
Grammar-based Program Generation
Based on Model Finding

Mathias Soeken Rolf Drechsler

Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{msoeken,drechsle}@informatik.uni-bremen.de

Abstract—This paper presents an algorithm that generates test
programs in order to test programming languages and domain
specific languages using formal methods. The novelty of the
approach is that it is embedded into a model driven engineering
environment and it is described as a model finding problem.
The grammar of the language and the respective test programs
are represented as meta-models and models, respectively. As
a result, model finders are utilized to generate test programs
based on user constraints while additionally ensuring embedded
constraints of the programming languages. An experimental
evaluation demonstrates the applicability of the approach.

I. INTRODUCTION

Recently model finders have become significantly attractive

in the field of Model Driven Engineering (MDE). Leveraging

the achievements in automatic proof techniques, model finders

became applicable for solving verification tasks on meta-

models (e.g. [1]–[3]). Model finders require a meta-model

and a list of constraints and return a model that conforms

to the meta-model and meets the given constraints, if such a

model exists. Otherwise, the absence of a model adhering to

the constraints is proven.

Furthermore, model driven engineering techniques have

found application in many aspects of software engineering.

One particular example is Xtext, a parser generator that

integrates well into the Eclipse Modeling Framework (EMF),

an implementation of the Meta Object Facility (MOF) [4]

based on the Eclipse IDE. In Xtext, the grammar description is

transformed into a meta-model and each program corresponds

to a model that conforms to that meta-model. The model can

also be seen as the in-memory abstract syntax tree.

However, due to the explicit use of meta-models and

models, model finders can be directly applied. Since models

correspond to programs of the respective grammar, the result

of the model finder is a program. In other words, in the context

of Xtext and grammars as meta-models, model finders become

“program finders.”

Many approaches for grammar-based program generation

have been proposed in the past, e.g. [5]–[10]. The aim of this

paper is not to compete with these algorithms. Instead, we

show that the problem can be described in terms of a model

finding application therefore demonstrating the generality of

these methods.

The applicability of the proposed approach has been eval-

uated with experiments based on the languages CoffeeScript,

EAttribute EClass EReference

eSuperTypes*

Fig. 1. Subset of the Ecore meta-meta-model

Lua, and BibTEX. The results of the evaluation show that many

test programs can be generated efficiently.

The paper is structured as follows. In the following sec-

tion, preliminaries provide the necessary background that is

required for the paper. Section III illustrates the general idea,

while precise application scenarios are given in Section IV.

In Section V, the results of the experimental evaluation are

presented before the paper is concluded in VI.

II. PRELIMINARIES

In order to keep the paper self-contained, this section

provides the necessary background by outlining the Eclipse

Modeling Framework, Xtext, the Object Constraint Language,

and model finding.

A. Eclipse Modeling Framework

The Eclipse Modeling Framework [11] provides modeling

languages and tools in order to facilitate the development of

applications and work flows based on structured model data.

As an example, the EMF provides textual and graphical editors

to design meta-models and their models, as well as algorithms

for code generation or generation of basic editors. Initially

aiming at providing an implementation of the Meta Object

Facility [4], the EMF contains its own meta-meta-model called

Ecore which can be seen as an implementation of the Essential
MOF (EMOF) [4].

A subset of the Ecore meta-meta-model that is relevant for

ongoing discussions is depicted in Fig. 1. The central element

is a class (EClass) that describes an atomic entity and holds

data by means of attributes (EAttribute) and references (ERef-
erence) to other classes. Polymorphism is modeled with the

eSuperTypes reference. Since an arbitrary number of super

types can be specified, multiple inheritance can explicitly be

modeled with the Ecore meta-meta-model. Notice that the

Ecore meta-meta-model is modeled by its own description

means, i.e. all three classes in Fig. 1 are in fact instances

of an EClass.

978-1-4799-3525-3/13/$31.00 ©2013 IEEE

B. Xtext

The Xtext Eclipse plugin [12] is helpful when implementing

programming languages or domain specific languages (DSLs)

by covering all aspects of a complete language infrastructure.

The plugin can generate a parser, a linker, compilers, and

interpreters, as well as IDE elements such as editors, syntax

highlighting, validation, and auto checks.

