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Abstract—Different kinds of decision diagrams have played
key roles in advancements for the synthesis of reversible circuits
in the recent past. In this work, decision diagrams are used
to efficiently debug reversible circuits in cases when they do
not match their intentional specification. It can automatically be
checked whether the faulty circuit is almost equal to a given
function, i.e. it can realize the function by slightly modifying the
circuit, e.g. by adding or changing a gate. For this purpose, πDDs
are used which allow for a compact representation of a set of
permutations.

I. INTRODUCTION

Reversible logic serves as underlying technology for many

technologies such as quantum computation [1], optical com-

puting [2], and low power design [3], [4]. It is based on the

principle that every operation must be reversible such that

it can be executed in both directions. Besides computing an

output pattern for an input assignment, a reversible function

can also determine the inputs for a given output. Based on

different gate libraries many models have been proposed to

describe reversible circuits that realize reversible functions

e.g. for its use in quantum computers or low power CMOS

designs [5].

Throughout the recent years, significant achievements were

often achieved by utilizing decision diagrams of different kind.

Decision diagrams offer a compact representation for Boolean

functions and matrices and have been widely applied in the

design of reversible circuits. As examples, Binary Decision
Diagrams (BDDs) have been applied for exact, heuristic,

and hierarchical synthesis of both reversible and irreversible

functions [6], [7], [8]. As an alternative to BDDs, the applica-

tion of Kronecker functional decision diagrams, an extension

of BDDs, has lead to further improvements [9]. Quantum
Multiple-valued Decision Diagrams (QMDDs) [10], enabling

a compact representation for complex matrices, have been

used for both equivalence checking [11] and synthesis of large

reversible functions ensuring a minimal number of lines [12].

Similar data-structures have efficiently been applied for the

simulation and verification of quantum circuits [13], [14]. In

fact, decision diagrams have been the key methodology for

breakthroughs in the design of reversible circuits. BDDs al-

lowed synthesis of minimal circuits for a significant amount of

functions [6] and they enabled the synthesis of large Boolean

functions with more than 100 variables [7]. For the latter case,

the main problem of the algorithm is the huge amount of

additional lines which impedes the practical applicability of

that approach. However, the problem of additional lines in

the synthesis of large functions has been solved again with

decision diagrams, in particular using QMDDs [12].

However, while BDDs and QMDDs offer a compact repre-

sentation for functions and matrices, the recently introduced

πDDs [15] allow for a compact representation of permu-

tations. Hence, they are an interesting extension to the set

of considered decision diagrams in the design of reversible

circuits. Since reversible functions constitute permutations

on the input assignments, they can naturally be expressed

using this data structure. In fact, πDDs do not only allow a

compact representation for single permutations, but for a set of

permutations. Therefore, they can particularly be applied for

many problems where the above mentioned data structures are

not advantageous.

The application of πDDs in the design flow for reversible

circuits has been briefly investigated in [16] by conducting

small experiments in order to show for which tasks πDDs

may be beneficial and for which not. It turns out that πDDs are

not advantageous in comparison to other data structures when

being applied for synthesis of reversible circuits. In fact, they

often perform significantly worse as the πDD representation

for many reversible functions is exponential, as an example

already such an elementary circuit as the inverter. As a result,

large functions do not profit from πDDs. However, when

considering several functions at once, πDDs demonstrate their

strength.

