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Abstract—Various problems from artificial intelligence and
formal methods are solved utilizing Satisfiability Modulo The-
ories (SMT) solvers. Selecting the best SMT solver for a specific
application, however, is a daunting task. In this paper, we present
the novel metaSMT TCP server and client architecture which
can be used to solve SMT instances expressed in SMT-LIB2 by
multiple solver processes in parallel. The metaSMT TCP server
provides a unified interface for SMT-LIB2 instances with the
capability to either use the API or the file interface of a solver
process and thus serves as a highly customizable portfolio solver.
We show that the run-time overhead required by the metaSMT
TCP server and client architecture is marginal using selected
benchmarks from SMT-LIB.

I. INTRODUCTION

Today, various problems from artificial intelligence and

formal methods for hardware and software are solved by

reducing them to one or more instances of the Satisfiabil-

ity (SAT) problem. The SAT problem is to decide whether

a given Boolean formula in Conjunctive Normal Form (CNF)

is satisfiable. Although SAT is NP-complete [1], [2], effec-

tive reasoning engines are available. For most applications,

however, formulations in richer fragments of first-order logic

with background theories that fix the interpretation of cer-

tain predicates and function symbols are more convenient.

Satisfiability Modulo Theories (SMT) [3] is the field that

focuses on deciding satisfiability of standardized first-order

logic fragments with respect to some specific background

theories. For instance, the first-order logic fragment QF_BV

corresponds to closed quantifier-free formulas over the theory

of fixed-size bit-vectors. This fragment fixes the interpretation

of common bit-vector function symbols such as subtraction of

two bit-vectors of length n to two’s complement subtraction

modulo 2n.

A large number of different decision procedures for SMT,

called SMT solvers, has been proposed. Selecting the best

SMT solver for a specific application, however, is a daunting

task due to two reasons: (1) since deciding satisfiability is

NP-complete, efficient SMT solvers strongly rely on heuristic

approaches. Thus, each SMT solver has its own strengths

and weaknesses and consequently reasoning time and memory

consumption varies depending on whether the solver’s heuris-

tic is effective for a particular problem instance; (2) different

SMT solvers do not use a common input language or API.

A standardized textual format, called SMT-LIB [4] and SMT-

LIB2 (referring to its second version), for expressing SMT

instances has been established. However, not all SMT solvers

currently follow this standard.

metaSMT [5] is a flexible framework for integrating multi-

ple solvers into C++ and Python applications using a common

interface provided by an Embedded Domain Specification

Language (EDSL) similar to SMT-LIB2. Thus, metaSMT

allows to switch between different SMT solvers by using one

common API. metaSMT’s EDSL has been effectively used

for test stimuli generation of software [6] and hardware [7],

fault localization [8], assessing fault tolerance [9], symbolic

execution [10], and circuit minimization [11].

In this paper, we introduce two new components of

metaSMT which can be used to provide a unified SMT-LIB2

interface to multiple solvers: (1) the SMT-LIB2 parser with the

generic evaluator and (2) the metaSMT Transmission Control

Protocol (TCP) server. These two components together form

the novel metaSMT TCP server and client architecture and

extend metaSMT by a mechanism to decide an SMT instance

using multiple SMT solvers in parallel. The main contribution

of the paper is as follows:

1) We present an SMT-LIB2 parser and a generic evaluator

which can be used to turn any metaSMT backend

(including SAT solvers) into an SMT solver with an

SMT-LIB2 compatible input parser.

2) We introduce the novel metaSMT TCP server and client

architecture which can be used to decide an SMT

instance by multiple solver processes in parallel allowing

to easily build customized portfolio solvers.

3) We present experimental results for a selected subset of

the SMT library benchmarks1. More specifically, we fo-

cus on the QF_BV logic benchmarks “bruttomesso/lfsr”

of Roberto Bruttomesso [12].

The remainder of the paper is structured as follows. In Sec-

tion II, we briefly introduce the SMT-LIB2 common language

and review the metaSMT layer architecture. In Section III,

we describe the two novel components of metaSMT which

together form the metaSMT TCP server and client architecture.

