
Exact Template Matching
Using Boolean Satisfiability

Nabila Abdessaied∗ Mathias Soeken∗§ Robert Wille∗§ Rolf Drechsler∗§
∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

§Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{nabila,msoeken,rwille,drechsle}@informatik.uni-bremen.de

Abstract—Reversible logic is an emerging research area that
has shown promising results in applications such as quantum
computing, low power design, and optical computing. Since
the synthesis of minimal circuits is a cumbersome task, many
synthesis algorithms apply heuristics and can therefore not
provide a minimal solution. As a consequence, post synthesis
methods such as window optimization and template matching
are being applied.

Template matching algorithms explore the circuits for gate
cascades that can be replaced by smaller ones using a special
class of identity circuits, so called templates. The determination
of cascades applicable for substitution is the bottleneck of the
template matching algorithm and problem-solving methods have
been proposed in the recent past. Since these algorithms are based
on heuristics, it cannot be ensured that a matching cascade can
always be found.

In this paper, we propose a new approach that determines
matching cascades based on Boolean satisfiability and therefore
ensures that these cascades are always found if they exist.
Experimental results demonstrate that template matching yields
smaller circuits when applying the new method for cascade
determination.

I. INTRODUCTION

Reversible logic is an emerging technology in the domain

of quantum computing [1], [2], [3], low power design [4], [5],

optical comuting [6], as well as nanotechnologies [7]. In re-

versible circuits, all computations are performed in an inverted

manner which provides new promising enhancements for

computation technologies. Motivated by the benefits brought

by these circuits, researchers started to develop new design

methods.

Several synthesis approaches have been proposed to de-

termine a circuit realization for a given function. Significant

improvements and achievements [8], [9], [10], [11] have been

made since the truth table based approach has taking place.

However, the majority of the synthesis approaches do not

guarantee optimal realizations, in fact, the algorithms that do

guarantee an optimal solution (e.g. [12]) are only applicable

to small circuits of about 4 to 6 lines.

As a result, several post synthesis optimization ap-

proaches [9], [13] have been proposed to minimize a given

circuit after it has been synthesized. The template matching

algorithm explained in [9] is one of these optimization tech-

niques. Given a set of templates which is a special class of

identity circuits, the algorithm tries to determine sub-circuits

that match a part of a template. In this case, the determined

sub-circuit can be replaced with the inverted remaining part

of the template due to reversibility. If the remaining part is

smaller, the overall circuit size can be reduced.

The efficiency of the template matching algorithm highly

depends on the strategy used for matching the template in

a circuit. Since the considered search space that should be

inspected in order to find a match for a template is usually

very large, many heuristic approaches have been investigated

that work efficiently but cannot guarantee that a matching sub-

circuit can be found if it exists.

To overcome this limitation, we propose a new approach

that exploits Boolean satisfiability techniques allowing an ex-

haustive but yet efficient determination of cascades according

to a given set of templates. For this purpose, the search for

a cascade is formulated as a decision problem and encoded

as a Boolean formula that is afterwards solved using an SMT

solver. If the instance is satisfiable, the matching cascade can

be replaced by the second half of the template. Otherwise, it

can be concluded that the template cannot be used to further

reduce of the circuit cost.

We have implemented the algorithm and compared it to the

search method presented in [9]. Experimental results show that

cost reductions of up to about 60% compared with respect to

the initial circuit and up to 28% with respect to the method

in [9] can be achieved.

The remainder of the paper is organized as follows. Sec-

tion II introduces the basics of reversible logic, the template

matching algorithm, and SMT. In Section III the general

structure of our approach is explained, while details on the

SMT encoding are provided in Section IV. Experimental

results are given in Section V and the paper is concluded in

Section VI.

