
Requirement Phrasing Assistance
using Automatic Quality Assessment

Arman Allahyari-Abhari, Mathias Soeken, and Rolf Drechsler
Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Department of Mathematics and Computer Science, University of Bremen, Germany

{abhari, msoeken, drechsle}@cs.uni-bremen.de

Abstract—The design of modern hardware systems is a very
complex and time consuming process. At the beginning of the
design process, requirements need to be specified. Errors in
that early design stage derived by misinterpretation of the
requirements can be hard to detect and require significant effort
and costs to get fixed. To prevent errors, requirements should
be written in a comprehensive and unambiguous way. Thus,
designers are interested in automatic assistance tools that help
writing better requirements. Conventional approaches are usually
rule-based, thus many syntactic and semantic properties are not
considered. In this paper we introduce an alternative approach
to ensure the quality of requirements. The approach has two
stages and assists the designer by providing (i) all relevant
statistics about the syntactic and semantic properties of the
sentence, and (ii) a single consolidated nominal quality predicate
for the sentence such as good, medium, or bad. Although such
statistical quality assessment leads to already satisfying results,
the algorithm prediction reliability can further be enhanced by
machine learning techniques. The achieved reliability for quality
assessment in combination with the overview of the metrics
about syntax and semantic can help the designer to write more
comprehensive and less ambiguous requirements.

I. INTRODUCTION

The quality of requirements written in textual specifications

has significant impact on the design flow and on the final

product itself. Low quality requirements can easily be misin-

terpreted and therefore likely lead to errors in the design. On

top of that, these errors are also hard to detect, if being detected

at all. Consequently, the design has to be revised and deadlines

must be postponed, finally leading to higher overall costs of

production. A further advantage of well written requirements is

an easier application of automatic techniques for requirement

formalization, whereas requirements of bad quality complicate

the application of such methods, e.g., proposed in [1].

In this work, we present an approach for automatically

assessing the quality of requirements, which is based on syn-

tactic and semantic analysis and collects statistical information

about the sentence. For example, different parses of a sentence

correspond to different interpretations. Polysemy in words and

chunks is also put into consideration. Besides leading to more

comprehensive specifications, the proposed algorithm is of

significant interest to information extraction algorithms such

as proposed in [1], [2], [3].

Traditionally, guidelines are defined, which shall ensure that

written requirements match certain rules such as described in

[4] or [5]. Following this approach, there exist several pro-

prietary tools such as the tools TEKchecker1 or QuARS [6].

Another tool is the Requirements Assistant2 developed by

NASA for the purpose of internal requirements quality assur-

ance. Its purpose is to assure that requirements are complete,

consistent, feasible, and distinct. Other related works have also

discussed the identification of ambiguities and several metrics

to determine the linguistic quality of texts as in [7], [8], where

the latter does not work on single sentences but on whole text

corpora.

Our algorithm uses different techniques from natural lan-
guage processing (NLP), computes several metrics to deter-

mine the quality of a requirement, and finally gets improved by

machine learning. Further, we evaluated the proposed approach

with manually annotated requirements used in industrial spec-

ifications.

II. PRELIMINARIES

This section describes the NLP techniques that are used

in the implementation of the proposed algorithm. For a com-

prehensive overview about NLP concepts and techniques the

reader is referred to [9] and [10].

A. Phrase Structure Trees

Phrase structure trees (PSTs) are trees that contain struc-

tural information about a phrase, sentence, or text corpus,

where sentence parsing is relevant in the work. They consist

of a root node representing the whole sentence, non-terminal

nodes constituting the syntactic grammar structure, and ter-

minal nodes being the atomic words of the sentence. The

structural analysis as well as the annotation is performed by

structural parsers such as the Stanford parser contained in the

Stanford CoreNLP toolkit [11].
Sentences can be ambiguous, which is reflected in the

existence of multiple PSTs to a single given sentence. The

way of generating the PST depends on the utilized syntac-

tic grammar that the parser uses. In this work we used a

probabilistic context-free grammar (PCFG, [9]) as back-end

grammar for the PST computation. When using a PCFG, each

PST is assigned a score that indicates the probability to be

the correct and intended parse. All PSTs are ranked by their

1Clearspecs, TEKchecker, 2015. Available at: http://clearspecs.com
2NASA, Requirements Assistant, 2015. Available at:

http://www.requirementsassistant.nl

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.19

183

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.19

183

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.19

183

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.19

183

2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

978-1-4799-6780-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DDECS.2015.19

