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ABSTRACT
Binary Decision Diagrams (BDDs) are widely used in elec-
tronic design automation and formal verification. BDDs are
a canonical representation of Boolean functions with respect
to a variable ordering. Finding a variable ordering resulting
in a small number of nodes and paths is a primary goal in
BDD optimization. There are several approaches minimizing
the number of nodes or paths in BDDs, but yet no method
has been proposed to minimize both objectives at the same
time.

In this paper, BDD optimization is carried out as a bi-
objective problem using two aforementioned criteria. For
this purpose, we have exploited NSGA-II which has been
proven to fit problems with a small number of objectives.
Furthermore, the algorithm is facilitated with an objective
priority scheme that allows to incorporate preference to one
of the objectives.

Experimental results show that our multi-objective BDD
optimization algorithm has achieved a good trade-off between
the number of nodes and the number of paths. Comparison
of the results obtained by applying priority to the number
of nodes or paths with node and path minimization tech-
niques demonstrates that the proposed algorithm can find
the minimum of the preferred objective in most cases as well
as lowering the other objective simultaneously.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem solving, Control
methods and Search—Heuristic methods; J.6 [Computer-
Aided Engineering]: Computer-aided design (CAD)

Keywords
Multi-objective optimization; genetic algorithm; BDD opti-
mization
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1. INTRODUCTION
Binary Decision Diagrams (BDDs) are graph based data

structures that allow a compact and canonical representation
of Boolean functions [5, 6]. BDDs are extensively used in
VLSI CAD for synthesis and verification [11]. Moreover, Ar-
tificial Intelligence (AI) benefits from BDDs, e.g., in software
model checking [13], sparse-memory applications [19], and
enhancing search methods [14].

All these applications exploit BDD optimization with re-
spect to the number of nodes in the graph. Many VLSI
CAD applications map BDDs directly to target circuits, and
therefore, a smaller BDD results in smaller chip area [10].
Also the number of one-paths, i.e., paths to logical 1, is
influential in several applications. As an example, in formal
verification using SAT-solving, the number of required steps
to solve a SAT problem can be measured by the number of
paths in BDDs [24]. In logical synthesis it has been shown
that a reduction in the number of paths enhances the mini-
mization of Disjoint-Sum-of-Product representations which
can be directly extracted from BDDs [30, 22].

Many approaches have been developed for BDD optimiza-
tion that aim at minimizing the number of nodes. Exact
minimization techniques can be classified as a group of these
approaches. Although, exact methods can guarantee to find
the optimal BDD, they suffer from a high order of complexity
and run-time [11]. Hence, there is a strong motivation to
employ heuristics regardless that the optimum is not guaran-
teed. Dynamic reordering based approaches have been widely
used for this purpose. They tackle the BDD minimization
problem by determining a promising variable ordering in a
reasonable amount of time [25]. Simulation-based approaches
such as evolutionary algorithms have also been proposed to
get a higher degree of minimization. Few techniques using
dynamic reordering and evolutionary computation have been
developed for minimizing the number of one-paths in BDDs
[15, 17]. In this paper the BDD optimization problem is
conducted with respect to both criteria addressing significant
cost metrics. The proposed Multi-Objective BDD optimiza-
tion (MOB) algorithm minimizes the number of nodes and
one-paths at the same time without any loss of quality com-
pared to a single objective method. The proposed approach
is also capable of handling specific applications’ preferences
where either nodes or one-paths are of higher importance.

2. BACKGROUND
This section describes concepts of multi-objective optimiza-

tion and BDDs and briefly introduces state-of-the-art BDD
optimization approaches.
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2.1 Basic Concepts

2.1.1 Multi-Objective Optimization
An arbitrary optimization problem with m objectives can

be defined as

min f(x) = (f1(x), f2(x), . . . , fm(x))T,

where solution x = (x1, x2, . . . , xn)T is described as a decision
vector from the decision space Ω ⊆ Rn, and f : Ω→ Λ is a set
of m objective functions which evaluates a specific solution
by mapping it to objective space Λ ⊆ Rm.