This fact is exploited in the approach that is proposed in

the present paper. A method is illustrated for debugging of

reversible circuits [17] in cases when the circuit does not

match the intended specification, i.e. the reversible function

to be synthesized. If the circuit matches the function by

applying a slight modification, e.g. by adding a new gate at

an arbitrary position, we call the circuit almost-equal with

respect to the considered function. Two algorithms have been

developed where one algorithm solves the problem using a

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.22

317

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.22

317

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.22

316

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.22

316



x1 = 0 x′
1 = 1

x2 = 0 x′
2 = 0

x3 = 1 x′
3 = 1

1

0

1

1

0

0

1

0

0

g1 g2 g3 g4

Fig. 1. Reversible circuit

naïve approach and the other one utilizes πDDs. The method

based on πDDs clearly outperforms the naïve approach and

illustrates the potential of this new data structure for specific

tasks in the design flow of reversible functions. Although in

this paper missing gate faults are considered, the algorithm can

be extended to similar scenarios as well, e.g. a wrong gate, or

gates that are interchanged. Furthermore, the proposed algo-

rithm based on πDDs is generic such it can easily be extended

to other possibly gate libraries, e.g. multiple-valued ones, since

permutations are used as the underlying representation. Every

reversible gate represents a permutation independently on the

base of the respective logic.

Related work can be found in connection with the test of

reversible circuits (see e.g. [18]), however, the corresponding

algorithms start from a given circuits whereas in the case

of debugging arbitrary circuits need to be analyzed. Other

debugging work has been proposed, e.g. in [19]. Here, the

authors present an algorithm that can fix faulty circuits by

replacing a gate with a new sub-circuit that can consist of

more than a single gate.

The paper is structured as follows. The next section provides

the background, while the problem formulation is illustrated

in Section III. Section IV explains the proposed algorithms

in order to solve the problem and possible extensions to

other logics and gate libraries are illustrated in Section V.

Experimental results are given in Section VI and the paper

concludes with Section VII.

II. PRELIMINARIES

A. Reversible Functions and Circuits

A function f : IBn → IBn is called reversible if it is

bijective, i.e. for each output pattern it is always possible to de-

termine the corresponding input pattern. As a result, reversible

functions represent permutations on the set 0, . . . , 2n − 1.

Reversible functions can be realized using reversible circuits.

Reversible circuits differ from conventional circuits, since

e.g. fanout and feedback are not directly allowed. Usually, they

are built as a cascade of reversible gates including e.g. the

Toffoli gate, the Fredkin gate, or the Peres gate. In this paper,

we focus on circuits composed of Toffoli gates. Given a set

of variables X = x1, . . . , xn a Toffoli gate is a tuple (C, t)

with C ⊂ ⋃
x∈X{x, x} such that ∀x ∈ X : {x, x} �⊂ C being

the set of control lines and t ∈ X with {t, t} ∩ C = ∅ being

the target line of the gate. A Toffoli gate inverts the target

3,2

1

2,1{πe, (2, 1)}

{πe, (2, 1), (1, 3, 2)}

Fig. 2. πDD

line if, and only if, all control lines xi (xi) are set to 1 (0).

Positive (negative) literals in C are called positive (negative)

control lines.

Example 1: Fig. 1 shows a reversible circuit with three

lines and composed of four gates. The target lines are denoted

by , while a represents a positive control line and a

represents a negative control line. For example, assigning the

input pattern 001 to the circuit results in the output pattern 101.

Due to the reversibility, this computation can be performed in

both directions.

B. πDDs

A πDD [15] is a decision diagram that allows for a compact

and canonical representation for sets of permutations. πDDs

are derived from ZDDs [20], a decision diagram that offers

a compact representation of sets. πDDs exploit that any

permutation can be decomposed uniquely into a sequence of

transpositions that swap two items. For example, the permuta-

tion (3, 5, 2, 1, 4) can be decomposed into a set of transposi-

tions τ(2,1)τ(3,2)τ(4,1)τ(5,4). This can be interpreted as follows:

First the items 5 and 4 are swapped, then 4 with 1 and so on

until the identity permutation πe = (1, 2, 3, 4, 5) is obtained.

The canonical property of the sequence of transpositions is

guaranteed by always swapping the item with the highest

absolute value first.

According to this principle, the vertices in πDDs are la-

beled using the respective transposition (in comparison, in

ZDDs the vertices are labeled using the set element). The

terminal vertices 1 and 0 represent the set containing the

identity permutation πe and the empty set ∅, respectively.