183

S

VP

VP

PP

NP

NNS

MHz

CD

700

IN

at

VBN

clocked

VBZ

is

NP

NN

CPU

DT

The

Fig. 1. A typical phrase structure tree

scores. Therefore, the PST with the highest PCFG score is the

one which is most likely to be correct.

Example 1: A PST for the sentence “The CPU is clocked at

700 MHz.” is illustrated in Fig. 1. The terminal nodes represent

the words and the non-terminal nodes directly connected to

the terminals are called part-of-speech (POS)-tags. DT is a

determiner, NN is a noun, VBZ is a verb, etc. One level higher,

the non-terminal nodes declare the parts of the sentence, such

as noun part (NP), verb part (VP), preposition part (PP), etc.

Finally, the root node S is representing the whole sentence.

B. WordNet

WordNet [12] is a large knowledge database developed by

linguists as well as computer scientists at Princeton University

and is designed for use under program control. Nouns, verbs,

adjectives, and adverbs are grouped into so-called synsets,
which can be considered as sets of meanings for a word entry.

Any word in the database can have several meanings, thus a

synset of that word can contain many entries. The WordNet

database includes more than 150,000 words and 110,000

synsets, resulting in more than 200,000 pairs connecting words

to meanings.

Each entry in a synset is assigned to a short text describing

the precise meaning of a word. Additionally, WordNet does

not only distinguish between parts of speech such as nouns,

verbs, adjectives, and adverbs, but also categorizes the words

into subdomains such as person, artifact, or quantity.

C. Machine Learning

With its origin in the field of artificial intelligence, machine

learning can be applied to a wide range of applications, for

example, spam detection, face detection, medical diagnosis,

or stock trading. The main idea is to identify patterns by

learning algorithms. In order to handle the broad range of

applications, machine learning algorithms are partitioned into

various problem classes, one of them being classification,

which has particularly proven to be useful for NLP. Com-

mon classifier algorithms are, e.g., Naive Bayes [13], logistic

regression [14], and J48 decision tree [15]. A classifier can be

supervised or unsupervised and can use filters as preprocessor.

Further, the effectiveness of a classifier heavily depends on

the set of features chosen for a certain purpose. A classifier

tries to build a model on the features by pattern recognition

and finally classifies the data with. The selection of adequate

features is the central task to accomplish good results from

machine learning. The feature set has to harmonize with

both, the learning algorithm and the problem. A feature is

usually numeric, but can also be nominal such as strings or

abstract such as nodes from graphs. To avoid redundancy, the

effectiveness measures of a classifier are described in Section

VI. There exist very sophisticated tools that can be used for

classifying text in natural language, e.g., the Natural Language

Toolkit [16] and the Weka data mining software suite [17].

III. METRICS

The basic idea in this paper is to make use of metrics

that can be computed from the data structures described in

the previous section to assist the author in writing good

requirements. To tackle this problem, we need (i) a single

quality metric that can help to predict the quality of a sentence

as reliable as possible, and (ii) a set of more detailed metrics

which provide the user with an explanation of the main

weaknesses of a written sentence in case of a bad quality.

It seems obvious that there are several metrics that can be

computed, but which metrics can derive the quality best?

As mentioned before there are usually many possible phrase

structure trees for a given sentence, as they can vary e.g. in

their POS-tags, partitioning, or structure. Besides the syntax, a

knowledge database like WordNet may also offer many metrics

about the semantics. In our approach we consider the syntactic

and semantic properties of a given input sentence to build

metrics that help to predict the quality of a sentence. For this

purpose, we focus on simple statistics such as the sentence

length as well as metrics involving possible ambiguities and

other varieties in terms of syntax and semantic.

