
Simulation Graphs for Reverse Engineering
Mathias Soeken1,2,4 Baruch Sterin3 Rolf Drechsler2,4 Robert Brayton3

1 Faculty of Engineering, University of Freiburg, Freiburg, Germany
2 Faculty of Mathematics and Computer Science, University of Bremen, Germany

3 Electrical Engineering and Computer Sciences, UC Berkeley, CA, USA
4 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

{msoeken,drechsle}@cs.uni-bremen.de {sterin,brayton}@berkeley.edu

Abstract—Reverse engineering is the extraction of word level
information from a gate-level netlist. It has applications in formal
verification, hardware trust, information recovery, and general
technology mapping. A preprocessing step finds blocks in a circuit
in which word level components are expected. A second step
searches for word level components in these blocks. For this
second step, we propose two variants of equivalence checking
that consider subfunction containment. We propose algorithms to
solve these variants by using subgraph isomorphism. A simulation
graph (SG) is constructed for the block and for each library
component, using a set of permutation-invariant simulation
vectors for that component. If a library component SG is a
subgraph of the block SG, we have a candidate match, which
is then checked by standard equivalence checking. We extend a
state-of-the-art subgraph isomorphism algorithm, LAD, to handle
simulation graphs efficiently and also propose a SAT-based
formulation. Experimental evaluations show that our algorithms
can efficiently find 32-bit arithmetic components in blocks with
over 300 primary inputs.

I. INTRODUCTION

The problem of reverse engineering (RE) is, given a gate-
level netlist, find a word level netlist description which has
the same behavior. It can be seen as a generalized technology
mapping problem in the following sense. An instance would
be to start with a gate-level circuit and a list of word level
components, called a library, which contains components such
as adders, multipliers, shifters, and other word level components
of various bit widths. The goal is to find occurrences of these
components in the circuit. While there are many objective
functions to be optimized in regular technology mapping, e.g.,
area, delay, power, clause count in a conjunctive normal form
(CNF), and wire count, in RE the single objective is to find
all the word level components in the circuit.

RE is of interest for a number of reasons:
1) A register transfer level description (RTL) may not be

available; the design may be a legacy without an initial
RTL; it may be that an AIG is being passed between
various tools with no accompanying RTL, it may have
come from bit blasting an RTL and synthesizing it at the
bit level.

2) To create a word level description to enable and improve
formal verification or synthesis.

3) To understand the structure of an unknown chip.
4) To analyze a chip to help isolate Trojan hardware.

In general, RE is very difficult, but there are many circum-
stances where the problem is made simpler. The goal of our
research is to create set of algorithms that are as efficient as

possible and to extend the range of situations where RE is
feasible.

RE methodologies typically consist of two main parts: (i)
a structural method that decomposes the gate-level circuit
into blocks and (ii) a functional method to match sub-circuits
of a block with components from a library, assuming that a
block’s inputs and outputs contain the inputs and outputs of
any component to be found.

In this work, we propose an algorithm that targets the second
part. Given a block in a circuit and a library, our algorithm
finds sub-circuits, called candidates, in the block that have the
same simulation behavior, modulo a selected set of simulation
vectors, as the component. For this purpose, simulation graphs
(SGs) of the blocks are created and subgraph isomorphism is
applied to match a SG of a component in the library. Once
such a candidate has been found it is checked if it is indeed a
component using standard combinational equivalence checking.
Thus our entire matching algorithm is functional and not
structural.

The contributions of this paper are as follows:
1) The problem of finding components in a block of logic

is reduced to the subgraph isomorphism problem.
2) An efficient LAD-based subgraph isomorphism algorithm

is developed to find matches of component candidates to
subgraphs of the block. The requirement that the compo-
nent outputs be exactly on the block output boundary is
relaxed.

3) A symbolic SAT-based subgraph isomorphism algorithm
is discussed that is capable of detecting candidates in
the presence of inverters at the inputs and outputs in the
block.

4) An open source framework is provided with implemen-
tations of all algorithms to reproduce the experimental
evaluations.

The paper is organized as follows. Relevant definitions and
related literature are provided in Sects. II and III, respectively.
Sect. IV provides two problem formulations that generalize
equivalence checking and discusses how they arise in practice.
Sect. V discusses solving such problems by a reduction to
subgraph isomorphism of simulation graphs and Sects. VI
and VII present implementations based on LAD and SAT,
respectively. Sect. VIII discusses an extension that relaxes the
assumption that the component’s outputs must be contained in
the block’s outputs. Sect. IX presents experimental results.
Finally Sect. X concludes, outlines many future research
directions.

II. PRELIMINARIES

General notation and graphs: The notation [n] is a shorthand
for the set {1, . . . , n}. A digraph G = (V,A) consists of a
set of vertices V and arcs A ⊆ V × V . Each vertex v ∈ V
has an in-degree d−(v) = #{w ∈ V | (w, v) ∈ A} and
out-degree d+(v) = #{w ∈ V | (v, w) ∈ A}. A digraph is
called k-partite if V can be partitioned into disjoint vertex sets
V1, . . . , Vk such that there exists no arc (v, w) ∈ A and no
i ∈ [k] such that v, w ∈ Vi. A k-partite digraph is called k-
layered if A ⊆

⋃k−1
i=1 Vi×Vi+1, i.e., arcs only connect adjacent

vertex sets.
A vertex-labeled graph also has a set of labels L and a

labeling function l : V → L. A labeled subgraph isomorphism
from G′ = (V ′, A′) with labeling function l′ to G = (V,A)
with labeling function l is an injective function µ : V ′ ↪→ V
such that (u, v) ∈ A′ ⇔ (µ(u), µ(v)) ∈ A and l(u) = l′(µ(u))
for all u ∈ V ′.