In Section IV, we present experimental results. Section V

concludes the paper.

1The Satisfiability Modulo Theories Library, http://www.smt-lib.org/



(Commands) c ::= set-logic L

| set-option o

| set-info α

| declare-fun f (x : σ)∗ σ t

| push n

| pop n

| assert t

| check-sat

| get-value t+

| exit

(Scripts) scr ::= c∗

Fig. 1. Abstract syntax for commands

II. OVERVIEW

A. SMT-LIB2 Command Language

The SMT-LIB2 standard [4] defines a command language

to describe the syntax of commands to and responses from

interactive SMT solvers. A tool which uses an SMT-LIB2

compatible SMT solver issues commands in the textual for-

mat of the command language. The SMT solver reads the

commands from an input channel, processes them, and writes

responses in the textual format of the command language to

two output channels, a regular output channel and a diagnostic

output channel. The input channel usually refers to standard

input or a file and the output channels usually refer to standard

output and standard error. However, any other input and output

channels can be used, too.

In this section, we briefly outline the syntax of SMT-

LIB2 commands and the corresponding solver responses. Our

description uses the terminology of SMT-LIB2. For a detailed

treatment of the syntax and semantics of SMT-LIB2, we refer

the reader to the SMT-LIB2 standard [4].

metaSMT in its current implementation is compatible to

the SMT-LIB2 standard but not fully SMT-LIB2 compliant,

i.e., not all SMT-LIB2 commands of the command language

are currently supported. A simplified version of the abstract

syntax of the SMT-LIB2 command language that is actually

supported by metaSMT is shown in Fig. 1.

An SMT-LIB2 compatible solver responds to every issued

command. In general, three possible responses are possible.

The SMT solver responds with success if the command

was successfully processed, unsupported if the command

is not supported by the SMT solver, and with error <msg>

if an error occurs during processing the command, where

<msg> refers to an arbitrary error message in textual format.

Moreover, in case of a check-sat command the SMT solver

either responds with sat, unsat, or unknown correspond-

ing to the satisfiability check where the latter indicates that a

given resource limit (memory or time) has been reached.

In the following, we use the term SMT-LIB2 to refer to

the subset of the command language that is supported by

metaSMT. Thus, an SMT instance is a script consisting of

sequences of SMT-LIB2 commands.

B. metaSMT Layer Architecture

The “original” metaSMT architecture [5] consists of three

layers: a frontend, a middleend, and a backend layer. The
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Fig. 2. metaSMT Architecture

metaSMT architecture is illustrated in Fig. 2.

The frontend layer provides primitives of the SMT-LIB2 for-

mat in form of an EDSL, i.e., an API for a programming lan-

guage. Currently, the programming languages C++ and Python

are supported and primitives for basic Boolean operators (Core

theory), bit-vectors with arbitrary size (FixedSizeBitVectors

theory), and functional arrays with extensionality (ArrayEx

theory) are provided. The frontend layer, however, does not

attach any semantics to the primitives.

The middleend layer provides different intermediate rep-

resentations and offers a set of possible translations and

optimizations. The two commonly used middleends are the

DirectSolver and GraphSolver. The DirectSolver

resolves the meaning of primitives by directly forwarding

them to the backend layer with no intermediate represen-

tation. Contrarily, the GraphSolver constructs a Directed

Acyclic Graph (DAG) from the primitives as intermediate

representation. The DAG can then be manipulated by possible

optimizations. Lastly, the DAG is traversed and mapped to

the backend layer. The translations and optimizations are

combinable by cascading different middleends. For instance,

a BitBlast middleend is available that transforms QF_BV

primitives to Boolean primitives allowing to check an SMT

instance with a SAT solver after the middleend processes the

SMT instance.

The backend layer provides two interfaces to different SAT

and SMT solvers. The first interface is a static mapping of

the metaSMT API to the respective API of the SAT or SMT

solver. The second interface is a generic Input-Output (I/O)

streaming interface that opens an input and an output stream to

any SMT-LIB2 compatible SMT solver. metaSMT then writes

SMT-LIB2 commands to the generic I/O streaming interface.