IV. ASSESSMENT OF SENTENCE QUALITY

This section describes a two-stage algorithm that determines

a single quality measure to a given sentence. We are trying to

solve the following problem.

Problem 1 (Sentence quality): Given an English sentence,

the sentence quality problem asks to determine a quality

measure indicating whether the sentence is good, medium, or

bad in terms of comprehension.

To tackle this problem, we make use of established syntactic as

well as semantic analysis methods in NLP. The approach is not

domain specific and can be applied to any English sentence.

The syntactic and semantic quality measures of a sentence

are determined separately and their outcome is consolidated

into a single value indicating the overall quality of the input

sentence.

A. Syntactic Quality

In this work the syntactic quality of a sentence is considered

as directly ambivalent to the number of structural ambiguities.

Therefore, a small number of structural ambiguities yields a

better syntactic quality. There are a lot of ways to analyze the

structure of a sentence. The basic underlying data structure

for the computations are phrase structure trees with PCFGs

184184184184184

S

ADJP

JJ

red

VP

VBZ

shines

NP

NN

light

DT

the

PP

NP

NNS

errors

IN

On

S

VP

NP

NN

red

VBZ

shines

NP

ADJ.

JJ

light

DT

the

PP

NP

NNS

errors

IN

On

(a) (b)

Fig. 2. Two different PSTs of a sentence

as back-end grammar. As a basis for the computation of the

syntactic ambiguities we use the PST with the highest PCFG

score and compare the structural differences to the next best

100 parses. Based on these PSTs, the computation of the

syntactic quality is computed by the following steps:

1) Isomorphic subtrees: The highest scored parse tree is

compared to each of the next best 100 parse trees.

The algorithm computes the difference of any parse

tree to the best parse tree in terms of its subtrees.

More precisely, for any of the next best 100 parse trees

we compute the portion of isomorphic subtrees to the

best parse tree and then consolidate these values to an

average. The average of these subtree matchings over all

100 next best parses is referred to as isomorphic subtree
ratio (ISR) and can be assigned a value between 0 and 1.

A low ratio corresponds to more structural ambiguities in

the sentence. The ISR is the main indicator for syntactic

quality.

2) Sentence length penalty: A longer sentence corresponds

to less structural ambiguities and thus would be as-

sessed a better syntactic quality than a short sentence.

This is because longer sentences can be structured in

relatively less different ways. Therefore to keep the

quality measure consistent, in a last step the syntactic

quality computed based on the ISR is decreased by a

value according to the amount of words in the sentence.

Experiments showed that a penalty of 0.75 · l
100 seems

to be appropriate, where l is the sentence length.

Example 2: Given the sentence “On errors the light shines
red.” The corresponding phrase structure tree with the highest

PCFG-score (best parse) is depicted in Fig. 2(a), while another

possible parse tree (alternative parse) is given by Fig. 2(b). For

the best parse, the word light is annotated as a noun (NN),

but the alternative parse indicates it to be an adjective (JJ).

Further, the word red is annotated as an adjective (JJ) and as

a noun (NN), respectively. To compute the ISR between both

trees, any subtree at any level of the best parse is checked

whether there is an isomorphic subtree at the same node

of the alternative parse. The computed matching percentage

is actually the ISR for these two parses. While the subtree

beneath the node PP is completely isomorphic for both parses,

the rest of the alternative parse slightly differs. E.g., for the

NP subtree the parses vary at their right successor, whereas the

VP and ADJP subtrees are quite different in their structure.

The more subtrees a subtree contains, the more influence it

has on the matching ratio. In this case, the ISR for these two

parses is at 76.2%. The ISR is also computed for another 99

alternative parses and then consolidated into the mean. Further,

after the computation the sentence length penalty is applied on

the computed syntactic quality. Because the given sentence is

quite short, the influence of such penalty is less than usual.