Functions: An n-input m-output Boolean function is an
m-tuple of Boolean functions over the variables x1, . . . , xn. A
Boolean combinational circuit is associated with the function
it computes. We will refer to a circuit and the function it
computes interchangeably.

Definition 1 (Embedding): An n′-input m′-output Boolean
function f ′ is embedded in an n-input m-output Boolean
function f if (1) there is an injective input-matching function
π : [n′] ↪→ [n], (2) there is an injective output-matching
function σ : [m′] ↪→ [m] such that fσ(j)(x1, . . . , xn) =
f ′j(xπ(1), . . . , xπ(n′)), for all j ∈ [m′] and x1 . . . , xn.

Definition 2 (Simulation vector): A simulation vector for a
circuit with n inputs is a bitstring of size n. If (s1, . . . , sn) is
a simulation vector, then (f1(s1, . . . , sn), . . . , fm(s1, . . . , sn))
is the output of a simulation vector. The simulation vector
is called k-hot encoded if exactly k bits are set to one and
it is called k-cold if exactly k bits are set to zero. Let Shot

n,k

and Scold
n,k be the sets of all k-hot and all k-cold simulation

vectors, respectively. Note that #Shot
n,k = #Scold

n,k =
(
n
k

)
and

Shot
n,k = Scold

n,n−k.
We also extend the input-matching function from Definition 1

to simulation vectors by padding with zeros where π does not
map any inputs of f ′, i.e., mapping k-hot vectors of length n′

to k-hot vectors of length n.
Definition 3: Let π : [n′] ↪→ [n] be an input-matching

function as above, and let s′ be a simulation vector of f ′. We
define π(s′) by

π(s′)j :=

{
s′i j = π(i), for some i
0 (otherwise).

III. RELATED WORK

According to [1] the two main steps to solve a reverse
engineering problem are: (1) block identification and (2)
matching blocks against components in a library. A component
is assumed to be inside a block with its inputs and outputs
being contained in the primary inputs and primary outputs
of the block. Blocks may contain multiple components and
additional logic.

First preliminary approaches have been presented for the
first step in [2], [3], however, this step is still considered an

open problem with no satisfactory solution proposed so far.
One way to circumvent this problem is to have a variety of
block matching algorithms for the second step, thereby relaxing
the constraints on the blocks. Different approaches for Step 2
make different assumptions on the blocks that are identified by
Step 1. Since inputs and outputs of the component are assumed
to be primary inputs and primary outputs of the block, all
approaches are generalizations of equivalence checking.

In [4], [5], [6], [7], it is assumed that the block neither
contains additional logic nor additional inputs and outputs,
however, the order of inputs and outputs is unknown. More
formally, given two n-input m-output Boolean functions f ′ and
f , the permutation-independent equivalence checking (PIEC)
problem asks whether f ′ is embedded (as in Definition 1) in
f .

In [8] primary inputs of the block are partitioned into
control bits c1, . . . , ck, and data bits x1, . . . , xn. The order
of inputs and outputs is unknown, as well as the values
of the control bits that will cause the same functional
behavior as that of the component. More formally, given
two functions f(c1, . . . , ck, x1, . . . , xn) = (f1, . . . , fm) and
f ′(x1, . . . , xn) = (f ′1, . . . , f

′
m), the permutation-independent

conditional equivalence checking (PICEC) problem asks
whether there exist two permutations π ∈ Sn and σ ∈ Sm
and a propositional function ψ : [k] → B such that for all
x1, . . . , xn and all j ∈ [m]

fj(ψ(1), .., ψ(k), x1, . . . , xn) = f ′σ(j)(xπ(1), .., xπ(n)) (1)

IV. PROBLEM FORMULATION AND MOTIVATION

1) Problem formulation: We address two problems in this
work, called the subset permutation-independent equivalence
checking (SPIEC) and the subset negation-and-permutation-
independent equivalence checking (SNPIEC). SPIEC asks whe-
ther a smaller function is embedded into a larger one when no
input and output correspondence is known. SNPIEC extends
the problem and allows inputs and outputs of the larger function
to be negated.

The input to the SPIEC problem is an n′-input m′-output
Boolean function f ′ and an n-input m-output Boolean function
f . The problem asks whether f ′ is embedded in f .

The input to the SNPIEC problem is an n′-input m′-output
Boolean function f ′ and an n-input m-output Boolean function
f . The problem asks whether there exist two propositional
functions

p : [n]→ B and q : [m]→ B

such that f ′ is embedded in the function h defined by

hj(x1, . . . , xn) = q(j)⊕ f(p(1)⊕ x1, . . . , p(n)⊕ xn),

i.e., the function h is f whose i-th input is inverted if p(i) = 1
and j-th output is inverted if q(j) = 1. The SNPIEC problem
detects a subfunction in a block in the presence of misplaced
inverters at the primary inputs and outputs of the block.

2) Motivation: We exploit in our algorithms the fact that
many components of interest can have a uniquely characteristic
input/output behavior even for a small set of simulation vectors.