The SMT solver reads the commands from the input stream

and writes its responses to the output stream. Both interfaces

supported by metaSMT, the statically mapped API interface

and the generic I/O streaming interface, allow for checking

SMT instances incrementally.

In metaSMT’s terminology, the combination of at least one

middleend and a backend is called a context.

III. ARCHITECTURE

In this paper, we describe two new components of

metaSMT: (1) the SMT-LIB2 parser and generic evaluator and

(2) the novel metaSMT TCP server. In terms of the three layer

architecture of metaSMT, the SMT-LIB2 parser and generic

evaluator serve as a file interface for metaSMT that reads SMT-

LIB2 instances from a file and passes them to the middleend

layer. As a consequence, metaSMT allows for turning any



configuration of middleend and backend into an SMT solver

that reads SMT-LIB2 instances via file interface. This is

especially interesting for those SMT solver APIs supported

by metaSMT that do not offer an SMT-LIB2 compatible input

parser.

The metaSMT TCP server integrates the generic SMT-LIB2

parser and evaluator to provide an SMT-LIB2 compatible

interface to multiple solvers. For each SMT-LIB2 instance sent

to the server, the server forks multiple SMT solver processes

and passes the SMT-LIB2 instance command by command

to all processes. A solver process is a customization of a

middleend and a backend. As soon as the fastest SMT solver

process responds to the metaSMT TCP server with a result,

the server passes the result back to the client and kills all

remaining SMT solver processes.

In this section, we describe the generic SMT-LIB2 parser

and evaluator (Section III-A) and the metaSMT TCP server

and client architecture (Section III-B) in detail.

A. SMT-LIB2 Parser and Generic Evaluator

The SMT-LIB2 parser reads an SMT-LIB2 instance com-

mand by command from a file. From each SMT-LIB2 com-

mand, an Abstract Syntax Tree (AST) is generated and passed

to the generic evaluator which is parametrized with a context.

The generic evaluator recursively traverses the ASTs and

instantiates the metaSMT API for the respective context. The

context then processes the data as in the “original” metaSMT

architecture, i.e., first the intermediate representation of the

first middleend is generated, then passed from one middleend

to the next middleend, until the data is finally processed by

the backend. All responses from the backend layer are passed

back to the evaluator.

B. TCP Server and Client Architecture

1) Architecture: The metaSMT TCP server and client ar-

chitecture is sketched in Fig. 3. A client reads the SMT-LIB2

instance, establishes a TCP connection to the metaSMT server,

and transmits the instance to the server via this connection.

The metaSMT TCP server then generates a Connection

object, buffers the incoming data from the TCP connection,

and passes every recognized SMT-LIB2 command from the

buffer to the Connection object. As soon as results are

ready, the metaSMT TCP server reads the results from the

Connection object and sends them back to the client via

the TCP connection.

The internal architecture of a Connection object is shown

in Fig. 4. Each Connection object instantiates an SMT-

LIB2 parser and generic evaluator and multiple, different

solver processes. Each solver process is a metaSMT context

in its own process. Instead from a file, the SMT-LIB2 parser

reads the SMT-LIB2 commands recognized by the server and

generates for each command an AST. The AST is then passed

to the generic evaluator which recursively traverses the AST

and calls metaSMT’s frontend API for each individual solver

process. In case a of check-sat command the server blocks

and waits until the first solver process responds with a result.

This result is passed back to the client and all other solvers

are terminated.

metaSMT
Client

metaSMT
Server

Connection

SMT-LIB2
Instance

Result
SMT-LIB2
Command

TCP TCP

Fig. 3. metaSMT TCP Server and Client Architecture
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Fig. 4. Internal Architecture of a Connection object

2) Protocol: The communication between the server and

a client follows a simple communication protocol. An exam-

ple communication is shown in Fig. 5. The communication

consists of two protocol phases. In the first phase the client

selects a set of solvers and specifies a maximum time limit

(timeout) for deciding satisfiability. In the second phase the

client sends the SMT instance to the server. The server parses

the SMT instance, forwards it command by command to all

solver processes, and returns their answers back to the client.