Xtext’s grammar syntax is based on ANTLR [13] and in fact

ANTLR is used for a variety of tasks under the hood. An ex-

ample of such a grammar for a simple DSL is given in Fig. 2.

This DSL allows for writing statements (Line 5) to declare

variables (VarDecl, Line 8), to print variables (PrintVar,

Line 10), and to store variables in a file (SaveVar, Line 12).

Notice that no semantics has been defined in the grammar.

Choices are denoted by ‘|’ and non-terminals by quoted

strings. Furthermore, ID, INT, and STRING are predefined

rules that match identifiers, integers, and strings, respectively.

Within rules, variable assignments provide identifiers to access

the individual elements of a rule, e.g. filename in the

rule SaveVar.

Xtext can be well integrated into MDE work flows, since

besides all the language artifacts mentioned above, also a

meta-model for the grammar is automatically inferred. The

abstract syntax tree when parsing a source file is an in-memory

model that conforms to this meta-model. For this purpose,

Xtext makes use of the EMF. Roughly speaking, each rule is

translated to an EClass, each property to an EAttribute, and

each reference to another rule as an EReference based on the

Ecore language.

The Ecore meta-model for the grammar defined in Fig. 2 is

visualized in Fig. 3. As can be seen, each rule is represented

as a class and a reference has been inferred from the relation

between the program and statements. Further, the inheritance

relation between Statement and VarDecl, PrintVar,

and SaveVar has been detected. Also the name property

which all three statements have in common is automatically

detected and therefore added as an attribute to the common

parent class. In a similar fashion, attributes are generated for

the value in the VarDecl rule as well as for the file name in

1 grammar org.example.MiniDSL with
2 org.eclipse.xtext.common.Terminals
3 generate miniDSL "http://example.org/MiniDSL"

4 Program:
5 statements += Statement+;

6 Statement:
7 VarDecl | PrintVar | SaveVar;

8 VarDecl:
9 name = ID "=" value = INT;

10 PrintVar:
11 "print" name = ID;

12 SaveVar:
13 "save" name = ID "to" filename = STRING;

Fig. 2. Xtext grammar for a simple domain specific language

Program
Statement

name: EString

VarDecl
value: EInt

PrintVar
SaveVar

filename: EString

statements
1..*

Fig. 3. Meta-model generated from grammar in Fig. 2

the SaveVar rule.

In summary, the model hierarchy imposed by the Xtext

framework is outlined in Fig. 4. Each grammar is an instance

of the Ecore model and each program is an instance to its

respective grammar.

C. Object Constraint Language

Meta-models such as the ones built with the EMF and

introduced in the previous sections can additionally be ex-

tended by textual constraint given in the Object Constraint
Language (OCL) in order to restrict the set of valid models

that can be instantiated from it [14]. OCL offers a variety

of functions and notations in order to write constraints and

object query expressions on model elements that cannot be

described by means of the modeling language, which is often

only available in a diagrammatic representation. Plugins such

as OCLinEcore [15] allow for a convenient integration within

other modeling tools.

As an example, the constraint

context Program inv decl:
statements->select(not oclIsTypeOf(VarDecl))

->forAll(s | statements->exists(s2|
s2.oclIsTypeOf(VarDecl) and
s.name = s2.name))

(1)

expresses that all statements which are not variable decla-

rations must refer to declared variables. In detail, first a

subset of all statements consisting of only PrintVar and

SaveVar statements is obtained using the select function. For

all elements in this subset, there must exists another statement

which is of type VarDecl such that the variable names match.

We distinguish between integrity constraints which are

constraints that are part of the meta-model and must hold for

any instantiated model and additional constraints that must be

only valid under certain local considerations. The constraint in

Equation (1) is an integrity constraint, since for each model it

Ecore Model

Grammar

Prog. Prog. Prog.

Grammar

Prog. Prog. Prog.

Grammar

Prog. Prog. Prog.

Meta-
meta-
model

Meta-
model

Model

instance-of

instance-of

Fig. 4. Model hierarchy

Model
Finder

Meta-model

Scope

Constraints

Blocked models

Model
or

unsatisfiable

Fig. 5. Model finder

must hold that every used variable is being defined. In contrast

to that, the constraint

context VarDecl inv positive:
value > 0

(2)

is an additional constraint that requires all variables being

initialized with positive values.