As an example, let f : B2n → Bn+1 be the function of
an n-bit adder for which unknown permutations have been

0001

0010

0100

1000

0011

0101

0110

1001

1010

1100

y1

y2

y3

x1

x2

x3

x4

Fig. 1. A Simulation graph of a 2-bit adder. Simulation nodes are annotated
with the simulation vector associated with it for convenience.

applied to the inputs and outputs. All one-hot and all two-hot
simulation vectors are sufficient to find these permutations
using the following arguments. From addition with 0, we know
there are one-hot simulation vectors s and s′, s 6= s′, with
si = 1 and s′j = 1, such that f(s) = f(s′) = y is also one-
hot with yk = 1. Therefore, i, j, and k refer to the same
bit position p in the operands and the output of the adder. To
determine the next position p+1, the two-hot simulation vector
s | s′ (‘|’ refers to bitwise OR) yields a one-hot output value
y′ = f(s | s′) with y′l = 1. Therefore, l = p+ 1.

Note that since binary addition is bit-wise commutative, i.e.,
ai and bi for any i can be swapped without changing the result
a+ b; we cannot uniquely determine the partition of input bits
into a left-hand operand and a right-hand operand. For other
components, such as a multiplier, a different set of simulation
vectors is needed. Additionally each component would have its
own sequence of deductions for determining the permutations.
Therefore, we seek a method that does not depend on the type
of component to be found.

V. REDUCTION TO SUBGRAPH ISOMORPHISM

This section describes how to find components in blocks by
reducing it to a labeled subgraph isomorphism problem. The
key to our approach is the concept of a simulation graph (SG),
which captures the behavior of a circuit on a set of simulation
vectors.

Definition 4 (Simulation Graph): Let f be an n-input m-
output Boolean function and let S = {s(1), . . . , s(t)} be a set
of simulation vectors for f . The simulation graph GSf is a
3-layered vertex-labeled directed graph G = (X ∪S ∪ Y,A1 ∪
A2) where (1) X = {x1, . . . , xn}, (2) Y = {f1, . . . , fm},
(3) (xi, s

(j)) ∈ A1 ⇔ s
(j)
i = 1, and (4) (s(j), fr) ∈ A2 ⇔

fr(s
(j)) = 1. Labeling is defined by (1) L = {PI,PO} ∪ N,

(2) l(xi) = PI, (3) l(fr) = PO, and (4) l(s(j)) = number of
1s in s(j).

In other words, in an SG, a simulation vector is connected to
the inputs that are 1 on it, and to the outputs where it produces
a 1. The labels denote the types of node in the graph, inputs,
outputs, and the number of ones in a simulation vector.

Example 1: Fig. 1 shows an SG for a 2-bit adder. It has
four vertices for the inputs and three vertices for the outputs.
Simulation vectors used are all the one-hot and two-hot vectors,
resulting in 10 vertices for the simulation vectors. Nodes in

the figure are annotated for readability and are not the labels
used in the algorithm.

For the remainder of this section, f is an n-input m-
output Boolean function, f ′ is an n′-input and m′-output
Boolean function, K ⊆ {0, . . . , n′}, S =

⋃
k∈K S

h
n,k and

S′ =
⋃
k∈K S

h
n′,k. Let GS

′

f ′ denote the SG for f ′ using S′ and
let GSf denote the SG for f using S. We chose these sets of
simulation vectors because of the following property.

Proposition 1: For all K ⊆ {0, . . . , n} the set
⋃
k∈K S

h
n,k

is closed under permutations of the order of the inputs.
Theorem 1: If f ′ is embedded in f , then there exists a

labeled subgraph isomorphism from GS
′

f ′ to GSf .
Proof: We can use the input and output matching functions

of the embedding π and σ to construct a mapping µ from GS
′

f ′

to GSf :

1) µ(x′i) := xπ(i),
2) µ(f ′r) := fσ(r),
3) µ(s′(j)) := π(s′(j)).

Note that s′(j) is a k-hot vector if and only if π(s′(j)) is
k-hot. Since S is closed under permutation, π(s′(j)) is a
simulation vector node in GSf . This mapping preserves the
labeling because it maps inputs to inputs, outputs to outputs,
and k-hot simulation vectors to k-hot simulation vectors. To
show that µ is a subgraph isomorphism observe that

1) (x′i, s
′(j)) ∈ A′1 ⇔ (s′(j))i = 1 ⇔ µ(s′(j))π(i) = 1 ⇔

(µ(x′i), µ(s
′(j))) ∈ A1, and

2) (s′(j), f ′r) ∈ A′2 ⇔ f ′r(s
′(j)) = 1 ⇔ fσ(r)(µ(s

′(j))) = 1
⇔ (µ(s′(j)), µ(f ′r)) ∈ A2

Because a simulation graph is constructed using only a small
subset of all possible simulation vectors, the converse does not
hold. Instead we can just state the obvious result that if there
is a labeled subgraph isomorphism from GS

′

f ′ to GSf , then f
has a subset of inputs and outputs, that behaves like f ′ on the
set of vectors used to construct the simulation graphs.

The existence of a subgraph isomorphism as stated in
Theorem 1 depends on the set of simulation vectors used being
closed under permutation. Consequently, a single simulation
vector can only be supported by the proposed approach if all
its permutations are considered.

Finding candidate components: Theorem 1 supports an
algorithm for finding candidate components in the block. Using
the same types of k-hot simulation vectors, we construct a
simulation graph for the block, called the target graph, and a
simulation graph for the component, called the pattern graph. If
there is a labeled subgraph isomorphism from the pattern graph
to the target graph, the mapping of inputs and outputs of the
pattern graph can be used to extract a subcircuit of the target
graph for use as a candidate for equivalence checking (CEC).
If no labeled subgraph isomorphism is found, we conclude
from Theorem 1 that the component is not embedded in the
block. Note that the subgraph isomorphism problem is NP-
complete [9].