In the following we describe the two protocol phases in

detail: when a client establishes a connection to the server,

the server creates a new Connection object. The client then

sends a sequence of solver names to the server which forks an

individual solver for each name process and registers the solver

process in the Connection object. If the solver process is

successfully created and registered, the server acknowledges

Server Client

Z3\n

success

Boolector
\n

success

start 120\n

success

(assert (...))\n

success

.

.

.

(check-sa
t)\n

unsat

.

.

.

1st Phase: solver and
timeout configuration

2nd Phase: interactive
SMT instance solving

Fig. 5. Example communication between server and client



the solver name with a response success. The first phase is

ended when the client sends the command start t, where t

specifies a maximum time limit in seconds for deciding satisfi-

ability, and the server responds with success. In the example

communication in Fig. 5, the solvers Z3 and Boolector are

selected and a timeout of 120 seconds is specified.

In the second phase, the client sends the SMT instance line

by line to the server. Notice that the client does not need

to separate the SMT instance into individual commands but

the server collects all lines in a buffer until an SMT-LIB2

command is recognized. The SMT-LIB2 command is then

passed to all solver processes registered in the Connection

object. The solver processes parse and evaluate the SMT-LIB2

command (see Sec. III-A) simultaneously and return their

responses to the server which forwards them to the client.

In case of the SMT-LIB2 command check-sat the server

waits for the fastest solver process, sends its response to the

client, and terminates all other solver processes. This is a

simple decision heuristic assuming that the fastest solver is the

best solver. If none of the solver processes returns a result to

the check-sat command before the timeout is reached, the

server terminates all solver processes and returns unknown

to the client.

IV. EXPERIMENTAL EVALUATION

In order to measure the overhead of the metaSMT TCP

server and client architecture, we conducted two experi-

ments. In the first experiment, we use the Z3 4.1 executable

which provides a SMT-LIB2 compatible file interface and the

metaSMT TCP server configured with I/O streaming interface

that passes SMT-LIB2 commands as well to the Z3 4.1

executable. Thus, the comparison shows the time overhead re-

quired for solving the SMT instance leveraging the metaSMT

TCP server and client architecture. In the second experiment,

we use the metaSMT server and client architecture as a

customized portfolio solver. We selected the three metaSMT

API backends Boolector, Z3, and STP as solver processes and

compare the run-times of the portfolio solver to the minimum

run-times of the three individual metaSMT API backends, i.e.,

for each SMT instance the fastest of the three metaSMT API

backends is selected for comparison. For all experiments, we

use the DirectSolver at metaSMT’s middleend, i.e., no

intermediate representation is constructed and no optimization

is enabled by metaSMT.

All experiments have been conducted on an

AMD PhenomTM II X4 965 processor with four cores

and 8GB RAM. We use the following SMT solver and API

versions: Boolector v1.5.118, Z3 4.1, and STP 32:1668.

The SMT instances used in the experiments are a selected

subset of the SMT library benchmarks. Particularly, we use

the 240 SMT instances “bruttomesso/lfsr” which formalize

the behavior of Linear Feedback Shift Registers [12]. Ta-

ble I lists details of experimental results for the bench-

marks lfsr_t_bw_n with t > 2 and n > 32, i.e., a subset

of the 240 SMT instances2. The timeout for a response to

check-sat was set to 120 seconds. In the following, we

2Detailed results for all SMT instances are available on
http://www.informatik.uni-bremen.de/agra/projects/smtlib.html.
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use scatter plots to present our experimental results for all

240 SMT instances.

A. Z3 Executable versus metaSMT Server

In the first experiment, we compare the run-times of the

Z3 executable and the metaSMT TCP server and client ar-

chitecture with Z3 executable as backend, i.e., metaSMT uses

an I/O streaming interface as backend that sends SMT-LIB2

commands to the Z3 executable. Fig. 6 shows a scatter plot of

the run-times for all SMT instances in logarithmic scale for

both axes. The horizontal axis indicates the run-time required

by the Z3 executable and the vertical axis indicates the run-

time required by the metaSMT server and client architecture

for deciding an SMT instance.

