
Automated and Quality-driven
Requirements Engineering

Rolf Drechsler Mathias Soeken Robert Wille
Department of Mathematics and Computer Science, University of Bremen, Germany

Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{drechsle,msoeken,rwille}@cs.uni-bremen.de

Abstract—This tutorial paper summarizes selective research
results from the field of automated requirement engineering.
Automatization is achieved by employing natural language pro-
cessing techniques. We show algorithms that work directly on
the natural language text and algorithms that translate natural
language text to formal models. To ensure quality, we further
illustrate verification algorithms that can proof correctness of
the extracted formal models.

I. INTRODUCTION

The design flow for complex safety critical systems starts
way before the implementation phase. A considerate amount of
time is spent on extracting and organizing requirements from
several documents that are provided by the stakeholders and
customers. This process is called requirements engineering and
usually carried out manually thus far. Some software tools, in
particular IBM Rational DOORS,1 are available that mainly
focus on providing methods to organize requirements and link
them to artifacts of the design flow. Besides extracting and
organizing requirements, designers also link them to model
elements, code blocks, and verification plans such they can be
traced during the implementation phase.

In this tutorial, we present (automatic) methods which ease
this flow, i.e. (i) techniques for checking pre-processing re-
quirements in textual specifications, (ii) automatic approaches
for the extraction of formal models from customer specifica-
tions, and (iii) verification methods that check the extracted
formal models for consistency. Natural language process-
ing (NLP) tools and formal methods are used for this purpose.
Having a long history in the area of artificial intelligence,
NLP has recently been described as a promising technique
for electronic design automation [1], [2].

This paper summarizes the recently introduced techniques
in a concise manner and gives pointers to their original
references.

II. BACKGROUND

The approaches reviewed in this tutorial make use of solu-
tions from NLP and rely on descriptions provided in formal
modeling languages such as UML or SysML. Background on
these is given in this section.

1www-03.ibm.com/software/products/en/ratidoorfami

number must not capacity

tasks

processor

a

CPU

the

exceed

the

nsubj aux neg

det prep˙of

poss

det

dobj

poss

det

Fig. 1: Dependency graph

A. Natural Language Processing

A good overview on NLP techniques can be found in
the literature [3], [4]. Since methods proposed in this paper
particularly make use of typed dependencies [5], we explain
them in more detail.

In order to represent dependencies between individual
words, natural language processing techniques make use of
dependency parses. For this purpose, binary relations describ-
ing syntax and semantic are extracted from a sentence. A
dependency is given as a r(g, d) with a relation r, a governor g,
and a dependent d. As an example the relation nsubj binds
a verb to its subject. Other relations are nn that groups
compound nouns or det that assigns a noun to its determiner.
Altogether, 48 relations have been arranged in a grammatical
relation hierarchy. Given a sentence s, a dependency graph
is an edge-labeled directed graph in which vertices represent
words of s. There is an edge g

r−→ d between two different
words g and d if and only if r(g, d) is a dependency in s.

Example 1: The dependency graph for the sentence “The
number of a processor’s tasks must not exceed the CPU’s
capacity.” is depicted in Fig. 1.

B. Modeling Languages

Modeling languages such as the Unified Modeling
Language (UML, [6]) or the Systems Modeling Lan-
guage (SysML, [7]) have been established to explicitly specify
the design of systems prior to the implementation phase.
They offer description means which are expressive enough to
formally specify a complex system, but hide specific imple-
mentation details. In this tutorial, we focus on block definition
diagrams, sequence diagrams, and requirement diagrams.

Block definition diagrams formally describe the structure of
a system. They are composed of blocks which are organized by

978-1-4799-6278-5/14/$31.00 ©2014 IEEE 586

�block�
Kernel

�block�
Processor

attributes
capacity: Integer
maxSize: Integer
hasMaxSize: Bool

�block�
Memory

attributes

size: Integer

�block�
Task

attributes

consumption: Integer

�requirement� TaskLimit
id: “REQ1.1”
text: "The number of a processor’s tasks
must not exceed the CPU’s capacity."

�requirement� TaskLimit
id: “REQ1.1a”
expr: not (self.Task.size > self.capacity)

�requirement� TaskLimit2
id: “REQ1.2”
text: "The number of tasks
scheduled by a kernel’s
processor must be less or
equal to the number of tasks
executed by the CPU."