II. BACKGROUND

A. Reversible Circuits

A Boolean function is reversible if it maps each input

assignment to a distinct output assignment. As a result, such

a function must have the same number of input and output

variables X := {x1, . . . , xn}. A circuit realizing a reversible

function is a cascade of reversible gates. In the literature, sev-

eral types of reversible gates have been introduced. Besides the

Fredkin gate [14] and the Peres gate [15], multiple controlled

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.26

329

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.26

329

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.26

328

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.26

328



1 1

1 1

0 1

(a) Reversible gate

0 1

0 1

1 1

(b) Reversible circuit

Fig. 1. Reversible circuitry

Toffoli gates [16] are widely used. In this paper we consider

only Toffoli gate circuits.

A Toffoli gate has the form T(C, t) with a set of control

lines C = {xi1 , · · · , xik} ⊂ X and a target line t ∈ X \ C.

C may be empty. The target line t is inverted if and only

if all control lines are assigned 1, i.e. a gate maps an input

assignment (x1, . . . , t = xj , . . . , xn) to (x1, . . . , xi1 ∧ xi2 ∧
· · · ∧ xik ⊕ xj , . . . , xn).

Quantum cost are often used to measure the cost of a

reversible gate. Every reversible gate can be transformed into

a sequence of elementary quantum gates [17] where each

elementary gate has a quantum cost of one.

Example 1: Fig. 1(a) shows a Toffoli gate with two control

lines. The control lines are denoted by •, while the target

line is denoted by⊕. The annotated values demonstrate the

computation of the gate for a given input assignment. Fig.1(b)

shows different Toffoli gates in a cascade forming a reversible

circuit.

B. Template Matching Procedure

Templates have initially been proposed in [9] and their

definition has been adjusted several times in the past. The

current widely accepted definition states that a template is

an identity circuit with m gates such that each sub-circuit

of size less than �m2 � cannot be reduced by another template.

Furthermore, a template consists of two different line types

which we call C-lines and T-lines and which should not be

mistaken for control lines and target lines of a gate (cf. Fig. 2).

A C-line of a template is a line in which all gates only have

control lines but no target lines, all other lines are T-lines.

This separation is of use since any C-line can be duplicated,

removed, or replaced without changing the functionality of

the circuit. This is illustrated by means of Figs. 3(a), 3(b),

and 3(c), respectively. Further, the order of the gates can be

rotated being wrapped at the circuit boundaries, again without

changing the functionality. This is illustrated in Fig. 3(d).

a a

b b

c c

d d

e e

C-lines

T-lines

Fig. 2. Original template

b′ b′
a a

b b
c c

d d
e e

(a) Duplication

b b
c c

d d
e e

(b) Removal

a a

b b

a′ a′
d d
e e

(c) Replacement

a a

b b
c c

d d
e e

(d) Rotation

Fig. 3. Template disposition

Since a template is an identity circuit it can be split

anywhere in the middle and the left part equals the inverse of

the right part and vice versa. The template matching algorithm

is applied in order to reduce the circuit size or its costs. It

takes a circuit and tries to find sub-circuits in it that match a

part of a template. If that part is longer or more expensive

than the remaining part the sub-circuit is replaced by the

inverse of it. The matching procedure tries to find the first

gate and then subsequently looks for the other gates which do

not need to be necessarily adjacent. Using the moving rule,

gates can be moved in the circuit without changing the circuit’s

functionality [9].

Example 2: Fig. 4 illustrates the basic template matching

algorithm. It shows a template in the lower left corner with

a left and a right part. A sub-circuit matching the left part of

the template is found in the original circuit, hence, this sub-

circuit can be replaced with the inverse of the right part of the

template yielding a smaller simplified circuit of less cost.

The degree of optimization in template matching depends

on the considered templates that are used in the process

and the search method for finding matching sub-circuits. The

latter task is the most complex part in the template matching

algorithm and not feasible when being applied in an exhaustive

manner. In order to determine matching templates, the circuit

is rearranged by applying the time consuming moving rule.