Let x, y ∈ Ω, then the Pareto-dominance, denoted by ≺,
can be defined as

x ≺ y :⇔ ∃j ∈ {1, 2, . . . ,m} :

fj(x) < fj(y) ∧ ∀i 6= j : fi(x) ≤ fi(y).

According to the definition above, an optimal solution,
also called non-dominated is a solution that is not dominated
by any other solution. The set of optimal solutions is the
so-called Pareto set, denoted by ω ⊆ Ω. It must fulfill the
property

∀p ∈ ω : @q ∈ Ω : q ≺ p.

The Pareto front λ is defined as the image of the Pareto
set in the objective space, i.e, λ = f (ω) ⊆ Λ. Finding a
well converged set of solutions to the Pareto set is the goal
of a Multi-Objective Evolutionary Algorithm (MOEA). The
final output of a MOEA is a set of non-dominated solutions,
so-called Pareto set approximation.

2.1.2 Binary Decision Diagrams
Binary Decision Diagrams (BDD) can provide a compact

graph representation for most of the practical relevant Boo-
lean functions. The main reason of the compactness of BDDs
is that such functions often have common subfunctions where
for a given function f(x1, x2, . . . , xn) its subfunctions are
f(0, x2, . . . , xn) and f(1, x2, . . . , xn) as well as their subfunc-
tions and so on. A function f(x1, . . . , xn) is called a bead if
it depends on its first variable, or in other words, if its truth
table representation is not of the form αα for any bitstring
α of length 2n−1 [20]. The nodes of a BDD for a Boolean
function f are all subfunctions of f which are beads. The
size of a BDD can further be reduced with complemented
edges such that a subfunction and its complement can be
represented by the same node [3].

It can be easily seen that the set of subfunctions changes
when the order of input variables is changed. In fact the
variable ordering of a BDD can have a significant impact on
the number of nodes in a BDD, referred to as N , and also the
number of one-paths, referred to as P , which are all paths
from the start vertex to the 1-terminal that have an even
number of complemented edges (including the complement
of the start vertex). As an example, the function

x̄1x̄2x̄3 ∨ x̄1x2x4 ∨ x1x2x̄3x̄4 ∨ x1x̄2x3x4
from [15] and depicted in Fig. 1 has its minimal number of
nodes, N = 5, for the variable ordering x4 < x3 < x3 < x1.
The minimal number of one-paths, P = 4, is obtained for
the variable ordering x2 < x1 < x4 < x3.

Improving the variable ordering to find a BDD with at
most N nodes is known to be NP-complete [2] and several
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Figure 1: BDDs for the function x̄1x̄2x̄3 ∨ x̄1x2x4 ∨
x1x2x̄3x̄4 ∨ x1x̄2x3x4

heuristics have been proposed that are illustrated in the next
section.

2.2 Related Work
BDD optimization techniques aim to find an optimal vari-

able ordering which leads to the minimum BDD with respect
to the optimization criterion. There are several approaches
for exact minimization guaranteeing to find the minimal
BDD [12, 16, 18]. Nevertheless, high complexity of the exact
methods is a reason for heuristic methods to be of higher
interest. Sifting [25] is a well known node minimization algo-
rithm based on a hill-climbing framework. The technique is
based on a rule that swaps two adjacent variables in a BDD
without changing the function. Sifting uses this feature by
moving each variable downwards and upwards in the variable
order. The BDD size resulting from reordering every variable
is recorded during this procedure and finally the variable is
moved back and fixed to the position where the BDD with
the minimum number of nodes was found. Results obtained
by sifting can be far from the optimum when the number of
inputs increases. Employing approaches such as Simulated
Annealing (SA) and Evolutionary Algorithms (EAs) for BDD
node minimization, the number of nodes can even decrease
to half of that achieved by sifting for large circuits [1, 9].
Since SA has been used for comparison with MOB in our
experimental studies, its framework is briefly discussed in the
following. At first, a variable ordering is generated randomly
and the nodes of the resulting BDD are counted. Before a
termination criterion is satisfied, a randomly chosen ordering
is accepted instead of the current variable permutation if it
leads to a BDD with a lower number of nodes. Otherwise, the
new variable ordering might be accepted in a probabilistic
manner. In fact, SA allows to accept a variable ordering with
a certain probability in order to make the algorithm capable
of escaping a local minimum.