As an example, Fig. 2 illustrates a πDD that represents the

permutations πe, (2, 1), (1, 3, 2). Traversing this πDD from the

top to the bottom leads to the transpositions to be applied so

that eventually the identity permutation results.

Several operations can be carried out efficiently on πDDs

e.g. counting the number of permutations which is equiva-

lent to counting the number of 1-paths in BDDs or ZDDs.

Furthermore, calculating the Cartesian product P ∗ Q =

{αβ | α ∈ P, β ∈ Q} is efficient, which is the set of all

possible composite permutations chosen from P and Q. In

fact, calculating on πDDs is performed by adding the number
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TABLE I

PERMUTATIONS FOR ALL POSITIVELY CONTROLLED TOFFOLI GATES ON 3 LINES

μ T0,μ T1,μ T2,μ

0
(000
001

) (010
011

) (100
101

) (110
111

) (000
010

) (001
011

) (100
110

) (101
111

) (000
100

) (001
101

) (010
110

) (011
111

)

1
(010
011

) (110
111

) (001
011

) (101
111

) (001
101

) (011
111

)

2
(100
101

) (110
111

) (100
110

) (101
111

) (010
110

) (011
111

)

3
(110
111

) (101
111

) (011
111

)

of vertices although the number of elements is multiplied [15].

C. Gate Libraries

Reversible gates and reversible circuits realize reversible

functions and a reversible function in turn represents a per-

mutation. As a consequence, we can compare circuits and

functions using their respective permutations. To exploit the

properties of πDDs, it is important to consider several func-

tions at once, as it is for example the case in gate libraries. We

refer to the gate library that consists of all positively controlled

Toffoli gates as Tn with

Tn =
n−1⋃

t=0

2n−1⋃

μ=0

Tt,μ

where Tt,μ is the permutation that is realized by a Toffoli gate

with target line t and control lines μ. Here, the control lines of

a gate are represented as the binary expansion of μ excluding

the target line.

Table I lists all permutations for positively controlled Toffoli

gates acting on 3 lines. For the sake of an improved readability,

transpositions τ(x,y) are written
(
x
y

)
.

III. PROBLEM FORMULATION

In this work we are considering a debugging task that checks

whether a faulty circuit is almost-equal to a given function

based on a specific fault model. For illustration purposes,

functions are considered that do not fulfill their functional

specification due to a missing gate, however, the proposed

techniques can be extended in order to work other fault models

and therefore with other definitions of almost-equality as well.

These definitions can e.g. include a wrong gate (due to a

missing control) or gates that have been interchanged.

The problem formulation is exemplary illustrated by means

of Fig. 3 using the circuit in Fig. 1. Given a circuit with n

≡ f ?? ? ? ? ?

Fig. 3. Problem formulation

lines and d gates the possible search space is (d + 1) · |Ln|
where Ln is a gate library on n lines. That is, before each

gate and also after the last gate, one gate from the gate library

can possibly be inserted. As an example, |Tn| = n · 2n−1 for

the case of positive controlled Toffoli gates.

A naïve algorithm that solves the problem of determining

whether a circuit is almost-equal to a given function is exhaus-

tively iterating the search space by inserting a gate at each

possible position and then checks the circuit and the function

for equality. This procedure is very time consuming in case

the circuit is not almost-equal to the function, otherwise the

run-time depends on the position in which the missing gate

must be inserted.

We are proposing an alternative method that is making use

of πDDs. After the πDD has been built, it is sufficient to call

one operation on it to decide whether the circuit is almost-

equal to the given function or not. Of course, the complexity

is shifted to building the πDD, however, the run-time is

significantly shorter in comparison to the naïve approach as

the experimental results will show. Furthermore, no difference

in run-time is observed when comparing almost-equal circuits

to non almost-equal circuits. Hence, the algorithm is also more

robust with respect to the result.