D. Model Finding

Given a meta-model and additional constraints, a model
finder returns one model that meets the additional constraints

or proves that no such model exists. In order to execute a

model finder automatically also a scope has to be given as

input, i.e. bounds for possible object instances and values for

data types. This is necessary as otherwise the problem of

finding a model becomes undecidable [16]. As an example,

one could restrict the scope to 100 statements and 32-bit

integers when performing model finding on the meta-model

in Fig. 3.

Model finders have been implemented using different strate-

gies such as Boolean satisfiability [1], [17], SMT [2], or con-

straint satisfaction problems [18]. Although mainly focusing

on UML [19], the approaches can easily be applied to similar

languages such as EMF, as e.g. demonstrated in [20].

In the scope of this work we consider model finders as

a black box as depicted in Fig. 5. Besides the meta-model,

constraints, and scopes, a further input is given by a set of

blocking models. Since a model finder can only find one

model, found models are added to the set of blocking models

in order to iteratively find several solutions. The user has no

influence on the found solution other than by constraints and

blocking models. This solution can be arbitrary, in particular

since the model finder depends on the underlying proof

algorithms which in turn often make use of random numbers

when traversing the search space.

III. OVERALL FLOW

Fig. 6 outlines the overall flow for the proposed algorithm

using paper sheets and gears to depict files and programs,

respectively. The large box encloses the algorithm that takes

two inputs and produces one output. More precisely, given

• a grammar that describes the syntax of the programming

language

• and additional constraints that describe properties,

test programs are automatically generated which meet the

given constraints. For this purpose, first a meta-model is

automatically deduced from the grammar description of the

programming language as it has been demonstrated in Sec-

tion II-B. This meta-model is given as input to a model finder

Chunk Statement

Block
Statement_For_Numeric

iteratorName: EString

Expression

statements
*

block 1

1
startExpr

0..1
stepExpr

untilExpr 1

Fig. 7. Excerpt of the Lua grammar as meta-model

together with the additional OCL constraints which describe

the constraints for the desired test case. If the model finder

cannot find a satisfiable solution it can be concluded that no

program exists that fulfills the constraints. In this case, either

the constraints were formulated too strong or there is a bug

in the grammar representation. If however, the model finder

returns a valid model, it can be transformed into a program of

the tested programming language using Xtext.

Please notice that the OCL constraints are not only con-

straints on the deduced meta-model, but also on the grammar

itself, in particular since all names are preserved when map-

ping rules and variables to classes and attributes or references,

respectively. As a result, the developer does not need to know

any properties of the meta-model which stays hidden in the

algorithm and is only used internally.

IV. PROGRAM CONSTRAINTS

This section illustrates how OCL constraint can be used in

order to generate test programs by making use of the grammar

and the model finder. We do this exemplary using two use

cases, nested for loops and statement diversity.

A. Nested For Loops

The first use case describes how to obtain nested for loops

using OCL constraints. For this purpose we use the Lua

grammar of which the relevant excerpt is given in Fig. 7.

A program is organized in chunks, where chunks and blocks

have in principle the same syntax, just share different names.

A chunk can be seen as the entry point of a program which is

nothing else but an executable block. Each block has a possible

non-empty list of statements and one particular statement is

the numeric for loop. It consists of an iterator name and three

expressions for initializing the iterator (startExpr), querying

the iterator (untilExpr), and updating the iterator (stepExpr).
The syntax of a numeric for loop is given as:

for iteratorName = startExpr,untilExpr,stepExpr do
block

end

Given a scope of one chunk, n blocks (including the chunk),

and n − 1 numeric for statements, applying the model finder

to the Lua grammar with the constraint

context Chunk inv nested:
Block.allInstances()->one(statements->size()=0)

(3)

yields test programs which have n − 1 nested numeric for

loops.

Xtext

Grammar Meta Model

OCL Constraints

Finder

Model

Xtext

Program

Xtext

Meta Model

Model

Finder Xtext

Automatic Program Generation

Fig. 6. Overall flow of the proposed algorithm

Notice that the constraint ensures the nested for loop struc-

ture, however, all other elements of the test program such as

the iterator name or loop expressions can be arbitrary assigned

by the model finder. Calling the model finder in an iterative

manner while additionally blocking previously found solutions

automatically yields different test programs that share the

property of having nested for loops.