The majority of BDD optimization approaches are based
on node minimization, however it has been proven that the
number of BDD paths are also important in some applications
such as SAT-solving or synthesis [11]. Modified Sifting (MS)
[15] is a BDD optimization method aiming at minimizing
the number of one-paths. The framework of MS is the same
as sifting with the objective being set to the number of one-
paths. Similar to sifting, MS examines just a few possibilities
of the whole search space that makes it faster compared to
simulation based methods such as SA and EA. Consequently,
the BDDs found by MS might have a considerable higher
number of one-paths than the optimum when the number of
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variables increases. An EA for BDD path minimization was
proposed in [17]. EA has a better performance than MS for
the same reasons mentioned above. EA applies roulette wheel
mating selection for creating an offspring with a cardinality
of half of the current population. In each iteration, after
employing variation operators the offspring is produced and
then the new population is created by combining the offspring
with the best half of the individuals in the current population.

All of the BDD optimization techniques explained above
optimize BDDs with respect to one of the cost metrics. An
approach introduced in [21] employs sifting and MS sepa-
rately and then stores the number of nodes and one-paths
returned by both methods. Thereafter, a comparison oper-
ator checks the node counts found by two approaches. If
they are equal, the optimized BDD is characterized by the
BDD found by MS. Otherwise, the same scenario is repeated
for equal one-path counts but the BDD found by sifting
is selected this time. In the case that both objectives in
the BDDs found by two methods are different, the user is
supposed to choose between the resulting BDDs. Indeed, the
algorithm introduced in [21] chooses between results obtained
by sifting and MS instead of a multi-objective optimization.

3. MULTI-OBJECTIVE BDD OPTIMIZATION

3.1 Overview
The proposed multi-objective BDD minimization approach

is a non-dominated sorting based algorithm structurally sim-
ilar to NSGA-II [7] with variation operators specifically de-
signed for escaping invalid variable permutations. NSGA-II
has been shown excellent performance on problems with
two or three objectives. However, as a Pareto-dominance
algorithm it fails to rank solutions in the presence of many
objectives. Since BDD optimization is characterized as a bi-
objective problem in this paper, NSGA-II would be sufficient
and more reasonable than paying high penalties when using
many objective optimization approaches, e.g., [28].

In order to keep the paper self-contained, a brief expla-
nation of the relation employed by NSGA-II to rank a pop-
ulation is given. According to non-dominated sorting, all
individuals should be assigned to a level of dominance that
is equal to their overall fitness values used for ranking the
population. To find all members of the first non-dominated
front, each individual should be compared with every other
individual in the population to find if it is non-dominated.
This procedure can be completed by exploiting a fast non-
dominated sorting scheme to find all levels of dominance. Fast
non-dominated sorting decreases computational complexity
by counting the number of individuals which dominate or
are dominated by each individual in the population. To pre-
serve a well-distributed optimal set, density of individuals is
also considered besides non-domination rank in the selection
process. The density estimation metric so-called crowding
distance is calculated to discriminate between individuals
belonging to the same non-dominated front. Thus, between
two individuals with different non-dominated ranks, the indi-
vidual with lower rank is preferred. Otherwise, the individual
with greater value of crowding distance is preferred in the
case of equal ranks.