1..*

Runs 1 1 Schedules

1..*

0..1 Executes 1..*

*
StoresData

1

�satisfy�

�satisfy�

Fig. 2: Specification of a system using SysML

compartments to store different information such as attributes,
operations, or relations to other blocks. Attributes describe the
data elements of the block, whereas operations are used to
modify them. The dynamic flow caused by operation calls
can be visualized by sequence diagrams. Here, instances of
the blocks are extended by life lines that express the time
of creation and destruction in the scenario. Arrows indicate
operations that are called on an instance and are drawn
from the caller to the callee. Finally, requirement diagrams
support the organization of requirements which allow for a
representation of dependencies to themselves as well as to
other model elements such as blocks. Requirements may be
provided in natural language, particularly in early phases of
a project, but also as a formal description. For the latter, the
Object Constraint Language (OCL, [8]) may be used.

Example 2: Fig. 2 illustrates the specification of a simple
computer architecture in SysML in terms of a block definition
diagram. The structure of the system is defined by means
of four blocks, namely a ‘Kernel’, a ‘Processor’, a ‘Task’,
and a ‘Memory’. Attributes such as ‘capacity’ provide further
details on the respective components (e.g. its maximal capac-
ity). By means of a requirement diagram (at the bottom of
Fig. 2 and related to the block ‘Processor’) two (informal)
requirements are specified that constrain the number of a
processor’s task. For the first requirement REQ 1.1 also a
formal representation in terms of OCL is provided.

III. NATURAL LANGUAGE PROCESSING FOR
REQUIREMENTS ENGINEERING

Two problems for natural language processing in require-
ments engineering, namely automatic guideline checking and
fixing and requirements classification, are presented in this
section.

A. Automatic Guideline Checking and Fixing

Several guidelines exist which aid designers in writing good
requirements. These guidelines are either provided globally to
a large audience e.g. by means of books or they are used
internally as an agreement between employees of a company

runs

processor

The

det

nsubj

kernel

the

det

dobj

(a) Active voice

run

kernel

The

det

nsubjpass

is

auxpass
processor

the

det

agent

(b) Passive voice

Fig. 3: Active and passive voice

and their customers. Typical examples for rules defined in
such guidelines are the avoidance of imprecise words such as
“should” or “could” or the use of passive verb forms. However,
checking whether all these rules are followed is a cumbersome
task.

Problem 1 (Guideline checking and fixing): Given a set of
rules from guidelines how to write requirements and a natural
language requirement R, the guideline checking problem asks
whether R adheres to the rules. The guideline fixing problem
also asks whether such a requirement R that violates a rule
can automatically be rewritten into a requirement R′ that does
not violate the rule anymore.

In order to address this problem algorithms based on natural
language processing techniques have been proposed that, for a
given requirement, (i) can automatically determine whether a
rule has been violated and, if possible, (ii) offers the possibility
to automatically fix such a requirement.

Example 3: The problem is further illustrated by means of
an example. A rule from some guideline document may be
“Avoid passive voice.”. By making use of typed dependencies
it can easily be checked whether a sentence is given in active
or passive voice since different relations are found in the
corresponding typed dependency graphs. While the subject is
indicated as the dependent of a ‘nsubj’ relation in a sentence
in active voice the relation will be ‘nsubjpass’ when using
passive voice (cf. Fig. 3). But it cannot only be checked rather
easy whether the rule is violated by inspecting whether such
dependency relations occur in the sentence; passive sentences
can also be translated automatically using NLP techniques.2

B. Classification of Requirements

Specifications of technical systems consists of many re-
quirements written in natural language, usually English. These
requirements are typically expressed by means of one sentence
and can be categorized into low-level requirements and high-
level requirements. Low-level requirements can easily be trans-
lated into formal counterparts, because they are very precise
and usually refer to specific signals of the design and concrete
values. High-level requirements on the other hand need further
investigation of the context that can be obtained from reading
the specification and hence a direct translation is often not
possible.

2This is e.g. being illustrated using the Voice Conjugator widget at
www.contextors.com

587

all assertions

high level
assertions

low level
assertions partition

Fig. 4: Flow for requirements classification

Problem 2 (Requirements classification [9]): Given a set
of requirements in natural language text R = {R1, . . . , Rn},
the requirements classification problem asks to find a par-
tition (L,H) of S such that L consists of all low-level
requirements and H consists of all high-level requirements.
The low-level requirements are further partitioned into clus-
ters {C1, . . . , Ck} that contain similar sentences. That means
that all sentences in one cluster can be automatically translated
into a canonical form that is described by a representative of
the cluster. This representative also consists of variables and
hence can be used for describing the automatic translation of
the low-level requirements of the cluster into formal assertions.