IV. ALGORITHMS

This section describes both algorithms that have been de-

veloped in order to determine whether some faulty circuit G is

almost-equal to a given function f . First, the naïve approach

that exhaustively inserts gates at any possible position is

presented while the πDD-based approach is explained and

illustrated by means of examples afterwards.

A. Naïve Approach

The naïve approach takes all Toffoli gates for n lines and

insert them one by one at all the possible positions in the

circuit and then checks whether the circuit G realizes the

considered function f , e.g. by simulation. It can be formalized

as follows.

Algorithm N (Naïve Approach). Given a reversible func-

tion f : IBn → IBn and a circuit G = g1 . . . gd, such that G is

not a representation of f , this algorithm determines whether
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≡ f ?
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Fig. 4. Idea of the πDD-based approach

there is a gate ĝ which can be inserted at any position in G

such that the modified G represents f . If such a gate ĝ exists,

then G is almost-equal to f .

N1. [Initialization.] Set p← 0.

N2. [Loop over Tn.] For any gate ĝ ∈ Tn, perform step N3.

N3. [Insert ĝ.] Set G′ ← g1 . . . gpĝgp+1 . . . gd. If G′ real-

izes f ′, terminate and return true.

N5. [Next position?] If p < d, set p ← p + 1 and return to

step N1, otherwise terminate and return false.

Clearly, Algorithm N is not efficient, which becomes evident

in particular in step N2 since the size of the Toffoli gate library

is exponential with respect to the number of lines. As a result,

the above mentioned technique is not applicable to circuits of

a larger scale.

B. πDD-based Approach

In this section, an alternative is presented which makes use

of πDDs, an efficient data structure for sets of permutations.

Using πDDs allows for constructing and considering several

reversible functions or circuits at once using operations that

can be carried out efficiently on the data structure.

The idea is illustrated by means of Fig. 4 which is based

on Fig. 3. At each position where a gate could be missed,

a πDD is inserted that represents all possible gates, in this

case all Toffoli gates, that could be inserted to fix the circuit.

Combining all combinations into a single πDD, it allows for

the consideration of all possible represented functions at once.

Given a circuit G = g1 . . . gd consisting of n lines where

each gate gi can be described by its permutation πgi and a

function f represented by πf , checking whether G is almost-

equal to f can be solved using πDDs by checking if πf ∈ F ,

where

F =

d⋃

p=0

({πg1 . . . πgp} ∗ Tn ∗ {πgp+1
. . . πgd}

)
. (1)

That is, for each position p = 0, . . . , d a set of function is

created by making use of the Cartesian product on πDDs, and

all these resulting sets are joined via union.

Example 2: Fig. 5 shows a circuit with three Toffoli gates.

By applying the πDD-based approach on this circuit, the

Fig. 5. Example circuit for the application of the πDD approach

function

F = (T3 ∗ T1,0 ∗ T2,1 ∗ T0,3)∪
(T1,0 ∗ T3 ∗ T2,1 ∗ T0,3)∪
(T1,0 ∗ T2,1 ∗ T3 ∗ T0,3)∪
(T1,0 ∗ T2,1 ∗ T0,3 ∗ T3)

is obtained.

V. EXTENSION OF THE πDD-BASED APPROACH

This section briefly illustrates how the above described

algorithm based on πDDs can be extended in order to both

support alternative gate libraries and alternative debugging

problems.

A. Alternative Gate Libraries

Since reversible gates represent reversible functions which

in turn represent permutations, the algorithm can readily be

extended to support alternative gate libraries. Since the gate

library is represented as a πDD in Eq. (1), it just needs to be

replaced accordingly. In this way, also multiple-valued gate li-

braries can be considered. As an example, the Muthukrishnan-

Stroud gate [21], which realizes a ternary reversible function,

is represented by the permutation

(0, 1, 2, 4, 5, 3, 8, 6, 7,

10, 11, 9, 14, 12, 13, 15, 16, 17,

20, 18, 19, 21, 22, 23, 25, 26, 24)

which can be realized as a πDD.