Candidate quality: The quality of the candidate, or the
likelihood that a candidate is definitely the component, depends
on the set of simulation vectors used to construct the simulation
graphs.

For example, using just the 0-hot vector, almost guarantees
a false positive, and on the adder example, using just the 1-hot
vectors does not differentiate between the MSB and LSB.

For each component we can use a simple criteria to judge the
quality of candidate sub-blocks generated when using a specific
set of simulation vectors; if component f ′ has its inputs and
outputs permuted to create f , does any candidate isomorphism
between the corresponding SGs derived from the simulation
set, provide a correct matching of the inputs, up to symmetries
in f ′.

Note that only the matching of the inputs is mentioned. Once
the inputs are matched correctly, it becomes easy to match the
outputs using random simulation or formal techniques.
k-cold Simulation vectors: The quality of a candidates is

likely to be higher if more simulation vectors are used. However,
because of the sheer number of k-hot vectors, it becomes
impractical to construct the graph beyond 2-hot simulation
vectors.

It is tempting to also use n-hot, (n′− 1)-hot or (n′− 2)-hot
simulation vectors, but if n > n′, the size of the target graph
may still be very large.

For example, if n′ = 10 and n = 100, the number of
(n′ − 1) = 9-hot simulation vectors is just

(
10
9

)
= 9, but at the

block it is
(
100
9

)
which is impractically huge.

A simple alternative is to use k-cold vectors. We can
generalize the definition of a simulation graph to allow k-
cold vectors. An input vertex will be connected to a k-cold
vector if the input is 0 on that vector. A k-cold label on the
vectors is used to distinguish them from k-hot vectors.

For simplicity, in this paper we only formally defined and
proved results for the k-hot vectors.

Our experimental results demonstrate that 1-hot, 2-hot, and
0-cold simulation vectors were enough to detect many common
components, with the exception of multipliers for which 2-hot,
0-cold, and 1-cold simulation vectors were needed.

VI. LAD-BASED APPROACH

This section describes an algorithm to solve SPIEC that
checks for subgraph isomorphism in SGs using a state-of-the-
art algorithm LAD [10], [11]. LAD works on general graphs
and does not take the special structure of SGs into account. It
is implemented in terms of a constraint satisfaction framework
which starts by assigning each vertex u ∈ VP a domain Du ⊆
VT that contains possible candidates for node matching. These
domains are refined in the search process using several filtering
techniques until either inconsistencies are found, indicated by
an empty domain, or no further refinement is possible.

To speed up the search process, it is important to keep
the sizes of the domains small at each step. There are two
possibilities to reduce the sizes: (i) when initializing the
problem and (ii) by using implications during the search process.
The latter is more difficult to implement. LAD offers two
methods to decrease the domains initially. First, the in-degree
d−(u) and out-degree d+(u) of a vertex u in the pattern graph
cannot exceed the in-degree and out-degree of vertices in the
target graph. LAD also supports labeled subgraph isomorphism

using a labeling function l. Based on these observations the
initial domain for a vertex u ∈ VP is

Du = {v ∈ VT | d−(v) ≥ d−(u) ∧ d+(v) ≥ d+(u)}
∩ {v ∈ VT | l(v) = l(u)}. (2)

Extending LAD-based subgraph isomorphism: We restrict
the domains further by extracting information from the un-
derlying circuits of the SGs. Given a circuit and a primary
output u we define supps(u) to be the structural support of
u, i.e., the set of primary inputs that are reachable from the
outputs in a backwards traversal of the circuit starting at u.
The functional support of u, denoted supp(u), is the set of
primary inputs on which the function represented by u depends.
Clearly supp(u) ⊆ supps(u), i.e., the structural support over-
approximates the functional support. Matching output vertices
must have the same functional support size and therefore the
following constraint is added to Eq. (2) for all u ∈ YP :

Du = . . . ∩ {v ∈ YT | #supp(v) = # supp(u)} (3)

If computing the functional support for the target circuit is too
inefficient, one can also use the structural support for a weaker
constraint, i.e.,

Du = . . . ∩ {v ∈ YT | #supps(v) ≥ #supp(u)}. (4)

These constraints only take the size of the support into
account but not the actual inputs in the support. If the functional
support is computed, one can add additional so-called support
arcs (xi, ur) to the simulation graph, if and only if xi ∈
supp(ur). The experimental evaluation will show that these
arcs can lead to an improvement of the run-time.

Further improvement can be achieved by making use
of simulation signatures. There are

(
n
k

)
k-hot and k-cold

simulation vectors for circuits with n primary inputs. While
simulation can be performed efficiently for small k, their
explicit representation as vertices in the SG causes a significant
degradation in the run-time for subgraph isomorphism. It
is therefore of interest to only include the most effective
simulation vectors for SGs. But simulation results of other
simulation vectors can still be used in other ways.