The problem is further illustrated by means of Fig. 4 which
shows the flow of an algorithm that solves the problem. The
starting point is a set of natural language requirements given
in terms of English sentences (indicated in the figure by
zigzag lines). These assertions are automatically partitioned
into subsets of high abstraction level and low abstraction level
assertions in the first step. For this purpose, the sentence
is checked for special syntactic or semantic properties. One
possible criteria for classification can e.g. be the occurrence
of signal names in the text. In the second step the determined
low level assertions are partitioned into clusters of similar
sentences. For this purpose, a metric for sentence similarity
is defined based on the grammatical structure of the sentence
and the semantics of some words. Each cluster is represented
by a graph structure that represents the general structure of
the sentences and stores the words which are variable for all
sentences in the cluster. For this purpose, typed dependency
graphs are used and canonicized using several transformation
rules.

It can easily be seen that the quality of implementations for
the requirements classification problem can be enhanced when
pre-processing the step using guideline checking.

IV. EXTRACTING FORMAL MODELS FROM TEXTUAL
SPECIFICATIONS

After all natural language specifications and requirements
have been preprocessed using the techniques described in the
previous section, the next step in the design flow is to extract
formal representations from them. Thus far, transforming a
textual description into a formal model is usually performed
manually. But recent achievements to (semi-)automatically
map informal descriptions into formal ones have been made

(e.g. [10]). For this purpose, techniques for natural language
processing as briefly summarized in Section II-A are utilized.
We illustrate these accomplishments by means of two prob-
lems and their corresponding solutions. We show that already
simple grammatical analyses enable the derivation of a formal
representation of the structure and the behavior as well as the
requirements of the system to be implemented.

A. Extracting Structure and Behavior

Specifications provided in natural language obviously in-
clude precise descriptions what a system is supposed to do.
This leads to the following problem which we want to address
in the proposed design flow.

Problem 3 (Structure extraction [10]): Given a natural
language text, the structure extraction problem asks to find a
formal model (e.g. a block definition diagram) that represents
the components, their attributes and operations, and their
relations to each other which are being described by the text.

Analyzing the natural language specifications with respect to
their grammatical structure often allows to extract implications
for the formal model to be generated from it. For example,
(i) basic components of a system can often be derived from
nouns in a sentence, (ii) their functions can often be derived
from verbs in a sentence, or (iii) attributes can often be derived
from adjectives in a sentence. In particular, the analysis of
test cases in a specification are suited for those analyses as
they inherently provide a compact and concise summary of
the system’s structure and behavior.

Example 4: Consider the following test case from some
specification describing how a user is placing a telephone call:

A caller picks up the receiver from a telephone.
The caller dials the number 6-345-789.
The telephone places a call.

Fig. 5 illustrates that already from these three sentences a
significant amount of structural information can be extracted:
Since ‘telephone’ and ‘receiver’ are object nouns, it can be
concluded that they represent components of the considered
system (to be represented by blocks). Preceded adjectives
(such as ‘wireless’) substantiate objects and, thus, shall be
added as attributes to the corresponding block. Verbs correlate
to operations which can be invoked by components or actors.
Prepositions help to determine relations between blocks. For
example, ‘the receiver from a telephone’ does not only imply
a relation due to the preposition ‘from’ but also indicates that
a telephone can only have one receiver due to the definite
article ‘the’.

588

�block�
Receiver

�block�
Telephone

wireless: Boolean
pickUp(): Receiver
dial(number)
placeCall()

1

A caller picks up the receiver fromthe wireless telephone.
The callerdials thenumber6-345-789.
The telephone places a call.

Fig. 5: Extracting structure

:Telephone

pickUp()

dial(6345789)

placeCall()

A callerpicks up the receiver fromthewireless telephone.
The callerdials thenumber 6-345-789.
The telephone places a call.

Fig. 6: Extracting behavior

Moreover, from these sentences also information on the behav-
ior of a system, i.e. a sequence of actions to be conducted by
the considered design, can be obtained: Each verb in a sentence
can be mapped to a corresponding operation call. The caller
and a possible callee can be determined by the subject and
the object, respectively. Structural information of the system
derived beforehand are exploited for this purpose. From this
information, a sequence diagram as shown in Fig. 6 can be
extracted which formally represents this particular scenario.