The general framework of the MOB algorithm is described
in Algorithm 1. First, a random parent population P0 of
size N is initialized. Each individual of the population is
characterized by a permutation of the variable indices of the

BDD. Objective values are assigned to the population by
counting the number of nodes and one-paths. Then, the
population is sorted based on non-domination. Steps 6–18
are iterated until the stopping criterion is satisfied. After
applying binary tournament, recombination, and mutation
operators an offspring Qt of size equal to the parent popula-
tion is created in step 6. To ensure elitism, Qt is combined
with the current population Pt resulting in a new population
Rt. In step 9, non-dominated sorting is employed to classify
Rt into different non-domination levels (F1, F2, and so on).
Thereafter, individuals are added to Pt+1 starting from the
first non-dominated front F1. This procedure is continued to
fill population Pt+1 with subsequent non-dominated fronts
until their sizes are smaller than the free available slots in
Pt+1 (step 17), formally expressed as

Pt+1 ← Pt+1 ∪ Fi[1 : (N− | Pt+1 |)].

Otherwise, the lesser crowded individuals in the current front
Fi are chosen after sorting the front according to the crowding
distance.

Algorithm 1 Framework of the general MOB

1: P0 ← InitializePopulation
2: CountNodesOne-paths(P0)
3: {F1, F2, . . . } ← Non-dominated-sort(P0)
4: t ← 0
5: while the stopping criterion is not met do
6: Qt ← MakeOffspringPopulation(Pt+1)
7: CountNodesOne-paths(Qt)
8: Rt ← Pt ∪ Qt

9: {F1, F2, . . . } ← Non-dominated-sort(Rt)
10: Pt+1 ← ∅
11: i ← 1
12: while |Pt+1| + |Fi| ≤ N do
13: Pt+1 ← Pt+1 ∪ Fi

14: i ← i + 1
15: end while
16: CrowdingDistanceSort(Fi)
17: Pt+1 ← Pt+1 ∪ Fi[1 : (N - |Pt+1|)]
18: t ← t + 1
19: end while

3.2 Variation Operators
In this section, the employed variation operators are intro-

duced. The offspring population is produced by recombina-
tion and mutation operators. Recombination includes specific
crossover operators which avoid omissions and duplication in
variable indices. Indeed, the employed crossover operators
ensure that the permutations remain valid. Three crossover
operators are used in the proposed BDD optimization algo-
rithm including partially matched crossover, inversion and
reproduction. Partially matched crossover PMX [23] is per-
formed by randomly choosing two crossover points which
break two parents in three sections. Two children are pro-
duced by combination of sections from both parents such that
each previously used variable index is substituted for a new
one to guarantee valid permutations. Inversion introduced in
[17] breaks each parent into three sections by choosing two
random positions. Then, one child is produced from each
parent by inverting the order of indices in a randomly chosen
part. The last employed crossover operator only copies each
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parent with no genetic change. That means the created
children are identical to their parents.

After recombination, three mutation operators all de-
scribed in [17] are employed such that one of them might
affect a child according to given probabilities. The first oper-
ator exchanges two random variable indices of the individual.
The second operator applies the first mutation technique
twice on the same permutation. In the third mutation opera-
tor a position is chosen randomly and its content is exchanged
with an adjacent index.

3.3 Priority
In many real world applications, one or more objectives

are of higher level of significance. In such optimization prob-
lems, although it is desirable to minimize all objectives, it is
preferred to escape penalties for objectives with higher prior-
ities as a cost of improving lesser important criteria. Hence,
the proposed MOB optimization approach is equipped with
the ability to handle priority in order to meet requirements
of specific applications. For instance, the number of nodes
is more important than the number of one-paths in formal
verification. On the other hand, the number of paths are
regarded as an influential objective in SAT-solving.

Several techniques have been developed to model priorities
in a multi-criteria optimization problem. Weighted sum is a
widely used classical method that is able to handle objective
priorities. It scalarizes the set of objectives into a fitness
value by multiplying each objective with a user supplied
weight. For a solution x ∈ Ω, the fitness function f(x) is
given by

f(x) =

m∑
i=1

wi.xi.