As a consequence, heuristics are used to find sub-sequences

a a

b b
c c

d d

a a

b b
c c

d d

Original Circuit

a a

b b

c c

d d

Simplified circuit

Simplification

F F−1

F Mapping

Replacing F with F−1

Fig. 4. Template matching

330330329329



a a
b b
c c
d d

Circuit

a a
b b
c c
d d

Template

k ← 5

Iterative check

Encoding Solver

a a
b b
c c
d d

Unsatisfiable Satisfiable

a a
b b
c c
d d

Replacement

Simplified circuit

k ← k − 1

Fig. 5. Encoding the search method as an SMT instance

that do not guarantee that a sub-circuit is found if it exists.

For example, some of them take a circuit and try to match

its gates to the template from the input to the output side of

a that circuit, other ones apply the search additionally in the

reverse direction in order to increase the chances of matching

the template in the circuit.

C. Satisfiability Modulo Theories

Boolean satisfiability (SAT) is a decision problem that

determines if the variables of a given propositional formula

can be assigned in such a way that the formula evaluates

to true. Equally important is to determine whether no such

assignments exist, which would imply that the formula is

the contradiction. In the latter case, the function is said to

be unsatisfiable, otherwise it is satisfiable. Most modern SAT

solvers require the formula to be in conjunctive normal form,

i.e. a conjunction of clauses which in turn are disjunctions of

literals.

Satisfiability Modulo Theories (SMT) is also a decision

problem but with more complex theories rather than only

propositional logic. A detailed introduction is given in [18].

SMT is is about checking the satisfiability of first-order

formulas containing operations from various theories such

as the Booleans, bit-vectors, arithmetic, arrays, and recursive

data-types.

SMT solvers are available that handle complex formu-

las such as Z3 [19], MathSAT [20], Boolector [21], and

SWORD [22].

III. GENERAL IDEA

In this work, we are proposing a new search method that

determines matching sub-circuits in a circuit given a template

while keeping the general concepts for template matching

as they have been explained in [9]. Instead of applying

heuristics for the search, we suggest an exact and efficient

template matching algorithm based on SMT which allows

to exhaustively explore the full search space and therefore

guarantees that a matching sub-circuit is found if it exists.

Fig. 5 outlines the proposed approach. Given a template

with m gates and the original circuit, the proposed algorithm

creates a Boolean formula encoding the decision problem

a a

b b

c c

d d

(a) Circuit

a a

b b

c c

d d

(b) Template

Fig. 6. Reversible circuit and template

whether there exists a sub-circuit in the original circuit that

matches the first k gates of the given template. While initially

setting k ← m, k is decremented by 1 as long as the

Boolean formula is unsatisfiable. If the formula is satisfiable

the matching sub-circuit can be extracted from the satisfying

assignment that is returned from the SMT solver. The template

length k is only decreased as long as the left part of the

template is larger in cost than the right one.

IV. ENCODING USING SMT

This section describes the proposed approach in detail. The

encoding as a decision problem is explained by listing all

constraints that are necessary for searching a correct match

of a given template in a circuit.

A. Decision Problem

The overall decision problem can be stated as follows.

Let G = g1 · · · gd be a circuit of n lines and T = g′1 · · · g′d′
be a template of n′ lines with gj = (Cj , tj) and g′i = (Ci, ti)
for j = 1, . . . , d and i = 1, . . . , d′, respectively. The con-

sidered lines are defined over the variables {x1, . . . , xn} and

{x′1, . . . , x′n′}, respectively. Can the first k ≤ d′ gates of the

template T be matched in G, i.e. can positions m1, . . . ,mk

in G be found such that the gates can be moved together

and resemble the first k gates of T . Notice that also the

order of lines in the template does not necessarily need

to match the original order of lines in the circuit. As a

result, besides the matching positions m1, . . . ,mk also a line

reordering l1, . . . , ln′ is part of the solution, if the template

can be matched.

Example 3: Figs. 6(a) and 6(b) show a circuit and a tem-

plate, respectively. The first k = 4 gates of the template can

be matched to the gates in the circuit at positions m1 = 3,

m2 = 4, m3 = 5, and m4 = 6 when a line mapping l1 =
1, l2 = 3, l3 = 2, and l4 = 4, i.e. x1 
→ x′1, x2 
→ x′3,

x3 
→ x′2, and x4 
→ x′4.