Obviously, the syntactical and grammatical information
alone is not sufficient to fully automatically extract the de-
sired formal models from a textual specification — manual
interaction might still be required. But schemes as sketched
above assist the designer in this process.

B. Extracting Formal Expressions

Grammatical analyses can also be exploited in order to
extract formal expressions provided in natural language e.g. by
means of requirement diagrams as shown in Fig. 2.

Problem 4 (Expression extraction): Given a natural lan-
guage requirement and a formal representation of the system’s
structure, the expression extraction problem asks for a formal
expression for the requirement. The formal expression must
be consistent with the formal representation of the system.

To solve this problem, the description of a sentence (i.e. the
requirement) in terms of a dependency graph as reviewed in
Section II-A can be utilized. In fact, it has been observed
that the grammatical structure represented by dependency
graphs shows similarities to abstract syntax trees of a formal
expression. This can be exploited in order to translate a natural
language requirement into its formal equivalent.

Example 5: Consider the informal requirement “The number
of a processor’s tasks must not exceed the CPU’s capacity”
and its formal counterpart from Fig. 2. A direct mapping of

TaskLimit
text: "The number of a processor’s tasks
must not exceed the CPU’s capacity."

TaskLimit
expr: not (self.Task.size >

self.capacity)

exceed
must not

number capacity

The tasks

processor

a

CPU

the

NLP

exceed
must not

not

number capacity

The
tasks

processor

a

CPU

the

not

>

size capacity

Task Processor

Processor

not

>

size capacity

Task

self

self

Kernel

Processor Task

Memory

WSD

Fig. 7: Extracting a formal expression

these two descriptions (cf. top of Fig. 7) is not straightforward.
But their corresponding dependency graph and abstract syntax
tree (cf. bottom of Fig. 2) obviously share the same structure.
In fact, “only” the natural language identifiers have to be
substituted by the corresponding formal identifiers from the
given model (as e.g. in case of processor to ‘Processor’)
or the underlying OCL language (as e.g. in case of exceed
to >). While this is trivial in many cases, obstacles occur
when e.g. synonyms are applied (as e.g. in case of CPU to
‘Processor’). Here, methods such as word sense disambigua-
tion (e.g. [3]) can be applied to determine normal forms and
synonyms of identifiers.

Based on the example, possible cases for extraction can be
illustrated. If all relevant vertices of the dependency graph can
uniquely be assigned a model element or OCL operator, the ex-
traction of an OCL expression can be performed automatically.
However, if to some vertex v more than one model element
or OCL operator can be found, the sentence is ambiguous
and needs to be resolved by the designer. Moreover, the cause
of the conflict can easily be determined from v. The sentence
cannot automatically be processed if at least one vertex cannot
be assigned a model element or OCL operator. Furthermore,
some sentences may result in an abstract syntax tree that does
not describe a valid OCL expression. But even in these cases,
the proposed direction allows for an assistance of the designer.
The quality of the results can be enhanced by applying
requirements classification as described in Section III-B in a
pre-processing step.

V. VERIFICATION OF THE RESULTING FORMAL MODELS

Once a formal representation of the specification has been
derived, the structure, the behavior, and the requirements of
the represented system are available in a formal description.
However, whether the resulting model indeed satisfies the
intended functionality and requirements remains unclear. Also
the system description might include inconsistencies or con-
tradictions, making a direct implementation impossible. The
interest of the designer is to be aware of all these possible

589

problems before the actual implementation process is started.
In this section, we briefly summarize possible verification
problems which can already be addressed at this stage and
refer to respective solutions for them.

A. Verification of Structural Aspects
Having a formal representation of the design does not nec-

essarily imply that a working implementation can be generated
from it. In fact, the formal model may inherit constraints or
requirements which contradict each other. As a result, no valid
instantiation would be possible and any implementation would
be erroneous from scratch.

Problem 5 (Model finding, e.g. [11]): Given a formal model
with OCL constraints, the model finding problem asks whether
there exists a non-empty instance of the model (e.g. in terms
of an object diagram) that satisfies all OCL constraints.

Approaches introduced e.g. in [11], [12], [13], [14] can be
utilized for this purpose. They take the obtained formal model
(representing the structure) together with the requirements
(which are encoded as OCL constraints) and automatically
perform the above described consistency checks. Besides enu-
merative methods [14], also elaborated formal approaches have
been proposed in the recent past [11]. Considering the abstract
description of the models (usually, no complex data-structures
are applied), particularly the latter approaches are applicable
to quite significantly complex designs.