We compute for each output u a simulation signature, which
in our experiments, is a tuple containing the number of 0,1,2-
hot, and 0,1,2-cold simulation vectors that drive u to 1. More
formally, the simulation signature of an output u in a circuit
with n primary inputs is a tuple of values

sign,k(u) = #{x ∈ Shot
n,k | u(x) = 1}

The definitions are analogous for k-cold simulation vectors.
This requires a notion of signature compatibility. Two

simulation signatures of a target output u ∈ YT and u′ ∈ YP
are compatible, denoted sigcomp(u, u′), if and only if for all
values in the tuple

sign,k(u) =

k∑
i=0

(
n− n′

i

)
· sign′,k−i(u

′) (5)

holds. As one instance of this equation, we have

sign,1(u) = sign′,1(u
′) + (n− n′) · sign′,0(u),

Target
circuit

0

p1x1

1

p2x2

1
p3x3

0

p4x4

0

p5x5

q1

q2

q3

q4

ej1 = [s(j) −→ f1]

ej2 = [s(j) −→ f2]

ej3 = [s(j) −→ f3]

ej4 = [s(j) −→ f4]

Fig. 2. Handling inverters in SAT-based subgraph isomorphism (circuit
construction for simulation vector 00110)

i.e., the size of the on-set for one-hot encoded simulation
vectors in the target graph, is the sum of sign′,1(u

′) (consider-
ing the ‘1’ is assigned to one of the n′ matching inputs) and
(n− n′) sign′,0(u) (considering the ‘1’ is assigned to one of
the n− n′ non-matching inputs).

Simulation signatures further restrict the domains:

Du = . . . ∩ {v ∈ YT | sigcomp(u, v)} (6)

VII. SAT-BASED APPROACH

We introduce a SAT-based subgraph isomorphism based on
the formulation given in [12] mainly for two reasons. First,
to show the dominance of the LAD-based approach in terms
of scalability (see experimental results in Sect. IX). Second,
a symbolic representation of SGs makes it easier to solve the
SNPIEC problem (where possible inverters are at the inputs
and outputs). The presence of possible inverters affects the
target graph such that it cannot be represented explicitly, which
precludes application of the LAD-based approach.

The formulation as a SAT instance is inspired by the
formulations described in [12], [13], [14]. The SAT formulation
includes the same optimization techniques (blocking using
labels, structural, functional support, support arcs, and simula-
tion signatures) and additionally exploits symmetry breaking
based on input symmetries. Our LAD algorithm does not
consider the latter because it is more complicated and requires
several nontrivial changes throughout the whole algorithm. Due
to space limitations, we only focus on the extension of the
formulation to solve SNPIEC problems.

SAT based formulation of SNPIEC: If inverters are possibly
present at inputs and outputs (SNPIEC problem) in the target
circuit, simulation results are changed and therefore also
the target graph. This seems to prohibit the application of
subgraph isomorphism algorithms to find candidate components.
However, a SAT based formulation can be made for SNPIEC.

The presence of inverters at inputs and outputs changes the
function values of the target circuits and causes arcs between
simulation vectors in ST and outputs in YT in the target graph,
which cannot be determined explicitly. To formulate SNPIEC
the presence of arcs must be determined symbolically based
on additional polarity variables p1, . . . , pn and q1, . . . , qm with
n = #XT and m = #YT . One way to determine the polarity
variables is to construct a circuit for each simulation vector as
illustrated in Fig. 2 that contains variables ejr which represent
an arc between simulation vertex s(j) and output fr in the target
graph. In this case there are 5 inputs and 4 outputs and the
simulation vector is 00110. As can be seen, the input vertices
and simulation vector vertices can be connected explicitly. For
each input and output of the target circuit, an XOR gate is

x1 x2 x3 x4 x5

f1 f2

(a)

x1 x2 x3 x4 x5

f1 f2

t1

t2

t3

(b)

x1 x2 x3 x4 x5

f1 f2t1 t2

t3

t4

t6t5
t7

t8

(c)

Fig. 3. Output feathering: (a) original circuit, (b) feathering with respecting
edge polarities, and (c) feathering all polarities. Dashed edges are inverterd.

added that is controlled by a polarity variable. Besides the
polarity variables, inputs to the XOR gates are the simulation
bits and the original outputs. The new outputs of the circuit
are the symbolic values for ejr. This circuit is copied for
each simulation vector, which results in a very large circuit
with m + n primary inputs (the polarity variables) and m ·
#ST primary outputs (the number of ejr variables). This
large circuit is transformed into a CNF formula and added
to the SAT formulation. In order to get a smaller formula,
we optimized the circuit in our experiments using ABC [15]
before translating it into a CNF. However, this approach is not
tractable (experiments showed reasonable runtimes only for
small instances) and further research is needed if motivated.

VIII. RELAXING THE CONSTRAINTS OF BLOCK
IDENTIFICATION

All discussed generalized equivalence checking problems
assume that the primary inputs and primary outputs of the
component f ′ are also primary inputs and primary outputs of
the block f . Relaxing this assumption can help in the block
identification problem. We propose a technique called output
feathering as a preprocessing step to a SPIEC solver for this.
Note that output feathering exploits the subset relation in the
problem definition of SPIEC and is therefore not applicable
to the other block matching algorithms that were described in
Sect. III.

Output feathering first levelizes the circuit—in our case an
AIG—and then creates outputs for each node in the k topmost
levels. We allow two modes of output feathering. The first
creates outputs according to the polarities of outgoing edges
whereas the second mode creates an output and its negation
for each node. Fig. 3 illustrates output feathering and both
modes. This is practical because our SG based method is quite
insensitive to the number of outputs of the block.

IX. EXPERIMENTAL EVALUATION

We implemented the approaches, discussed in this paper,
in C++ and present our evaluations in this section.1 We
implemented a tool (part of the above mentioned source code)
that generates gate-level circuits meeting the assumptions on the
blocks our algorithm expects from block identification. The tool
randomly chooses from multiple arithmetic components in a

1The implementation is called ‘find_subcircuit.’ The source code
and all benchmarks are available at
http://www.informatik.uni-bremen.de/~msoeken/
revenge-1.0.tar.gz.