B. Gate Positions and Line Mapping

The variables m1, . . . ,mk and l1, . . . , ln′ represent gate and

line indexes in the intervals [1, d] and [1, n′], respectively. A

one-hot encoding is used for all these variables, i.e.

�mi ∈ IBd for i = 1, . . . , k

and

�lj ∈ IBn′ for j = 1, . . . , n′

331331330330



�c1 = 1001100 �t1 = 0000001

�c2 = 0010010 �t2 = 1001000

�c3 = 0110111 �t3 = 0000000

�c4 = 1000001 �t4 = 0110110

Fig. 7. Circuit encoding

�c1
′ = c̃0 ∨ c̃1 ∨ c̃2 �t1

′
= 00000

�c2
′ = c̃0 ∨ c̃1 ∨ c̃2 �t2

′
= 00000

�c3
′ = 10010 �t3

′
= 01001

�c4
′ = 00000 �t4

′
= 10110

c̃0 = 00000 c̃1 = 01101 c̃2 = 10110

Fig. 8. Template encoding

such that ν �m1 = · · · = ν �mk = ν�lj = · · · = ν�ln′ = 1, where

the sideways sum ν denotes the number of all 1 bits in a bit-

vector. The single bit that is set in the vectors denotes the

respective index.

Two constraints are sufficient to enforce both the ordering

of the positions mi and guarantee the one-hot encoding, i.e.

0 < �mi < �mi+1 for i = 1, . . . , k − 1

and ∧
i �=j

(�mi ∧ �mj = 0) ∧ ν �M = k

with �M =
∨k

i=1 �mi being the bit-mask containing all position

indexes. The line mapping variables do not have to follow an

order, however all bit-vectors need to be one-hot encoded and

they must all differ, i.e.

∧
i�=j

(�li ∧�lj = 0) ∧
n′∧
j=1

�lj �= 0 ∧
n′∧
j=1

�lj = 1 . . . 1︸ ︷︷ ︸
n′ times

.

C. Circuits and Templates

In order to represent circuits, we are making use of two

different encodings which are both used later for constraining

the mapping. They both share the property that control lines

and targets are separately represented as bit-mask, however

once in vertical and once in horizontal orientation. For the

circuit’s lines, we are following the horizontal scheme, i.e. for

each control line and for each target line we add bit-vectors

�ci ∈ IBd with �ci[j]⇔ xi ∈ cj

and
�ti ∈ IBd with �ti[j]⇔ xi = tj

for i = 1, . . . , n and j = 1, . . . , d. Note that the bit-vector

indices start from 1.

Example 4: The encoded bit-vectors for the circuit lines of

the initial circuit from Fig. 6(a) are illustrated in Fig. 7.

For the templates we are using a slightly different encoding

that captures the different modification possibilities that exists

for templates and have been illustrated in Fig. 3. Further, for

the encoding we assume that the template can be extended to

at most n lines such that it fits the circuit. Also, let us assume

that the template has τ T-lines. Then the first n − τ circuit

lines for the template are defined as

�ci
′ ∈ IBk with �ci

′ =
n′−τ∨
j=0

c̃j (i ≤ n− τ )

and
�ti
′ ∈ IBk with �ti

′
= 0 . . . 0 (i ≤ n− τ )

with

c̃j ∈ IBk with

{
0...0 if j = 0,

c̃j [�]⇔ x′j ∈ c� otherwise.

That is, there are no targets on these lines and a control line

can be either one of all possible C-lines (encoded as c̃>0) or

also 0 . . . 0 (encoded as c̃0) indicating that the line is not used

by the template. The lines for i > n − τ are encoded in the

exact same manner as for the original circuit lines.
Example 5: The encoded bit-vectors for the circuit lines of

the template from Fig. 6(b) are illustrated in Fig. 8. Notice

that the order of the C-lines as it is given in Fig. 6(b) does

not matter anymore and is encapsulated in the c̃j variables.