As can be seen, the overhead of using metaSMT’s server

and client architecture is negligible, in particular when the run-

time increases. This gives the impression that only a small

constant overhead is required by metaSMT which becomes

insignificant as the instances become more complex.

B. Portfolio Solver versus Fastest SMT Solver

In the second experiment, we compare the run-times of a

customized portfolio solver leveraging the metaSMT server

and client architecture with the API backends Boolector,

STP, and Z3 in parallel to the fastest of the three individual

metaSMT’s backends. Fig. 7 shows a scatter plot of the run-

times for all SMT instances in logarithmic scale for both axes.

The horizontal axis indicates the minimum of the run-times of

the three metaSMT backends for deciding the SMT instance.

The vertical axis indicates the run-time of the customized

portfolio solver for deciding an SMT instance when all three

backends are used as solver processes.

The overhead for the portfolio solver is marginal, particu-

larly for instances that require a long run-time. Hence, when

using the portfolio solver one requires almost the same run-

time as the fastest solver without knowing the fastest solver in
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advance. This effect is emphasized by the scatter plot shown

in Fig. 8 which compares the portfolio solver with the slowest

solver. The run-times required by different solvers can differ

significantly.

C. Threats to Validity

metaSMT attempts to provide an SMT-LIB2 compliant API.

Thus, a metaSMT API backend uses a fixed API mapping

which is not necessarily optimal with respect to the developer’s

intention. Thus, long run-times do not necessarily indicate bad

performance of an SMT solver but unoptimized API usage.

We use a single benchmark set (“bruttomesso/lfsr”) for all

experiments. The benchmark category for all SMT instances

is “crafted”. According to the SMT-COMP 2013 rules and

procedures [13], these benchmark neither stem from an indus-

trial use case nor were randomly created but were particularly

designed to stress the SMT solver.

A broader evaluation with a larger benchmark set and

especially incremental SMT instances is planed for future

work.

V. CONCLUSION

In this paper, two novel components of metaSMT have

been presented: (1) the SMT-LIB2 parser with the generic

evaluator and (2) the metaSMT TCP server. Together these

two components enable the novel metaSMT TCP server and

client architecture which allows for deciding SMT instances

simultaneously with multiple solvers. Thus, metaSMT can be

used to easily create customized portfolio solvers. Experiments

for a selected set of SMT instances from SMT-LIB have been

presented showing that the run-time overhead consumed by

the architecture is marginal.

metaSMT is available as open source software. The reader

is referred to http://www.informatik.uni-bremen.de/agra/eng/

metasmt.php for further information.
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TABLE I
RESULTS FOR A SELECTED SUBSET OF THE BRUTTOMESSO/LFSR BENCHMARKS lfsr_t_bw_n

Benchmark Boolector STP Z3 API Portfolio SMT2 Z3 (Exec.)

decision time decision time decision time decision solver time decision time decision time

lfsr_004_111_096 unsat 27.25 unsat 28.41 unsat 51.12 unsat Boolector 31.97 unsat 2.29 unsat 2.010

lfsr_008_015_112 timeout timeout timeout timeout timeout timeout

lfsr_004_127_096 unsat 36.96 unsat 26.46 unsat 66.80 unsat STP 31.95 unsat 2.43 unsat 2.122

lfsr_008_063_112 timeout timeout timeout timeout unsat 8.62 unsat 8.007

lfsr_008_127_064 timeout unsat 44.79 unsat 97.53 unsat STP 55.71 unsat 9.07 unsat 8.611

lfsr_004_095_064 unsat 8.17 unsat 9.60 unsat 9.62 unsat Boolector 10.29 unsat 1.25 unsat 1.071

lfsr_004_111_128 unsat 56.43 unsat 56.05 unsat 82.21 unsat Boolector 66.69 unsat 3.24 unsat 2.978