It is obvious that larger coefficients, denoted by ωi, repre-
sent higher objective priorities in the fitness value. Another
approach so-called priority preferred is proposed in [26]. It
incorporates a lexicographic ordering of objectives with re-
lation preferred that is a refinement of Pareto-dominance
[8]. In this work, the model explained in [26] is adapted to
non-domination instead of preferred. Let p = {p1, p2, . . . ,
pm} be a priority vector determining priorities assigned to
the objectives for an m-objective problem. Each component
pi, i ∈ {1, 2, . . . ,m} can adopt values from the set {1, 2,
. . . ,n}, n≤m (n is equal to m in case that all objectives have
different priorities). Considering a minimization problem, we
assume that a lower value of pi means objective i is of higher
priority. Given two solutions x, y ∈ Ω, x|j and y|j represent
subvectors of x and y only including objective functions with
priority of j, priority-dominance is defined as

x ≺p y :⇔ ∃j ∈ {1, 2, . . . ,n} : x|j ≺ y|j∧
∀k < j : y|k ⊀ x|k.

More informally, the relation defined above employs Pareto-
dominance to compare objective functions with equal pri-
orities. In other words, x priority-dominates y if there is a
subvector of objective functions with identical priority in x
that dominates the corresponding subvector in y, and at the
same time x|j is not dominated by any subvector of priority
value higher than j in y.

Priority-dominance can be defined more simply in the
bi-objective BDD optimization problem. In this case, the

Algorithm 2 Priority-dominance

1: GetPriorityVector(p). To determine priority subvectors
2: for all x ∈ Ω do
3: Sx ← ∅ . Set of individuals dominated by x
4: nx ← 0 . The number of individuals dominating x
5: for all y ∈ Ω do
6: i ← 1
7: while i ≤ 2 do
8: if x|i ≺ y|i then
9: Sx ← Sx ∪ {y}

10: else if y|i ≺ x|i then
11: nx ← nx + 1
12: else
13: i ← i + 1
14: end if
15: end while
16: end for
17: end for

priority vector consists of two values, i.e., 1 for objective with
higher significance and 2 for the other objective. The priority
subvector for each individual is equal to the corresponding
objective function representing the number of nodes or one-
paths. The procedure to compare individuals according to a
given priority vector is described in Algorithm 2. In steps
6–13, an individual x is compared with y based on priority-
dominance. For this purpose, relation dominance is applied
to the corresponding objective functions with high priority
in x and y. Obviously, if these values are different x priority-
dominates or is priority-dominated by y. Otherwise, the
other objective is taken into account to discriminate between
individuals. In order to determine the non-domination front
for each individual, two entities are also calculated in parallel
with the comparisons. Sx represents the set of solutions
which are dominated by individual x, and nx is the number
of individuals dominating x. Thereafter, these entities can
be used for fast non-domination sorting as described in [7].

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
In order to evaluate the performance of MOB and com-

pare it with other discussed existing approaches, several
experiments are carried out on a benchmark set including 25
Boolean functions. The functions are taken from ISCAS89
[4] and LGSynth91 [29] benchmark sets with a range of input
variables from 7 to 54. MOB has been run 30 times indepen-
dently for each function. In all experiments, the population
size is set to 100 and the algorithm terminates after 1000
iterations. Similarly to EA, the probabilities of crossover
operators are set to 0.98, 0.01, and 0.01 for PMX, inversion
and reproduction, respectively. Three mutation operators
have an overall probability of 1/n, where n is the number
of variables of the BDD. The CUDD package [27] is used
for BDD representation and comparison of results with node
minimization approaches.

4.2 Performance Assessment
To evaluate the performance of the general MOB algo-

rithm, statistical studies have been performed on the final
populations for all thirty runs of each function. Complete
statistics representing the average values, the smallest and
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Table 1: Descriptive statistics for MOB