B. Alternative Debugging Problems

Similarly, other debugging problems can be considered

when adjusting Eq. (1). If e.g. almost-equality is defined

according to a missing control fault, the equation is written

F =

d⋃

p=1

({πg1 . . . πgp−1} ∗Πgp ∗ {πgp+1 . . . πgd}
)
.

where Πgp is a πDD that represents a set of permutations

resulting from removing a control line from gp.

VI. EXPERIMENTAL EVALUATION

We have implemented both algorithms in C++ on top of

RevKit [22] and the SAPPOROBDD package. The experi-

ments were carried out on a 3.10 GHz Intel Core i5 machine

running Linux 2.6.32. In order to evaluate the algorithm,

random circuits consisting of n = 2, 3, 4 lines and d =

320320319319
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Fig. 6. Direct comparison of approaches

20, . . . , 1000 gates have been created. For each circuit two

experiments have been made:

• It has been checked against a function which is almost-

equal (AE). These functions have been created by ran-

domly deleting a gate from the circuit and simulating it

afterwards.

• It has been checked against functions which is not almost-

equal (NAE).

The missing gate fault has been chosen as respective debug-

ging problem and all positive controlled Toffoli gates are used

as gate library.

The results are represented graphically by means of Figs. 6

and 7. The x-axis and y-axis represent the number of gates d

and the run-time in seconds, respectively. In Fig. 6 the

approaches are directly compared and it can be seen that

the πDD-based approach (blue line) clearly outperforms the

naïve approach (red line). Only in the case of not almost-equal

circuits on 2 lines, the πDD-based approach is slower than the

naïve approach, but already for 3 lines, this relation has been

turned and the πDD-based approach is significantly faster.

Fig. 7 displays the same results but represents the data

in a different manner. Here, for each approach, i.e. naïve

and πDD-based, and for each considered number of lines,

both the results for the almost-equal and for the not almost-

equal experiments are plotted into the same graph. The plots

illustrate that the proposed πDD-based approach is robust with

respect to the outcome of the algorithm, i.e. whether the circuit

is almost-equal or is not almost-equal to the given function.

In contrast, the naïve approach is not robust, since in case

the function is almost-equal, the algorithm may stop earlier.

The main differences between both algorithms is that the

πDD-based approach requires the most computational effort

in an initialization phase that is the same in both cases,

whereas basically no initialization phase is required by the

naïve approach and all computational effort is spent in the

exhaustive search.

In order to estimate the complexity we have performed

regression analysis on the results and determined that the best

fit was given a polynomial regression fit of degree 2 which is

also indicated by the thick gray plot in Fig. 7. Hence, also the

complexity of both approaches is very likely to be quadratic

with respect to the number of gates. In fact, from the naïve

approach it can also be directly determined that the complexity

must be quadratic by analyzing Algorithm N.

VII. CONCLUSIONS

In this paper, we have presented a debugging approach

that makes use of πDDs. For this purpose, it is exploited

that πDDs can represent a set of permutations and since

reversible functions represent permutations, πDDs can be used

to efficiently represent several reversible functions and circuits

at once. As a result, faults in circuits, e.g. due to a missing

gate or a missing control line, can efficiently be detected.

Experiments have shown their applicability and demonstrate

that they are more scalable than naïve approaches. Since the

presented algorithm is based on permutations, it can be tailored

to work with any reversible gate library. Further, also other

debugging problems can be addressed.
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Fig. 7. Robustness analysis

In future work we want to consider such additional fault

models and gate libraries. Also, we like to extract heuristics

from the exact πDD problem formulation in order to accelerate

the algorithm. This can e.g. be done by restricting the elements

of the gate library.
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