From the bit-vectors �ci
′ and �ti

′
we are deriving new bit-

masks čj
′ and ťj

′
that describe the circuit in a vertical

orientation, i.e. each bit-vector corresponds to a gate instead

of a line. These are bit-vectors

čj ∈ IBn with čj
′[i] = �ci

′[j]

and

ťj ∈ IBn with ťj
′
[i] = �ti

′
[j].

D. Mapping
Given all bit-vector encodings from above, we can define

the constraints that map template gates to circuit gates with

respect to a line mapping. For this purpose, we make use of

the function @ : IBn × IBn → IB with

@ : (�a,�b) 
→ �a ∧�b �= 0

where �a,�b ∈ IBn. We are using the function only in cases

where �b is one-hot encoded, hence, the function evaluates to

true if and only if the one bit that is set in �b is also set in �a.

Given that, we can formalize the most important mapping

for the encoding which maps template gates to circuit gates,

expressed as

čj
′@�li = �ci @ �mj and ťj

′
@�li = �ci @ �mj

with i = 1, . . . , n and j = 1, . . . , k. Taking the control lines,

that is the formula on the left hand side, it means the following.

Assuming there is a control line in the jth gate of the template

at the line where line i maps to. Then, there must also be a

control line in the jth gate chosen by the mapping �mj in

the original circuit at line i and vice versa. The same applies

for target lines. Notice that the fact that we have vertical and

horizontal encodings for template and circuit gates plays a key

role in this encoding.

332332331331



1 73 4 6

2

5

Fig. 9. Moving rule graph for circuit in Fig. 6(a)

E. Moving Rule

The encodings given so far are not sufficient yet, since at

the current state arbitrary gates in the original circuits can

be matched although it might not be possible to move them

together. As a consequence, the moving rule needs to be

encoded into the SMT instance as well.

In order to have a formal representation of the moving

rule, we are making use of the moving rule graph that has

been introduced in [23]. In a moving rule graph each vertex

represents a gate of the circuit and two gates are connected

by an edge if and only if the gates cannot be interchanged by

moving.

Example 6: The moving rule graph for the circuit in

Fig. 6(a) is depicted in Fig. 9.

We write gi < gj if gj cannot be moved before gi and

gate gi cannot be moved past gj . Since the moving rule is

transitive, gi < gj if and only if there exists a path between

the vertex representing gi and the vertex representing gj in the

moving rule graph.

This leads to the final constraint which ensures the moving

capabilities. For all 0 < i < j < k ≤ d such that gi < · · · <
gj < gk and there is no j′ such that gi < gj′ < gk, add the

constraint
�M [i] ∧ �M [k]⇒ �M [j].

These constraints can easily be generated with the help of the

moving rule graph.

Example 7: Given the moving rule graph in Fig. 9, the

extracted constraints are as follows:

�M [1] ∧ �M [7]⇒ �M [2] �M [1] ∧ �M [7]⇒ �M [5]
�M [1] ∧ �M [7]⇒ �M [6] �M [1] ∧ �M [6]⇒ �M [4]
�M [1] ∧ �M [4]⇒ �M [3] �M [3] ∧ �M [7]⇒ �M [6]
�M [3] ∧ �M [6]⇒ �M [4] �M [4] ∧ �M [7]⇒ �M [6]

V. EXPERIMENTAL RESULTS

The proposed approach has been implemented in C++. In

order to read the reversible circuits as well as the templates,

we used the open source toolkit for reversible circuit design

RevKit [24]. The SMT problem, i.e. the template matching

problem is encoded using the metaSMT [25] framework which

provides the use of SAT and SMT solvers directly over its

API through the language. Different solvers can be used

within the metaSMT framework, for our experiments the

Boolector [21] SMT solver turns out to be the most efficient

one. The approach has been evaluated on a Dual-Core AMD

Processor with 4 GB of main memory. We used circuits

provided in RevLib [26] as benchmarks. We have compared

our approach to the one proposed in [9] and used the same

set of templates that is presented in the work.