lfsr_008_159_064 timeout unsat 87.36 timeout unsat STP 107.25 unsat 11.25 unsat 10.954

lfsr_008_159_096 timeout timeout timeout timeout unsat 17.89 unsat 17.464

lfsr_004_143_112 timeout timeout timeout timeout unsat 8.62 unsat 8.158

lfsr_008_031_064 timeout unsat 104.02 unsat 30.79 unsat Z3 34.41 unsat 3.72 unsat 3.442

lfsr_004_015_112 timeout timeout timeout timeout unsat 27.36 unsat 26.231

lfsr_008_159_128 timeout timeout timeout timeout unsat 22.07 unsat 21.640

lfsr_004_015_064 timeout timeout unsat 56.16 unsat Z3 59.90 unsat 3.37 unsat 3.170

lfsr_008_047_080 timeout unsat 82.28 unsat 43.53 unsat Z3 52.58 unsat 4.91 unsat 4.330

lfsr_008_143_112 timeout timeout timeout timeout unsat 41.52 unsat 40.436

lfsr_004_095_096 unsat 28.26 unsat 35.58 unsat 43.94 unsat Boolector 33.17 unsat 1.87 unsat 1.609

lfsr_004_047_128 unsat 79.16 unsat 116.99 unsat 47.24 unsat Z3 56.62 unsat 2.90 unsat 2.575

lfsr_004_159_128 unsat 70.73 unsat 68.81 timeout unsat STP 81.31 unsat 4.53 unsat 4.084

lfsr_008_127_112 timeout timeout timeout timeout unsat 18.21 unsat 17.807

lfsr_008_047_064 unsat 80.61 unsat 44.46 unsat 27.61 unsat Z3 33.23 unsat 3.48 unsat 3.162

lfsr_004_047_112 unsat 49.93 unsat 67.40 unsat 30.91 unsat Z3 37.68 unsat 2.32 unsat 1.942

lfsr_008_079_064 unsat 67.64 unsat 46.80 unsat 39.07 unsat STP 43.44 unsat 4.40 unsat 4.048

lfsr_004_095_080 unsat 17.52 unsat 16.54 unsat 26.42 unsat STP 20.18 unsat 1.47 unsat 1.255

lfsr_004_111_080 unsat 24.08 unsat 30.26 unsat 26.07 unsat Boolector 28.10 unsat 1.86 unsat 1.695

lfsr_004_063_080 unsat 32.53 unsat 23.33 unsat 19.00 unsat Z3 22.24 unsat 1.21 unsat 0.968

lfsr_008_079_096 timeout unsat 105.44 unsat 95.95 timeout unsat 8.61 unsat 8.089

lfsr_004_095_112 unsat 37.30 unsat 49.37 unsat 46.88 unsat Boolector 43.34 unsat 2.27 unsat 1.950

lfsr_004_079_128 unsat 48.19 unsat 48.92 unsat 56.44 unsat Boolector 57.02 unsat 2.43 unsat 2.111

lfsr_004_143_064 unsat 46.29 unsat 37.96 unsat 60.89 unsat STP 44.38 unsat 3.40 unsat 3.159

lfsr_008_063_080 timeout unsat 52.08 unsat 56.62 unsat STP 60.86 unsat 6.55 unsat 6.100

lfsr_004_047_064 unsat 7.80 unsat 14.70 unsat 7.14 unsat Z3 8.46 unsat 0.75 unsat 0.566

lfsr_004_031_096 unsat 36.67 unsat 82.31 unsat 36.54 unsat Z3 41.55 unsat 1.81 unsat 1.537

lfsr_004_063_064 unsat 7.59 unsat 7.54 unsat 11.23 unsat STP 8.73 unsat 0.89 unsat 0.707

lfsr_008_063_096 timeout unsat 105.56 unsat 83.01 unsat Z3 119.57 unsat 7.80 unsat 7.392