Still with its six words, the syntactic quality of the sentence is

reduced by 0.75 · 6
100 = 0.045, resulting in an overall syntactic

quality of 71.7%.

B. Semantic Quality

The semantic quality of a sentence is ambivalent to its

amount of semantic ambiguities, which are determined by

using WordNet. We consider a word ambiguous, if it is

contained in more than one synset in the WordNet dictionary.

Let n be the number of unambiguous words and m be

the number of ambiguous words in a given sentence. Then,

a = n
(n+m) describes the distinct portion and b = m

(n+m) the

ambiguous portion of the sentence. Note that a + b = 1, and
therefore the sentence is free of ambiguities if a = 1. In order

to formalize a semantic quality measure we further take the

number of meanings for each ambiguous word into account.

Let ki be the number of different synsets of the i-th ambiguous

word, then the basic semantic quality is given by the formula

qsem = a+ b · m
∑m

i=1 ki
. (1)

Example 3: The sentence “The system shall be able to sit
at idle and resume operations with minimal delay.” contains

15 words, where the italic written words are ambiguous and

the others are distinct. The ambiguous words belong to more

than one synset in WordNet. In fact, the words system, be, sit,
resume, operations, and delay belong to 9, 13, 10, 4, 11, and

2 synsets, respectively. Thus, the ambiguous portion of the

sentence consists of 6 words with a sum of 49 synsets. The

distinct portion consists of 9 words. Therefore, the distinct

portion of the sentence is a = 9
15 = 0.6 and the ambiguous

portion is b = 6
15 = 0.4. As a result, the overall semantic

quality is qsem = 0.6 + 0.4 · 6
49 ≈ 0.65.

After the computation over ambiguous words, we need to

consider compounds, which are nominal compounds such as

“header file”. If a compound is detected, so if any word

chain in the sentence has at least one meaning in WordNet,

the semantic quality is modified. The sum of the meanings

of every single word in the compound is simply subtracted

from the overall sum of meanings and then replaced by the

number of meanings of the compound covering these words.

Finally, the computation of the quality is also rearranged for

the distinct and ambiguous portions of the sentence. Therefore,

detecting nominal compounds in a sentence usually reduces

the overall number of ambiguities and thus increases the

semantic quality.

Example 4: The sentence “The operating system shall con-

tain a graphical user interface.” comprises nine words. Here,

185185185185185

the five words operate, system, contain, user, and interface
have 7, 9, 6, 3, and 4 synsets in WordNet, respectively. Without

taking nominal compounds into consideration, there are 29

synsets for the five ambiguous words. Thus, with the naive

approach the semantic quality would be qsem = 4
9 + 5

9 · 5
29 ≈

0.54. But the sentence contains the two nominal compounds

operating system as well as graphical user interface and

thus the semantic quality has to be assessed appropriately. In

WordNet the compounds operating system as well as graphical
user interface have a single synset only. The number of synsets

of the single words of operating system (7 + 9 = 16) and

graphical user interface (1 + 3 + 4 = 8) is substituted by

1. Since compounds are considered as single words in terms

of their meaning, the distinct and ambiguous portions of the

sentence must be conformed. In fact, the semantic quality is

computed by qsem = 5
6 + 1

6 · 1
6 ≈ 0.86, due to the word

contain is the only ambiguous word (or compound) left with

more than one synset. Therefore, the semantic quality of such

sentence is fairly better when nominal compounds are taken

into consideration for the computation.

V. APPLYING MACHINE LEARNING

To improve the reliability of the approach, we apply a

machine learning algorithm and feed it with the collected data

of syntactic and semantic information. In average, the best

results were scored with Naive Bayes and J48 decision tree

classifying algorithm, respectively. In this paper, we decided

to mostly use a Naive Bayes classifier, because it provided

more reliable classification results in our experiments.