Table I summarizes the obtained results for the conducted

experiments. The first three columns give the name of the

initial not optimized circuits as well as its number of gates

and quantum cost (QC). In the following columns, the obtained

results for the heuristic template matching approach and the

proposed approach are presented. For each the resulting num-

ber of gates, the quantum cost, the run-time, and the improve-

ment compared to the initial circuit is given (Impr/IC). For the

proposed approach additionally the improvement compared to

the heuristic approach is listed (Impr/HTM).

Considering quantum cost, for most of the circuits sig-

nificant cost reduction can be seen when applying the new

approach. Applying the heuristic approach reduces the quan-

tum costs by around 29.14% when considering all circuits.

It is clearly observed that these results can be improved

when applying the approach based on Boolean satisfiability.

The proposed approach leads to an additional cost reductions

of 11.42% on average and 27.46% in the best case. The results

clearly confirm the impact of the exhaustive search to the

circuit costs. The effect is in particular observable for large

circuits.

Heuristic template matching is already a time consuming

process. However, as it is shown, the new approach needs an

enormous computation time compared to the heuristic method.

This is expected due to the fact that the match is determined

exhaustively by the SAT solver, which needs higher run-time

to provide the corresponding answer.

VI. CONCLUSION

In this paper, a new search method for applying templates

in the template matching algorithm has been proposed. In-

stead of using heuristics for matching gates, the problem is

encoded into an instance of Boolean satisfiability and therefore

ensures an exhaustive examination of the search space. The

proposed approach leads to improvements in terms of circuit

costs compared to the heuristic template matching approach.

Experimental results clearly confirm these improvements.

REFERENCES

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[2] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” Foundations of Computer Science, pp. 124–134, 1994.

[3] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quan-
tum factoring algorithm using nuclear magnetic resonance,” Nature, vol.
414, p. 883, 2001.

[4] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Dev., vol. 5, p. 183, 1961.

[5] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[6] R. Cuykendall and D. R. Andersen, “Reversible optical computing
circuits,” Optics Letters, vol. 12, no. 7, pp. 542–544, 1987.

[7] R. C. Merkle, “Reversible electronic logic using switches,” Nanotech-
nology, vol. 4, pp. 21–40, 1993.

