by only 1

*/
(18) ml = ml ∪ i
(19) if !addConcheckID(I, u)
(20) succ = false;
(21) break;
(22) if succ
(23) G = doReplacement(G, I , m, ml);
(24) I = T ;
(25) return G;

Fig. 4: Algorithm for dynamic template matching

x0 x0
x1 = a x1 = a

x2 x2
x3 x3

x4 = b x4 = b

0 1 2 3 4 5 6

(a) Circuit G

a a
b b

0 1 2

(b) Template T

c c
a a
b b

0 1 2

(c)

c c
a a
b b

0 1 2

(d)

c c
a a
b b

0 1 2

(e) An identity

x0 x0
x1 x1
x2 x2
x3 x3
x4 x4

0 1 2 3 4 5

(f) Optimized circuit

Fig. 5: Dynamic template matching

with 2-line templates, we have also generated a set of

3-line templates of size up to 6. In our first experiment,

we apply a total of 228 templates to optimize all 3-line

circuits (gates in circuits have only positive controls) ob-

tained from the transformation based synthesis algorithm.

Column 3 in Table I shows the average number of gates

for all 40320 functions. The average number of gates in

circuits obtained from exact template matching are show

in column 4 in Table I. The total average reduction is

24.18%. It is observed that in exact template matching,
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out of 228 templates, only 31 templates are applied.

In our second experiment, we have taken benchmark

MCT circuits from RevLib [12] as shown in column 1

in Table II. Column 2 shows the number of gates in

the original circuits. By using the reduced set of 2-line

templates in Fig. 3 and 214 templates of 3 lines, the

obtained results from dynamic template matching are

shown in column 3 in Table II. According to column

5 in Table II, a significant percentage of reduction of

gates can be noticed. More than 20% reductions are

highlighted. For 43 benchmarks, the average reduction

is 23.46%. The best result is 57% reduction for the

benchmark rd53 131. It can be noticed that for the

benchmark urf3 155 with 26, 468 gates, the number of

gate reductions is 10, 732. Among 223 templates, those

templates which are frequently used for benchmarks

optimization is shown in Fig. 6. It is very clear that

we only use templates of lines up to 3 in which targets

of gates in templates are placed into at most 3 lines,

and only controls of gates in templates are extended.

However, templates in which gate target acts on more

than 3 lines can be more beneficial for the optimization

of circuits with a large number of lines. Even templates

of size more than 6 can be investigated.

We observe that reduction of gates in Toffoli circuits

may not lead to circuits with reduced quantum costs

when naive gate count of quantum circuits is considered

as quantum cost. Toffoli circuits with fewer gates may

have higher quantum costs than the costs of original

circuit. For instance, if the circuit shown in Figure 7(a)

is replaced with the circuit shown in Figure 7(b), then

the quantum cost of the resulting circuit increases where

quantum costs of a Toffoli gate with 2 controls and a

Toffoli gate with 3 controls are 5 and 14, respectively.

The question is that whether Barenco’s [7] or library-

based Toffoli [19] decomposition would be beneficial to

obtain possibly low quantum cost circuits. However, we

conjecture that for a template T , if the gate sequence of

size �|T |/2	+2 in T matches with the gate sequence of

a circuit, then the resulting Toffoli circuit always leads to

the low quantum cost circuit. In the literature, different

quantum cost models are proposed [20], [21], therefore,

in this work, we leave the measurement of quantum costs

of circuits for future research.

VI. CONCLUSION

We present a heuristic of dynamic template matching

in which templates of more than 2 quibts have been

TABLE I: Results of optimizing 3-line MCT circuits

obtained from transformation-based algorithm

Size(min) #f #Avg(G)TB #Avg(G)Optz
0 1 0 0

1 12 1 1

2 102 2.44 1.9

3 625 4.18 2.97

4 2780 6.01 4.33

5 8921 7.65 5.73

6 17049 9.02 6.92

7 10253 9.94 7.64

8 577 10.75 8.18

Total 40320 6.37 4.83

#Avg(G)TB: Average no. of gates in original circuits;
#Avg(G)Optz: Average no. of gates in optimized circuits;

TABLE II: Results of optimizing benchmarks

Benchmarks #G(Org.) #G(Optz.) Rd Rd(%)
4gt11-v1 85 4 3 1 25.00
4gt13-v1 93 4 3 1 25.00
4mod5-v0 19 5 3 2 40.00
4mod5-v1 24 5 4 1 20.00

mod5mils 65l 5 3 2 40.00
mod5mils 71 5 3 2 40.00
4gt12-v1 89l 5 4 1 20.00

3 17 13l 6 4 2 33.33
3 17 14l 6 5 1 16.67

decod24-v0 38 6 5 1 16.67

4gt4-v0 72 6 5 1 16.67

mod5d1 63 7 5 2 28.57
alu-v2 33 7 6 1 14.29

alu-v2 32 7 6 1 14.29

mod10 176 7 5 2 28.57
4mod5-v1 23 8 4 4 50.00
mod8-10 178 9 8 1 11.11

aj-e11 168 10 9 1 10.00

4gt13 91 10 9 1 10.00

4gt12-v0 87 10 9 1 10.00

mod10 171 10 9 1 10.00

4 49 17 12 10 2 16.67

aj-e11 165 13 11 2 15.38

alu-v2 31 13 9 4 30.77
mod8-10 177 14 11 3 21.43

rd53 137 16 13 3 18.75

4 49 16 16 13 3 18.75

rd53 135 16 13 3 18.75

hwb4 49 17 14 3 17.65

4gt4-v0 73 17 13 4 23.53

alu-v2 30 18 15 3 16.67

mod5adder 127 21 16 5 23.81
ham7 106 25 22 3 12.00

rd53 131 28 12 16 57.14
rd53 130 30 22 8 26.67
sym6 145 36 31 5 13.89

hwb7 62 331 294 37 11.18

hwb8 116 749 638 111 14.82

hwb9 123 1959 1701 258 13.17

urf2 152 5030 3274 1756 34.91
urf5 158 10276 5578 4698 45.72
urf1 149 11554 7347 4207 36.41
urf3 155 26468 15736 10732 40.55

#G(Org.): No. of gates in original circuits;
#G(Optz.): No. of gates in optimized circuits;
Rd: No. of gates reduced;
Rd(%): Percentage of reductions;

generated during the matching process. The results from

optimizing benchmark functions are promising, whereas

computationally, it is not feasible to obtain all templates

even with three lines before template matching starts.

Relating our findings in template matching with mixed-

polarity Toffoli gates to the results of [16] can help

to devise a better understanding of template matching

and estimate the number of total templates, but also
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Fig. 6: The set of templates successfully used in bench-

marks optimization

(a) (b)

Fig. 7: Reversible circuits with (a) #gate = 3 and

quantum cost 15 = 5 + 5 + 5 and (b) #gate = 2 and

quantum cost 19 = 14 + 5.

to find rewriting strategies to guide circuit rewriting as

an alternative to optimization. A cost-benefit analysis

of circuits in quantum decomposition would be useful

since the gates in the resulting circuits have both positive

and negative controls. The heuristic of dynamic template

matching can be improved by finding the best matches

for given templates. Moreover, an in-depth analysis of

the use of the 13 templates shown in Fig. 6 may lead to

the development of algorithms for expansion of gates in

templates, which is our future research.
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