1000

2000

3000
‘+’

1000

2000

3000
TO‘∗’ ‘−’

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1000

2000

3000
TO‘�’

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

TO TO TO‘�’

Name Operations #X #Y #S FS

c1-32 ∗2 � 160 192 12881 1.37
c2-32 +2 ∗ � −2 288 290 41617 556.83
c3-32 + ∗ � 96 161 4657 2.04
c4-32 �2 − 224 192 25201 5.19
c5-32 + ∗ � − 256 193 32897 206.47
c6-32 + �3� −2 320 257 51361 637.99
c7-32 + � − 128 129 8257 3.15
c8-32 � 64 96 2081 0.25
c9-32 + ∗ �2 −2 320 257 51361 652.01
c10-32 + � 320 193 51361 167.08

Fig. 4. Experimental evaluation for the LAD-based approach. For each circuit and for each component, the seven bars (shown from left to right) represent the
LAD algorithm with different sets of enhancements: (i) default LAD, (ii) structural support, (iii) structural support + simulation signatures, (iv) functional
support, (v) functional support + simulation signatures, (vi) functional support + support arcs, and (vii) functional support + support arcs + simulation signatures

library as well as additional components not in the library (e.g.,
wide AND and OR gates) to create “noise” in the circuit. Then,
inputs are randomly added and connected to the components;
components may share common inputs; there may be several
instances of the same component. The library used in the
experiments consisted of an adder (+), multiplier (∗), left-
shifter (�), right-shifter (�), and a subtracter (−). These
were mapped to gate level circuits for different bit widths.
The experiments were carried out on an Intel Xeon processor
with 2.4 GHz, 64 GB RAM, running Linux 3.17. Run-times
are given in seconds with a timeout (TO) of 3600 seconds.
The sets of experiments done, (i) show that the LAD-based
approach is efficient for solving SPIEC problems, (ii) compare
the LAD-based approach to the SAT-based approach, (iii) show
how the SAT-based approach scales for SNPIEC problems, and
(iv) use our approach to solve PICEC problems and compare
with the state-of-the-art.

LAD-based approach: The results are listed in Fig. 4. The
table in the top right lists properties of the 10 circuits used in
the experiments. The first column lists the identifier of each
circuit (c1 – c10). Each circuit in the library has 32-bit primary
inputs. The second column lists which arithmetic operations

are contained in the circuit and superscripts denote the number
of instances of the operator. If no superscript is specified,
it occurs only once. The columns #X , #Y , and #S give
the numbers of inputs, outputs, and simulation vectors of the
target graph. The sum of these three numbers is the number of
nodes in the target graph. For the experiments, we used all-hot,
one-hot, and two-hot simulation vectors for all components
except the multiplier, for which we used one-cold instead of
one-hot simulation vectors, since multiplication by 0 creates no
arcs between simulation vertices and output vertices. We used
the ABC [15] command ‘print_supp’ which uses a simple
method to compute the functional support. The run-time to
compute the functional support is given in column FS. These
numbers can be improved considerably, however, note that the
functional support needs to be computed only once for each
circuit.

The rest of the figure consists of blocks of plots for each
component in the library. The component being matched is
illustrated by its operator symbol in the top left corner. Each
block of plots is separated into 10 compartments, one for each
circuit, and each compartment has seven bars that show the
run-times respectively for the following configurations of the

LAD-based approach, from left to right:
(i) A modification of the original LAD approach for subgraph

isomorphism from [10]. This implementation considers
domain constraints for vertex degrees and vertex labels
as described in Eq. (2), referred to as LAD.2

(ii) LAD with structural support for domain constraints (see
Eq. (4)), referred to as LADs.

(iii) LADs + simulation signatures.
(iv) LAD with functional support for domain constraints (see

Eq. (3)), referred to as LADf.
(v) LADf + simulation signatures.

(vi) LADf + support arcs.
(vii) LADf + support arcs + simulation signatures.

Note that the approaches only find a candidate mapping
but do not perform the final CEC equivalence checks. We
performed these checks separately using the ABC command
‘iprove’ and did not add the run-times to the values in
the plots. In fact, for all operations except the multiplier, the
equivalence checks could be performed in less than a second.
As equivalence checking multipliers is known to be a hard
problem, we manually validated the correctness of the computed
mapping based on the port names. All matchings determined by
the algorithms were correct, but during the initial evaluations,
we experienced several wrong matchings for the multiplier,
which were resolved once we added the one-cold simulation
vectors. This demonstrates that an appropriate set of types of
simulation vectors must be chosen individually per component.

The main observations on the experimental results are:
1) When incorporating the support, the run-time is signifi-

cantly better; in some cases LADs and LADf can find a
matching within a few seconds while LAD does not find a
solution within one hour (see, e.g., ‘c6-32’ and ‘c9-32’).

2) In the SPIEC problem, a left-shifter is equivalent to a
right-shifter because a� b = (aR � b)R where aR is the
reverse of a. This symmetry is evident in the run-times of
LADs and LADf since run-times are not affected by which
component is sought. However, in the LAD approach the
run-times diverge significantly in some cases (see, e.g.,
‘c5-32’ and ‘c7-32’).

3) The best performance is achieved for functional support
with support arcs and simulation signatures. Often, the
support arcs don’t make a difference. Also, if neither
support arcs nor simulation signatures are used, the
difference between structural and function support based
domain restriction is marginal.