B. Verification of Behavioral Aspects
The dynamic behavior of formal models can be verified

when it is e.g. specified by means of so-called pre- and post-
conditions of operations. They enable a descriptive representa-
tion of the behavior, without giving a precise implementation.
A pre-condition describes in which states an operation can
be called, while the post-condition describes the effect an
operation has on that system state. These conditions may be
specified directly from the designer or are determined e.g. by
invariant elimination as described in [15].

Problem 6 (Behavioral model finding [16]): Given a model
with OCL constraints and operations that are specified in terms
of pre- and post-conditions, an initial state, and a verification
task, the behavioral model finding problem asks whether a
sequence of operation calls exists starting from the initial state
which satisfies the given verification task.

The problem can e.g. be solved by translating it into an in-
stance of the Bounded Model Checking (BMC) [17] and, there-
fore, allows for addressing certain verification tasks which are
usually expressed in terms of reachability obligations. In fact,
similar to verification at the implementation level, operation
sequences can be determined that lead e.g. to bad states,
good states, live locks, or dead locks [16]. Utilizing these
techniques, again, errors can be detected before any code is
written.

VI. CONCLUSIONS

In this tutorial paper, we have summarized several problems
and sketched addressing (i) pre-processing at the specification

level, (ii) extracting formal models from textual specifications,
as well as (iii) formal verification of the extracted formal mod-
els. As can be seen by utilizing natural language processing
techniques together with formal methods, an interesting design
flow for requirements engineering can be found that aids with
automated techniques the entry point to today’s design flows.

ACKNOWLEDGMENTS

The authors wish to thank Nabila Abdessaied for her
support. This work was supported by the German Federal
Ministry of Education and Research (BMBF) within the
project SPECifIC under grant no. 01IW13001 as well as by
the German Research Foundation (DFG) within a Reinhart
Koselleck project under grant no. DR 287/23-1 and a research
project under grant no. WI 3401/5-1.

REFERENCES

[1] R. Drechsler, “Quality-driven design of embedded systems based on
specification in natural language,” in EUROMICRO Symp. on Digital
System Design, 2011.

[2] I. G. Harris, “Extracting design information from natural language
specifications,” in Design Automation Conference, 2012, pp. 1256–1257.

[3] D. Jurafsky and J. H. Martin, Speech and Language Processing. Pearson
Prentice Hall, 2008.

[4] N. Indurkhya and F. J. Damerau, Handbook of Natural Language
Processing, 2nd ed. Chapman & Hall/CRC, 2010.

[5] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
Typed Dependency Parses from Phrase Structure Parses,” in Conf. on
Language Resources and Evaluation, May 2006, pp. 449–454.

[6] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage reference manual. Essex, UK: Addison-Wesley Longman, Jan.
1999.

[7] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., Feb. 2008.

[8] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
modeling with UML. Boston, MA, USA: Addison-Wesley Longman,
Mar. 1999.

[9] M. Soeken, C. B. Harris, N. Abdessaied, I. G. Harris, and R. Drechsler,
“Automating the translation of assertions using natural language pro-
cessing techniques,” in Forum on Specification & Design Languages,
2014.

[10] M. Soeken, R. Wille, and R. Drechsler, “Assisted Behavior Driven
Development Using Natural Language Processing,” in Int’l. Conf. on
Objects, Models, Components, Patterns, May 2012.

[11] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using Boolean satisfiability,” in Design,
Automation and Test in Europe, Mar. 2010, pp. 1341–1344.

[12] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
Cambridge, MA, USA: MIT Press, Apr. 2006.

[13] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL Class
Diagrams using Constraint Programming,” in IEEE Int’l. Conf. on
Software Testing Verification and Validation Workshop, Apr. 2008, pp.
73–80.

[14] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in Tests and Proofs.
Springer, Jul. 2009, pp. 90–104.

[15] M. Soeken, R. Wille, and R. Drechsler, “Eliminating Invariants in
UML/OCL Models,” in Design, Automation and Test in Europe, Mar.
2012.

[16] ——, “Verifying Dynamic Aspects of UML Models,” in Design, Au-
tomation and Test in Europe, Mar. 2011, pp. 1077–1082.

[17] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

590