Function Inputs Outputs Min Mean Median Max
N P N P N P N P

s1196 32 31 611 2581 677.37 2922.21 675 2857 1014 4333
s1238 32 31 627 2518 707.34 2827.9 679 2806 1057 4479
s1488 14 25 373 352 396.17 365.45 402 357 464 517
s208 18 9 50 53 59.52 62.67 60 61 63 202
s27 7 4 10 16 10 16 10 16 10 16
s298 17 20 74 70 74.51 73.4 74 74 77 74
s344 24 26 104 330 104.73 331.45 104 330 110 346
s382 24 27 121 230 138.73 255.82 136 247.5 208 332
s386 13 3 109 57 114.16 64.89 113 65 133 82
s400 24 27 121 230 142.147 252.05 135 247 188 332
s444 24 27 119 230 134.95 261.88 132 258 188 340
s510 25 13 146 153 149.49 166.78 150 159 156 183
s526 24 27 116 157 128.74 164.15 129 161 147 197
s641 54 42 461 1512 533.51 1594.76 527 1593 604 1793
s713 54 42 435 1523 527.23 1647.11 517 1627 631 1936
s820 23 24 221 146 224.94 157.13 224 151 240 180
s832 23 24 220 146 224.75 158.37 225 152 235 179
alu4 14 8 564 1372 573.19 1428.55 572 1372 644 1599
clip 9 5 75 214 75 214 75 214 75 214
misex1 8 7 35 34 35.4 35.24 35 36 37 36
sao2 10 4 81 97 84.43 102.15 85 102 96 111
t481 16 1 21 841 21.94 903.31 21 841 32 1009
cordic 23 2 43 9440 49.41 20260.62 47 25797 82 34393
misex3 14 14 480 1973 545.74 2120.83 536 2056 751 3046
seq 41 35 1208 1766 1275.76 1901.32 1270 1883 1461 2301∑

6425 26041 7009.16 38288.04 6933 43462.5 8703 58230

the greatest observations of results are shown in Table 1. It
is worth mentioning that for a function with four or more
number of variables, a BDD minimal in both metrics of nodes
and paths does not exist necessarily [15]. Thus, the values
of nodes and one-paths achieved by MOB might represent
the real optimum for one or both objectives or even none of
them. Indeed, with no priority to nodes or one-paths, results
shown in Table 1 are supposed to express a good trade-off
between objectives.

In order to analyze the descriptive statistics of results
obtained by the general bi-objective MOB, we assume the
minimum found for each objective as a metric roughly esti-
mating the optimal value. Statistics of the number of nodes
(N) and one-paths (P ) shown in Table 1 demonstrate that the
average values represented by mean and median are closer to
the minimum of the number of nodes and paths rather than
the maximum values found in the whole runs. For instance,
for function s1196 mean values for the number of nodes and
one-paths are only 10.86% and 13.22% greater than their
minimum values, respectively. The worst observations of
the number of nodes and one-paths are 70.37% and 67.88%
greater than minimums found for the corresponding objec-
tives. This property in the first three statistics is especially
apparent for the functions resulting in larger BDDs in size
and number of paths. Considering the effect of maximum
number of nodes and one-paths on worsening their average
values, the discussion above reflects the fact that the final
populations are of high quality in comparison with the best
ever found values. In general, the number of nodes and paths
of the BDDs found by MOB are mostly spread over values

expressing an optimal BDD which indicates the quality of
results.

4.3 Comparison of Results
As discussed before, the number of nodes or one-paths

of BDDs resulting by the general MOB algorithm does not
represent the optimum value for each objective necessarily.
Instead, the minimum BDD, either in the number of nodes or
paths, is accessible for a single-objective method. Therefore,
in order to make a fair comparison the results of MOB with
priority to the number of nodes or one-paths are compared
with the introduced node or path minimization methods,
respectively. For this purpose, the BDDs possessing the
smallest values for the preferred objective in all 30 runs are
chosen as the results of the prioritized MOBs shown in Table
1 and Table 2.