4) Generally run-times were significantly better when the
component was not present (see, e.g., the 32-bit circuits
for adders, multipliers, and subtracters).

5) Subtracters and adders are only hard to find if they occur
more than once in the block.

SAT-based approach for SPIEC: We scaled down the circuits
of the previous experiment to 8 bits and ran the SAT-based

2The run-time of our LAD implementation is significantly better compared
to the original since we replaced an expensive recursive procedure that stores
data on a stack by one that stores data on a heap. Further, by using our own
implementation, we avoid writing the SGs to temporary files and can work
directly on the data structure. Since the improved algorithm is based on this
implementation, the comparison of LAD to LADs and LADf, is more fair.

TABLE I
EXPERIMENTAL EVALUATION FOR THE SAT-BASED APPROACH TO SOLVE

SPIEC

Name Operations + ∗ � � −

SAT LADs SAT LADs SAT LADs SAT LADs SAT LADs

c1-8 ∗2 � 7.2 0.0 8.6 0.2 8.6 0.0 7.9 0.0 7.6 0.0
c2-8 +2 ∗ � −2 83.6 0.3 89.8 1.2 89.8 0.7 75.3 0.8 87.4 0.3
c3-8 + ∗ � 1.8 0.0 1.9 0.1 1.9 0.0 1.6 0.0 1.7 0.0
c4-8 �2 − 22.7 0.0 22.2 0.0 22.2 0.3 29.5 0.3 30.3 0.0
c5-8 + ∗ � − 48.3 0.0 52.3 0.7 52.3 0.4 46.6 0.4 50.3 0.0
c6-8 + �3� −2 123.5 0.0 134.9 0.0 134.9 0.8 131.7 0.8 134.6 0.5
c7-8 + � − 4.0 0.0 4.2 0.0 4.2 0.1 3.8 0.1 4.3 0.0
c8-8 � 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0
c9-8 + ∗ �2 −2 123.3 0.0 155.2 1.3 155.2 0.9 131.8 0.9 134.5 0.4
c10-8 + � 120.8 0.0 93.5 0.0 93.5 0.1 117.6 0.1 99.0 0.0

approach mentioned in Sect. VII using MiniSAT [16] as the
back-end solver, referred to as SAT in the following. Table I lists
the results of comparing SAT with LADs. Since the instances
become extremely large (the number of variables to formalize
µS is of order O(|XP |4)), a long run-time is already spent on
creating the instance; the solving time makes up approximately
25%. Note that the run-times of the LADs approach can be
several orders of magnitude faster, e.g., ‘c6’ and ‘c9’. Also the
run time of SAT seems to be almost independent of whether
the component is contained in the block or not, but is highly
correlated with the number of nodes in the SG. Incremental
SAT techniques (e.g., with activation literals) may improve the
run-times since many considered instances are similar.

SAT-based approach for SNPIEC: We tried to evaluate the
SAT-based approach to solve SNPIEC, denoted SATn, for all
circuits of bit width 8; however, no results were obtained within
the timeout. The approach is not yet tractable and further
research is needed if it turns out that SNPIEC problems occur
frequently in RE. One possible direction for future research is
the exploitation of exists-forall SAT solvers (see, e.g., [17]) as
they are used to solve the PICEC problem in [8].

Comparison to PICEC: In [8], the PICEC problem was
solved using a SAT-based method. The input of the problem
is partitioned into control and data bits and the aim is to find
an assignment of the control bits and a permutation of the
data bits. When the number of control bits is small, one can
solve such a PICEC problem as a sequence of SPIEC problems
by enumerating all control bit assignments, propagating them
through the circuit, and stopping once a match has been found.
We performed this experiment based on LADs on satisfying
instances reported in [8] and compared the results with the
approach described in [8] with preprocessing, signatures, and
Yices [18] as the back-end solver, called PICEC in the following.

TABLE II
SOLVING PICEC WITH SPIEC

Name #PI #PO #C + ∗ − ≡ <

LADs PICEC LADs PICEC LADs PICEC LADs PICEC LADs PICEC
mul8 16 8 0 1.7 1.9
mul16 32 16 0 TO N/A
simple_alu 64 32 2 6.9 361.3 1.4 182.2
full_alu 64 32 4 55.4 N/A
fake2670 133 1 5 0.7 0.1 0.1 0.5
c3540 16 22 34 TO 35.5

The results are given in Table II, which lists the name of each
circuit, its number of primary inputs and primary outputs, and
the number of control bits (not counted in primary inputs).
In the original experiments in [8], individual operations were
specified for each circuit. These are listed in the last column
together with the required run-times. The run-times for LADs
include the time spent on equivalence checking since this step
is included in PICEC. However, note that the partition of input
bits is known in PICEC but not in LADs. For some benchmarks,
no results were available (N/A). For benchmark ‘mul16’ the
equivalence check did not terminate within one hour, however,
the correct candidate was determined in 0.1 seconds. This
shows an advantage of the SPIEC approach being decoupled
from the equivalence checker. A different equivalence checker
implementation might be able to determine equivalence faster.
Benchmark ‘c3540’ created a too large search space with 34
control inputs, and for such cases PICEC is clearly superior.

X. CONCLUSIONS

We presented algorithms for new variants of combinational
equivalence checking that integrates into other approaches
required for tackling RE problems. They find a component in
a larger circuit and a mapping of primary inputs and outputs
of the component to the larger circuit. We showed that the
problem can be solved efficiently using algorithms for subgraph
isomorphism on their SGs, exploiting additional functional
information of the circuits to reduce the search space. It was
demonstrated that our approach is viable for solving PICEC
problems. To solve equivalence checking problem in which the
polarity of inputs and outputs may be inverted, we discussed
an alternative SAT formulation.