Besides the classifier, the algorithm must be fed with suit-

able data. Therefore, the selection of an appropriate feature set

is crucial and should be investigated carefully. The computed

metrics from the statistical approach give a wide variety of

potential features for the sentence quality. Most of the used

metrics are numeric ones such as sentence length, the ISR, or

the number of semantically ambiguous words. Only the finally

consolidated quality predicate is nominal.

Experiments showed that most of the detailed metrics,

which are suitable to determine the syntactic or semantic

quality, do not seem to be useful for a classifier. Indeed, at the

end most metrics are negligible for the approached machine

learning algorithm. A good feature set for our purpose is given

as follows:

• sentence length (numeric): the syntactic number of words

obtained from sentence segmentation

• overall syntactic quality (numeric): a consolidated quality

indicator, e.g., determined by sentence length, ISR, and

PCFG-scores

• ambiguous words (numeric): the number of semantically

ambiguous words

• overall semantic quality (numeric): a consolidated quality

indicator e.g. determined by the number of semantically

ambiguous words, the share of the ambiguous portion of

the sentence, and the average semantic ambiguities per

word over the whole sentence

• overall sentence quality (numeric): consolidates the nu-

meric quality values for syntax and semantic to a single

quality measure

• quality predicate (nominal): the overall quality assess-

ment of the statistical algorithm, which can be assigned

the values good, medium, or bad

The chosen feature set thus contains six features, while two

are syntactic, two are semantic, and two are about the quality

of the whole sentence, all derived by the statistical algorithm

described in Section IV.

VI. EXPERIMENTAL EVALUATION

We implemented the proposed sentence quality assessment

algorithm on top of the lips IDE [18], which extends the

Eclipse Modeling Framework (EMF, [19]) with useful features

for NLP. All algorithms are implemented in Xtend/Java.

Experiments showed that a 40:60 ratio of syntax to seman-

tics seems to be a good general configuration for the overall

sentence quality of the statistical part of the algorithm. In order

to compare the result to a human’s subjective opinion, the mea-

sured sentence quality is transferred into a quality predicate

good, medium, or bad. The test set of requirements has been

extracted from various specifications by NASA,3 NRAO,4 and

Intel.5 It contains 103 different requirements given by a total of

122 sentences. Exemplary sentences from these requirements

are “DFB shall receive and execute commands to the module
at up to 32Hz, and complete those commands in less than 1/10
interrupt period.” and “For local connections LMS supports
both IPv4 loopback and IPv6 loopback connections.”
For comparison the requirements were split into their single

sentences. In order to be able to compare the results of the

algorithm, the sentences were assessed a quality predicate

subjectively by humans. For this purpose we used three

different subjective assessments and consolidated them into

single quality predicates by majority or averaging, respectively.

The set of manually annotated sentences is the basis for eval-

uation and comparison of the algorithms. In order to evaluate

the reliability, we performed experiments for three different

configurations. First, we utilize machine learning only, then

we evaluate the syntax and semantic based approach described

in Section IV, and finally the third experiment combines both.

A. Machine Learning

A common approach to predict nominal values such as a

quality predicate is machine learning. For that purpose we

utilized a J48 pruned decision tree classifier, since Naive Bayes

did not perform as well. As a preprocessor, the sentence

string is tokenized by a filter called StringToWordVector and

stemmed by IteratedLovinStemmer provided by Weka. For

processing we used standard 10-fold cross validation. For the

3R. Harvey (NASA), Flight Software Requirements, 2010.
4T. Morgan (National Radio Astronomy Observatory) Requirements and

Functional Specification: EVLA Correlator Backend, 2003.
5Intel R© Active Management Technology (Intel R© AMT) 7.0 Release : FW

& SW Product Requirements Document (PRD), 2010.

186186186186186

TABLE I
COMPARISON CLASSIFIER AND SUBJECTIVE OPINION

Algorithm
Quality Subj. good med. bad Precision Recall F1

good 26 16 9 19 0.727 0.364 0.485
medium 42 1 3 18 0.167 0.136 0.150
bad 54 5 6 45 0.549 0.804 0.652
total 122 22 18 82 0.544 0.525 0.501

test set of 122 sentences, the J48 algorithm considered 567

features and had a pruned tree size of 35 with 18 leaves.