333333332332



TABLE I
EXPERIMENTAL RESULTS

Heuristic Template Matching (HTM, [9]) SMT Based Template Matching
Bench Gates QC Gates QC Time Impr/IC Gates QC Time Impr/IC Impr/HTM
3 17 6 14 6 14 0.01 0.00 6 14 0.7 0.00 0.00
4gt5 21 3 19 3 19 0.01 0.00 4 16 0.08 15.79 15.79
mod5mils 18 9 21 7 11 0.02 47.62 6 10 0.8 52.38 9.09
4gt10 22 3 47 4 44 0 6.38 4 36 0.17 23.40 18.18
aj-e11 81 22 118 22 102 0.15 13.56 24 96 13.98 18.64 5.88
hwb4 12 24 144 24 92 0.14 36.11 24 92 9.55 36.11 0.00
ex2 151 15 219 21 145 0.11 33.79 18 131 12.95 40.18 9.66
4 49 7 32 220 31 187 0.67 15.00 39 151 336.47 31.36 19.25
1-2-3 27 25 285 33 221 0.23 22.46 34 218 140.58 23.51 1.36
hwb5 132 39 339 40 320 0.79 5.60 51 295 97.88 12.98 7.81
mini-alu 84 35 483 36 392 0.29 18.84 48 348 255.12 27.95 11.22
wrd53 683 41 548 50 282 2.22 48.54 39 284 577 48.18 -0.71
hwb5 131 36 576 43 475 1.52 17.53 51 419 1371.03 27.26 11.79
C17 1172 38 654 45 509 0.99 22.17 63 419 5465.24 35.93 17.68
sym6 63 36 777 51 461 0.8 40.67 30 337 240.68 56.63 26.90
hwb5 13 75 915 83 803 10.32 12.24 87 714 6704 21.97 11.08
sym9 714 51 949 73 478 1.14 49.63 49 392 3021.39 58.69 17.99
hwb6 142 50 1002 56 992 0.66 1.00 64 896 459.54 10.58 9.68
C17 1171 31 1003 35 735 0.28 26.72 52 708 81.97 29.41 3.67
C17 117 69 1657 80 1244 1.87 24.92 112 1128 3963.94 31.93 9.32
hwb6 141 50 1826 54 1414 2.41 22.56 81 1261 2109 30.94 10.82
cm82a 1263 53 2011 58 1718 1.29 14.57 72 1360 991.97 32.37 20.84
max46 1772 45 2556 61 1224 1.15 52.11 51 1153 583.12 54.89 5.80
cm82a 1262 53 2565 61 2349 2.06 8.42 83 1704 11403.1 33.57 27.46
cm82a 1264 53 2643 57 2464 1.32 6.77 72 1897 1536.02 28.23 23.01
cm82a 1261 53 3336 71 2615 1.24 21.61 78 2162 1170.06 35.19 17.32
hwb6 14 153 3465 169 2925 3.7 15.58 172 2620 4769 24.39 10.43
m152a 1302 43 5574 43 5454 2.65 2.15 43 5452 2927.56 2.19 0.04
cm152a 130 88 8754 99 7159 7.77 18.22 106 7154 4604 18.28 0.07
cm82a 126 313 12811 356 11224 30.91 12.39 443 8847 10639 30.94 21.18

[8] K. Fazel, M. A. Thornton, and J. E. Rice, “ESOP-based Toffoli gate cas-
cade generation,” in IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, 2007, pp. 206–209.

[9] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[10] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[11] M. Soeken, R. Wille, C. Otterstedt, and R. Drechsler, “A synthesis flow
for sequential reversible circuits,” in Int’l Symp. on Multi-Valued Logic,
2012, pp. 299–304.

[12] R. Wille and D. Große, “Fast exact Toffoli network synthesis of
reversible logic,” in Int’l Conf. on CAD, 2007, pp. 60–64.

[13] M. Soeken, R. Wille, G. W. Dueck, and R. Drechsler, “Window
optimization of reversible and quantum circuits,” in IEEE Symp. on
Design and Diagnostics of Electronic Circuits and Systems, 2010, pp.
341–345.

[14] E. F. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3/4, pp. 219–253, 1982.

[15] A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A,
no. 32, pp. 3266–3276, 1985.

[16] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p.
632, technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[17] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

[18] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, 2009, pp. 825–885.

[19] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, 2008, pp.
337–340.

[20] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani,
“The MathSAT 4 SMT solver,” in Computer Aided Verification, 2008,
pp. 299–303.

[21] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for
bit-vectors and arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2009, pp. 174–177.

[22] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “SWORD:
A SAT like prover using word level information,” in VLSI of System-
on-Chip, 2007, pp. 88–93.

[23] N. Scott, G. Dueck, and D. Maslov, “Improving template matching for
minimizing reversible toffoli cascades,” in Int’l Reed-Muller Workshop,
2005.

[24] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: An Open
Source Toolkit for the Design of Reversible Circuits,” in Reversible
Computation 2011, ser. Lecture Notes in Computer Science, vol. 7165,
2012, pp. 64–76, RevKit is available at www.revkit.org.

[25] F. Haedicke, S. Frehse, G. Fey, D. Große, and R. Drechsler, “metaSMT:
Focus on Your Application not on Solver Integration,” in Int’l Workshop
on Design and Implementation of Formal Tools and Systems, 2011.

[26] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib is
available at http://www.revlib.org.

334334333333