In Table 2, the BDDs found by node minimization tech-
niques discussed in Section 2.2, sifting and SA, are compared
to the optimum BDDs obtained by MOB with priority to
the number of nodes. It can be easily concluded from the
table that the number of BDD nodes found by sifting for the
25 benchmark circuits are far away from the values returned
by the two other approaches except for a few cases. However,
sifting obtains smaller one-path counts than the compared
methods for a couple of functions that is an unintended result
of lower capability of finding the minimized BDDs. On the
other hand, SA shows high performance by achieving BDDs
with the minimum number of nodes for most of the functions.
Considering all results shown in Table 2, MOB with priority
to the number of nodes shows obviously higher quality than
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Table 2: Comparison of results with priority to the
number of nodes with existing node minimization
approaches

Function Sifting [25] SA [1] MOB
N P N P N P

s1196 642 3511 600 4079 599 3907
s1238 642 3511 600 4079 599 3909
s1488 391 551 369 582 373 407
s208 61 79 41 1867 41 1867
s27 10 17 10 17 10 16
s298 78 73 74 74 74 74
s344 104 330 104 330 104 330
s382 121 315 119 332 119 332
s386 123 70 110 65 110 58
s400 121 315 119 332 121 292
s444 161 447 119 332 119 332
s510 165 206 148 192 146 181
s526 141 368 113 207 115 189
s641 629 2164 408 2883 385 2671
s713 629 2164 408 2883 389 2617
s820 258 184 221 180 221 177
s832 258 184 221 180 221 151
alu4 804 2876 564 1430 564 1430
clip 87 326 75 275 75 214
misex1 35 39 35 39 35 36
sao2 86 97 81 130 81 111
t481 21 1009 21 1009 21 841
cordic 43 38482 43 38482 42 27329
misex3 602 2654 478 3485 478 3408
seq 2163 62587 1193 2265 1193 2259∑

8325 122559 6274 65729 6235 53228

the other two methods with respect to both metrics. The
sum of results for the whole benchmark set obtained by MOB
reveals a decrease of 2090 and 39 in the number of nodes in
comparison with sifting and SA. Moreover, MOB with prior-
ity to the number of nodes finds BDDs with noticeably lower
one-path counts for the majority of the benchmark functions.
To make a more precise comparison, the sum of the number
of one-paths in MOB is 97.36% and 19.02% smaller than
the corresponding values in sifting and SA, respectively. In-
deed, MOB with priority to the number of nodes finds better
minimized BDDs than the well known node minimization
techniques besides achieving a large reduction in the number
of one-paths.

Since the number of nodes are assumed to be of higher
importance in this experiment, finding minimal BDDs in size
is the principal goal of the MOB with priority to the number
of nodes. Nonetheless, there are three functions for which
MOB fails to find the BDD representations with minimum
number of nodes obtained by SA. For functions s1488, s400,
and s526, BDDs found by MOB have in total 8 more nodes
than the three BDDs resulted by SA. On the other hand, the
sum of one-path counts for the mentioned functions shows a
decrease of 233 compared to the total number of one-paths in
the corresponding BDDs found by SA. Considering the fact
that MOB with priority to the number of nodes is a multi-
objective algorithm, finding BDDs with a small increase in
the node counts as a fair cost of reducing the number of
paths is acceptable.

Table 3 shows the comparison of results obtained by MOB
with priority to the number of one-paths with BDDs found

Table 3: Comparison of results with priority to the
number of one-paths with existing one-path mini-
mization approaches

Function MS [15] EA [17] MOB
N P N P N P

s1196 1523 2874 1142 2508 1087 2509
s1238 1523 1874 1105 2508 1064 2509
s1488 500 369 410 352 408 352
s208 62 53 62 53 62 53
s27 13 16 11 16 10 16
s298 91 70 88 70 76 70
s344 104 330 104 330 104 330
s382 152 238 188 230 188 230
s386 158 61 121 57 113 57
s400 152 238 190 230 188 230
s444 154 243 188 230 188 230
s510 184 170 159 153 155 153
s526 153 162 138 156 138 157
s641 768 1700 911 1444 611 1447
s713 768 1700 1458 1447 616 1452
s820 310 155 250 146 230 146
s832 310 155 249 146 230 146
alu4 621 1545 597 1372 572 1372
clip 127 262 75 214 75 214
misex1 42 34 37 34 36 34
sao2 102 99 100 97 86 97
t481 35 1009 50 841 21 841
cordic 49 30093 171 8332 73 9440
misex3 946 2303 727 1976 577 1973
seq 1398 1841 1499 1744 1391 1744∑