There are many directions for future research. For the
experiments in this paper we only considered a fixed set of
simulation vector types for each type of component. However,
for some components this may be an overkill and the result
could have been found by using a smaller set. This seems to
suggest that each component should come with its own set of
simulation vectors that are known to be sufficient, reducing the
sizes of the target and component SGs. However, we should
experiment with this to see if it improves run-times. On the
other hand, iterative methods can be used to dynamically extend
the SGs with k-hot or k-cold vectors for larger k by using
learned information to reduce the space of simulation vectors.

Although all matchings were correct in our experiments,
it has not been discussed how to proceed if there remain
ambiguities in the domains after LAD has terminated. There
are several possible scenarios. The LAD-based approach could
be extended to yield all possible matchings instead of only
the first one. Iterative methods driven by counter examples
are another promising solution, however, since all simulation-
vectors must be invariant to permutation, counter examples
cannot be exploited in a straight-forward manner.

The algorithms presented in this paper do not perform the
equivalence check; rather they find a possible matching that
can be given to a standard CEC checker. We noted that the
run-time required by the equivalence check was negligible
compared to the run-time required to determine the mapping,
except for multipliers. We propose to investigate the use of

structural equivalence checkers for such cases with a set of
common multiplier implementations as additional components.

In general, we want to enlarge the large class of library com-
ponents with its set of simulation types for which an SG-based
method can correctly identify sub-isomorphisms. Operators
might include square, square root, log, and compositions of
various operators like multiply-add.

Acknowledgments: This research is supported by the German
Academic Exchange Service (DAAD) in the PPP 57134066
and by the German Federal Ministry of Education and
Research (BMBF) in the project SPECifIC under grant
01IW13001. We want to thank NSA for support through
contract ‘Equivalence checking in crypto-analytic applications’
and NSF under contract 1219154.

REFERENCES

[1] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using
behavioral pattern mining,” in Int’l Symp. on Hardware-Oriented Security
and Trust, 2012, pp. 83–88.

[2] W. Li, A. Gascón, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “WordRev: finding word-level structures
in a sea of bit-level gates,” in Int’l Symp. on Hardware-Oriented Security
and Trust, 2013, pp. 67–74.

[3] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan, A. Tiwari,
N. Shankar, S. A. Seshia, and S. Malik, “Reverse engineering digital
circuits using structural and functional analyses,” IEEE Trans. Emerging
Topics Comput., vol. 2, no. 1, pp. 63–80, 2014.

[4] J. Mohnke, P. Molitor, and S. Malik, “Establishing latch correspondence
for sequential circuits using distinguishing signatures,” Integration,
vol. 27, no. 1, pp. 33–46, 1999.

[5] Y. Lai, S. Sastry, and M. Pedram, “Boolean matching using binary
decision diagrams with applications to logic synthesis and verification,”
in Int’l Conf. on Computer Design, 1992, pp. 452–458.

[6] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spectral
transforms for large Boolean functions with applications to technology
mapping,” Formal Methods in System Design, vol. 10, no. 2/3, pp. 137–
148, 1997.

[7] C. Lai, J. R. Jiang, and K. Wang, “Boolean matching of function vectors
with strengthened learning,” in Int’l Conf. on Computer-Aided Design,
2010, pp. 596–601.

[8] A. Gascón, P. Subramanyan, B. Dutertre, A. Tiwari,
D. Jovanović, and S. Malik, “Template-based circuit
understanding,” in Formal Methods in Computer-Aided Design,
2014, pp. 83–90, benchmarks and tools are available at
https://bitbucket.org/spramod/fmcad14-experiments.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[10] C. Solnon, “AllDifferent-based filtering for subgraph isomorphism,” Artif.
Intell., vol. 174, no. 12-13, pp. 850–864, 2010.

[11] S. Zampelli, Y. Deville, and C. Solnon, “Solving subgraph isomorphism
problems with constraint programming,” Constraints, vol. 15, no. 3, pp.
327–353, 2010.

[12] C. Anton and L. Olson, “Generating satisfiable SAT instances using
random subgraph isomorphism,” in Canadian Conference on Artificial
Intelligence, 2009, pp. 16–26.

[13] V. Arvind, P. P. Kurur, and T. C. Vijayaraghavan, “Bounded color
multiplicity graph isomorphism is in the #L hierarchy,” in Conf. on
Computational Complexity, 2005, pp. 13–27.

[14] J. Torán, “On the resolution complexity of graph non-isomorphism,” in
Int’l Conf. on Theory and Applications of Satisfiability Testing, 2013, pp.
52–66.

[15] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Computer Aided Verification, 2010, pp. 24–40.

[16] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Int’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502–518.

[17] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura, “Efficiently solving
quantified bit-vector formulas,” Formal Methods in System Design, vol. 42,
no. 1, pp. 3–23, 2013.

[18] B. Dutertre, “Yices 2.2,” in Computer Aided Verification, 2014, pp.
737–744.

	Introduction
	Preliminaries
	Related Work
	Problem Formulation and Motivation
	Problem formulation
	Motivation

	Reduction to Subgraph Isomorphism
	LAD-based Approach
	SAT-based Approach
	Relaxing the Constraints of Block Identification
	Experimental Evaluation
	Conclusions
	References