For indicating the effectiveness of a classifier, there exist

several measures. The so-called confusion matrix gives a good

overview on the single results, more precisely about true pos-
itives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). Based on these, commonly used measures are

(i) precision P = TP
TP+FP , (ii) recall R = TP

TP+FN , and (iii)

the F1-measure F1 = 2·P ·R
P+R as the harmonic mean of the two

previous ones. Precision can be read as “How many of the

positively classified are correct”, while recall is “How many of

correct ones are in the results”, also referred to as hit rate and

thus for lots of applications the most important effectiveness

indicator.

Table I shows how the classifier performed. The first two

columns depict the quality predicate and the number of sub-

jective quality assessments matching that predicate. The next

three integrate the confusion matrix, where the bold written

numbers for good, medium, and bad declare the matches,

whereas the others indicate the corresponding misses. The

last three columns declare precision, recall, and F1. As can

be seen, the quality assessment by machine learning seems

to work well for sentences assigned with the predicate bad
with a recall of 80.4%. But for good sentences the recall

is only 36.4%, for medium sentences the recall is even at

fairly weak 13.6% only. For example, the sentence “For

local connections LMS supports both IPv4 loopback and IPv6

loopback connections.” is subjectively assessed as good, but
is classified as bad by the machine learning algorithm. On

the other hand many sentences such as “KVM is used for

remote diagnostics and repair.” are correctly classified as bad.
After all, the average F1-measure using machine learning is at

solid but improvable 50.1%. Note that in average the machine

learning algorithm assessed a worse quality predicate than the

subjective opinion.

B. Statistic Algorithm

Table II provides the results of the quality evaluation of the

statistical algorithm. For the sake of a better comparability,

the same table structure as before is used. As can be seen

in the table, except for assessing the quality of the sentence

as bad, the algorithm has an already quite high hit rate. Still,

there are 19 assessments determined medium, which should

be assessed as bad. With an average precision of 69.9%, an

average recall of 66.4% and thus a balanced F1-measure of

68.1%, the statistical algorithm alone already performs quite

well. Note that in average the statistical algorithm assessed a

TABLE II
COMPARISON STATISTIC APPROACH AND SUBJECTIVE OPINION

Algorithm
Quality Subj. good med. bad Precision Recall F1

good 26 20 4 2 0.625 0.769 0.697
medium 42 8 30 4 0.566 0.714 0.640
bad 54 4 19 31 0.838 0.574 0.706
total 122 32 53 37 0.699 0.664 0.681

TABLE III
COMPARISON COMBINED APPROACH AND SUBJECTIVE OPINION

Algorithm
Quality Subj. good med. bad Precision Recall F1

good 26 20 4 2 0.769 0.769 0.769
medium 42 5 33 4 0.623 0.786 0.695
bad 54 1 16 37 0.860 0.685 0.763
total 122 26 53 43 0.759 0.738 0.741

slightly better quality predicate than the subjective opinion.

C. Combined Approach

To improve the algorithm, we apply machine learning as

postprocessor. For the purpose of machine learning, we used

the Weka machine learning software suite. Table III provides a

comparison between the combined assessment algorithm using

statistics and machine learning. For machine learning, we used

the Naive Bayes classifier algorithm and the feature set as

described in Section V. Compared to the purely statistical

approach, the combined approach performs even better. In

average, precision increased from 69.9% to 75.9%, while recall

raised from 66.4% to 73.8%. Overall, the F1-measure raised

from 68.1% to 74.1%. Note that in average the combined

algorithm mostly neutralizes the under- and overestimation of

the previous approaches. Especially with respect to that there

are three possible quality predicates (instead of only two), the

reliability of the combined approach can be considered a good

assistance for writing better requirements.