lfsr_008_079_112 timeout timeout timeout timeout unsat 9.84 unsat 9.255

lfsr_008_143_064 timeout timeout timeout timeout unsat 25.46 unsat 25.058

lfsr_008_015_064 timeout timeout timeout timeout unsat 12.23 unsat 11.890

lfsr_008_015_128 timeout timeout timeout timeout timeout timeout

lfsr_008_159_112 timeout timeout timeout timeout unsat 19.55 unsat 19.068

lfsr_008_047_096 timeout timeout unsat 74.22 unsat Z3 89.27 unsat 5.69 unsat 5.247

lfsr_004_015_096 timeout timeout timeout timeout unsat 19.16 unsat 18.881

lfsr_008_095_096 timeout unsat 101.05 timeout timeout unsat 8.35 unsat 7.802

lfsr_004_111_064 unsat 12.25 unsat 13.41 unsat 13.42 unsat Boolector 14.78 unsat 1.47 unsat 1.271

lfsr_004_159_064 unsat 23.64 unsat 14.10 unsat 27.63 unsat STP 17.34 unsat 2.09 unsat 1.915

lfsr_004_127_080 unsat 31.64 unsat 28.20 unsat 43.08 unsat STP 31.97 unsat 1.98 unsat 1.775

lfsr_008_063_128 timeout timeout timeout timeout unsat 9.63 unsat 8.956

lfsr_004_079_112 unsat 32.00 unsat 37.34 unsat 52.90 unsat Boolector 38.15 unsat 2.00 unsat 1.776

lfsr_004_079_096 unsat 26.90 unsat 28.30 unsat 29.39 unsat Boolector 32.40 unsat 1.50 unsat 1.282

lfsr_008_127_080 timeout unsat 75.35 unsat 117.64 unsat STP 88.05 unsat 13.94 unsat 13.597

lfsr_008_143_128 timeout timeout timeout timeout unsat 49.77 unsat 49.019

lfsr_004_143_128 timeout timeout timeout timeout unsat 9.85 unsat 9.196

lfsr_004_015_080 timeout timeout timeout timeout unsat 9.94 unsat 9.713

lfsr_008_063_064 unsat 111.07 unsat 24.78 unsat 40.25 unsat STP 30.03 unsat 3.22 unsat 2.973

lfsr_008_031_080 timeout timeout timeout timeout unsat 5.80 unsat 5.331

lfsr_004_111_112 unsat 51.18 unsat 52.69 unsat 65.53 unsat Boolector 58.38 unsat 2.48 unsat 2.176

lfsr_004_031_112 unsat 90.37 timeout timeout unsat Boolector 107.55 unsat 3.65 unsat 3.316

lfsr_008_095_112 timeout timeout timeout timeout unsat 12.41 unsat 11.827

lfsr_008_015_080 timeout timeout timeout timeout unsat 40.34 unsat 39.883

lfsr_008_111_128 timeout timeout timeout timeout unsat 17.07 unsat 16.404

lfsr_004_063_128 unsat 119.66 unsat 47.37 unsat 74.35 unsat STP 63.70 unsat 3.31 unsat 2.909

lfsr_008_015_096 timeout timeout timeout timeout unsat 104.48 timeout

lfsr_008_047_112 timeout timeout unsat 119.04 timeout unsat 7.67 unsat 7.024

lfsr_004_063_112 unsat 83.30 unsat 55.24 unsat 62.26 unsat STP 65.52 unsat 2.35 unsat 2.032

lfsr_008_031_128 timeout timeout timeout timeout unsat 28.50 unsat 26.159

lfsr_008_143_080 timeout timeout timeout timeout unsat 29.38 unsat 29.027

lfsr_004_079_064 unsat 8.23 unsat 9.66 unsat 7.10 unsat Z3 9.28 unsat 1.10 unsat 0.908

lfsr_008_095_080 unsat 113.10 unsat 68.06 unsat 94.82 unsat STP 87.10 unsat 6.76 unsat 6.458

lfsr_004_127_064 unsat 19.59 unsat 7.54 unsat 19.91 unsat STP 9.72 unsat 1.53 unsat 1.340