10245 47594 10030 24684 8299 25802

by MS and EA. It can be clearly seen that results obtained
by MS are dominated by EA and MOB. Therefore, the
quality of BDDs optimized by EA and MOB are compared
in the following. According to the table, MOB has found
the minimum number of one-paths that were also found by
EA for the majority of benchmark circuits. However, for a
few functions BDDs obtained by MOB have higher one-path
counts than the corresponding BDDs by EA. For functions
s1196, s1238, s641, and s713 the BDDs found by MOB show
few increases in the numbers of one-paths while the node
counts are considerably lowered. Only the function cordic
shows a high difference between the numbers of one-paths
resulted by EA and MOB. The BDD representing cordic
found by MOB is 13% larger than the BDD resulted by EA
with respect to the number of one-paths. It is also worth
mentioning that the number of nodes in the BDD found by
MOB for the function cordic is decreased to less than half
of the nodes in the BDD found by EA. Although MOB has
almost failed to find the minimal BDD wih respect to the
significant objective for cordic, it has compensated this failure
with a fair reduction in the other objective. For function
misex3, MOB has even found a BDD noticeably smaller in
size with a lower number of one-paths compared to the BDD
obtained by EA.

The total number of one-paths obtained by MOB is al-
most equal to half of the one-paths achieved by MS with a
reduction of 18.99% in the number of nodes. In comparison
with EA, MOB shows an increase of 4.52% in the one-path
counts that is mainly caused by result of cordic. Also, MOB
has 17.26% less BDD nodes compared to EA for the whole

756



benchmark set. Although, the results obtained by MOB
are slightly worsened in the number of one-paths compared
to EA, MOB has noticeably lowered the number of BDD
nodes. In general, it is fair to say that MOB with priority
to the number of one-paths shows a high performance with
respect to both objectives in comparison with existing node
minimization techniques.

In order to have a thorough assessment on the experimental
results, multiplication of the number of nodes and one-paths
is considered as a metric representing the quality of BDDs. In
fact, a lower Node-One-Path-product (NOP) means a better
trade-off between both optimization criteria. The values of
NOPs obtained by all types of MOB and the other methods
are shown in Table 4. According to the table, the general
MOB with no priority has achieved the minimum sum of
all NOP values among all other approaches that reveals its
high performance as a multi-objective technique. The sum
of NOP values of the general MOB is decreased to 92.78%,
27.02%, 43.84%, and 32.28% of the corresponding values in
sifting, SA, MS, and EA, respectively. Moreover, the two
other versions of MOB have also considerable lower NOP
sums than that of node or path minimization methods. In
other words, priority based MOB types find a good trade-off
that is usually the minimal BDD with respect to the objective
of higher importance besides reducing the value of the other
objective. To evaluate the effect of priority on MOB, sum of
results with priority to nodes and one-paths are respectively
compared to the sum of median values of nodes and one-paths
obtained by the general MOB. The integration of results
shown in Tables 1, 2, and 3 describes that after applying
priority to the number of nodes and one-paths, MOB has
achieved 10.06% and 40.63% less BDD nodes and one-paths
than the general MOB. Since one-path counts are spread over
a larger range than nodes, results of MOB with priority to the
number of one-paths show higher level of BDD abstraction
in respect to one-paths. In general, incorporating priority
with MOB has improved the performance of the algorithm
with respect to the user preferred objective in addition to
preserving favorable multi-objective features.

5. CONCLUSION
Since many applications in electronic design automation

and formal verification successfully use BDDs, their opti-
mization is of high interest. The existing BDD optimization
approaches either target the number of nodes or the number
of paths. In this paper, we have proposed a bi-objective evolu-
tionary algorithm to find minimal BDDs in both cost metrics.
The proposed approach also benefits from an objective prior-
ity facility allowing the user to give higher importance to one
of the optimization criteria according to the application’s
requirements. Experimental results show that the multi-
objective BDD optimization approach is able to find more
compact BDDs considering both objectives in comparison
with the existing BDD optimization methods.
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