VII. CONCLUSION

In this paper we introduced a combined algorithm using

statistical information from syntax as well as semantics and

machine learning approaches for automatically assessing the

quality of sentences written in requirements that are used in the

design of complex hardware systems. Therefore, the utilized

automatic sentence quality assessment algorithm can assist the

designer in writing better requirements in specifications by

providing (i) a single quality predicate out of good, medium,

or bad, and (ii) more detailed syntactic and semantic metrics

for a given the sentence. The proposed approach works in two

stages. At the first stage, statistical measures are computed in

terms of syntax as well as semantics and then are consolidated

into a single quality measure. At the second stage, the statis-

tical approach is enhanced by applying a machine learning

algorithm on the collected measures. As machine learning

alone scored an F1-measure of 50.1%, the statistical approach

clearly beat that result with an F1-measure of 68.1%. The

combination of both approaches leads to the best results with

187187187187187

an F1-measure of 74.1%. Overall, the prediction of the quality

predicate by the combined assessment algorithm often matches

the subjective opinion for the applied set of test sentences

extracted from several specifications and can help the designer

to write more comprehensive and unambiguous requirements.
For future work a thorough case study in an industrial

environment should further evaluate the practicability of our

approach. Also, it should be investigated why many as bad

annotated sentences are determined as medium by the algo-

rithm.

ACKNOWLEDGEMENT

This work was supported by the General Federal Ministry of

Education and Research (BMBF) within the project SPECifIC

under grant no. 01IW13001 as well as by the German Research

Foundation (DFG) within a Reinhart Koselleck project under

grant no. DR 287/23-1.
Further, we would like to thank Andi Buzo and Liana Musat

for their supportive discussions.

REFERENCES

[1] M. Soeken, R. Wille, and R. Drechsler, “Assisted behavior driven
development using natural language processing,” in TOOLS, 2012, pp.
269–287.

[2] I. G. Harris, “Extracting design information from natural language
specifications,” in DAC, 2012, pp. 1256–1257.

[3] M. Soeken, C. B. Harris, N. Abdessaied, I. G. Harris, and R. Drech-
sler, “Automating the translation of assertions using natural language
processing techniques,” in FDL, 2014.

[4] I. F. Alexander and R. Stevens, Writing Better Requirements. Pearson
Education, 2002.

[5] IBM. (2009) Get it right the first time: Writing better requirements.
[6] G. Lami, “QuARS: A tool for analyzing requirements,” DTIC Docu-

ment, Tech. Rep., 2005.
[7] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for

tools for ambiguity identification and measurement in natural language
requirements specifications,” Tech. Rep., 2008.

[8] A. C. Graesser, D. S. McNamara, M. M. Louwerse, and Z. Cai,
“Coh-Metrix: Analysis of text on cohesion and language,” in Behavior
Research Methods, 2004, pp. 193–202.

[9] D. Jurafsky and J. H. Martin, Speech and Language Processing. Pearson
Prentice Hall, 2008.

[10] N. Indurkhya and F. J. Damerau, Handbook of Natural Language
Processing, 2nd ed. Chapman & Hall/CRC, 2010.

[11] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in ACL, 2014, pp. 55–60.

[12] G. A. Miller, “WordNet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[13] H. Zhang, “The optimality of naive bayes,” in FLAIRS. AAAI Press,
2004, pp. 562–567.

[14] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” The Annals of Statistics, vol. 38, no. 2,
2000.

[15] D. L. Gupta, A. K. Malviya, and S. Singh, “Performance analysis
of classification tree learning algorithms,” International Journal of
Computer Applications, vol. 55, no. 6, pp. 39–44, 2012.

[16] E. Loper and S. Bird, “NLTK: The natural language toolkit,” in
ETMTNLP. Association for Computational Linguistics, 2002, pp. 63–
70.

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The Weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[18] O. Keszöcze, M. Soeken, E. Kuksa, and R. Drechsler, “lips: An IDE
for model driven engineering based on natural language processing,” in
NaturaLiSE, 2013.

[19] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

188188188188188