lfsr_004_079_080 unsat 10.29 unsat 15.29 unsat 16.68 unsat Boolector 12.37 unsat 1.28 unsat 1.043

lfsr_004_063_096 unsat 41.29 unsat 12.06 unsat 29.13 unsat STP 14.38 unsat 1.81 unsat 1.529

lfsr_004_143_096 timeout timeout timeout timeout unsat 8.53 unsat 8.365

lfsr_008_031_096 timeout timeout timeout timeout unsat 9.49 unsat 8.970

lfsr_004_047_096 unsat 37.35 unsat 62.44 unsat 22.23 unsat Z3 25.48 unsat 1.57 unsat 1.296

lfsr_004_031_064 unsat 10.47 unsat 36.76 unsat 9.93 unsat Z3 10.93 unsat 0.81 unsat 0.629

lfsr_004_047_080 unsat 12.24 unsat 26.19 unsat 10.95 unsat Z3 12.85 unsat 0.97 unsat 0.794

lfsr_008_143_096 timeout timeout timeout timeout unsat 30.80 unsat 29.900

lfsr_008_079_080 unsat 91.55 unsat 77.05 unsat 73.10 unsat Z3 96.32 unsat 5.75 unsat 5.284

lfsr_004_143_080 unsat 83.12 unsat 69.91 timeout unsat STP 83.09 unsat 7.33 unsat 7.004

lfsr_008_127_128 timeout timeout timeout timeout unsat 20.67 unsat 20.060

lfsr_008_159_080 timeout timeout timeout timeout unsat 14.98 unsat 14.538

lfsr_004_159_080 unsat 31.69 unsat 19.10 unsat 36.94 unsat STP 24.94 unsat 2.78 unsat 2.540

lfsr_008_095_064 unsat 88.91 unsat 38.86 unsat 56.61 unsat STP 50.44 unsat 5.74 unsat 5.298

lfsr_008_111_080 timeout unsat 117.12 unsat 116.53 timeout unsat 9.38 unsat 8.729

lfsr_004_015_128 timeout timeout timeout timeout unsat 29.11 unsat 28.645

lfsr_004_127_112 unsat 65.43 unsat 44.96 unsat 76.60 unsat STP 53.42 unsat 2.80 unsat 2.487

lfsr_004_159_096 unsat 32.56 unsat 35.88 timeout unsat Boolector 38.58 unsat 3.34 unsat 3.109

lfsr_008_111_096 timeout unsat 118.93 timeout timeout unsat 11.28 unsat 10.518

lfsr_004_127_128 unsat 74.21 unsat 93.00 timeout unsat Boolector 88.09 unsat 3.34 unsat 2.963

lfsr_008_111_064 unsat 93.33 unsat 49.95 unsat 58.21 unsat STP 63.25 unsat 7.37 unsat 6.963

lfsr_008_031_112 timeout timeout timeout timeout unsat 19.79 unsat 19.288

lfsr_008_095_128 timeout timeout timeout timeout unsat 13.52 unsat 13.044

lfsr_004_031_080 unsat 31.82 unsat 51.51 unsat 14.33 unsat Z3 15.56 unsat 1.27 unsat 1.031

lfsr_004_095_128 unsat 48.26 unsat 62.53 unsat 81.41 unsat Boolector 58.20 unsat 2.55 unsat 2.197

lfsr_004_159_112 unsat 55.59 unsat 49.88 unsat 88.95 unsat STP 59.17 unsat 3.77 unsat 3.486

lfsr_008_047_128 timeout timeout timeout timeout unsat 10.10 unsat 9.660

lfsr_008_127_096 timeout timeout timeout timeout unsat 16.22 unsat 16.061

lfsr_008_111_112 timeout timeout timeout timeout unsat 11.13 unsat 10.405

lfsr_004_031_128 timeout timeout unsat 113.01 timeout unsat 4.46 unsat 4.263

lfsr_008_079_128 timeout timeout timeout timeout unsat 10.67 unsat 9.711