B. Statement Diversity

Next, programs should be generated that consist of a diver-

sity of statements. More precisely, each block in a program

should consist of a defined minimum of statements which

should all be of different kinds. It turns out that this task is not

as easy as the previous one and requires some modification of

the grammar meta-model. However, the modification of the

meta-model is an easy step in Xtext as it has special post-

process methods that can be integrated into the work flow.

We are adding an integer attribute type to the class State-
ment that is the common super class for each statement. Then,

each statement specialization is enhanced with an integrity

constraint as follows:

context Statement_For_Numeric inv t: type = 0
context Statement_For_Generic inv t: type = 1
context Statement_While inv t: type = 2
context Statement_Repeat inv t: type = 3
...

This ensures that each statement has a different type, which

is necessary as it is not possible to compare the types in OCL

expressions directly. Given the extension of the meta-model

by the type attribute and the respective integrity constraints

programs with diverse statements can be generated e.g. by

using the following additional constraint:

context Block inv diverse:
statements->size() >= 3 and
statements->forAll(s1, s2 |

s1 <> s2 implies s1.type <> s2.type)

It states that each block must have at least three statements

and that the types of these statements must be unique.

As can be seen, constraints can be posed using only a few

short OCL expressions. Sometimes it might be necessary to

extend the meta-model which is a simple task when using

Xtext’s extension methods.

TABLE I
EVALUATED PROGRAMMING LANGUAGES

Language Rules References Variables
CoffeeScript 66 76 14
Lua 59 75 15
BibTEX 40 73 26

TABLE II
EXPERIMENTAL RESULTS

Language Benchmark Run-time (secs)
CoffeeScript Nested For (n = 25) 0.46
CoffeeScript Nested For (n = 26) 0.48
CoffeeScript Nested For (n = 27) 0.53
CoffeeScript Nested For (n = 28) 0.57
CoffeeScript Nested For (n = 29) 0.61
CoffeeScript Nested For (n = 30) 0.63
Lua Nested For (n = 25) 0.66
Lua Nested For (n = 26) 0.68
Lua Nested For (n = 27) 0.71
Lua Nested For (n = 28) 0.74
Lua Nested For (n = 29) 0.80
Lua Nested For (n = 30) 0.81
BibTEX Diversity (n = 16) 0.36
BibTEX Diversity (n = 17) 0.41
BibTEX Diversity (n = 18) 0.43
BibTEX Diversity (n = 19) 0.47
BibTEX Diversity (n = 20) 0.50
BibTEX Diversity (n = 21) 0.54
BibTEX Diversity (n = 22) 0.62
BibTEX Diversity (n = 23) N/A

V. EXPERIMENTAL EVALUATION

We have implemented the proposed approach using

Xtext 2.3.1 [12] and ocl2smt [2] as model finder using Z3 [21]

as back-end solver. As languages CoffeeScript [22], Lua [23],

and BibTEX [24] were used. Their grammar characteristics

such as number of rules, number of references to other rules,

and local variables (such as integers and strings) are listed in

Table I.

For CoffeeScript and Lua we have conducted the “nested

for” experiment that has been described in Section IV-A

whereas for BibTEX we have generated instances which cover

many different entry types as described in Section IV-B.

All results are listed in Table II. The configuration param-

eter n describes the number of nested loops and the number

of overall entries for the nested for and diversity experiments,

respectively. As can be seen, each experiment was processed

within less than a second, hence the approach can generate test

programs in a reasonable run-time. The model finder based

approach should not be expected to scale better than random

test program generators. We have run into problems when

trying to generate large instances for the BibTEX diversity

benchmarks as the model finder could not create the instance.

However, this is caused by limitations in the implementation

of the model finder and should be resolved in the future.

VI. CONCLUSIONS

We have proposed an approach that facilitates model finding

algorithms in order to generate test programs for the auto-

matic testing of programming languages and domain specific

languages. For this purpose, the grammar of the language is

interpreted as a meta-model such that programs of the lan-

guage can be seen as models conforming to this meta-model.

As a result, model finders act as program finders that not only

ensure the embedded constraints of the language (by means

of integrity constraints in the meta-model) but also additional

constraints that should hold for the generated test program in

mind. Using model finders, many constraints can be posed

in order to generate test programs in comparison to random

test generators in which the generator’s implementation needs

to be adjusted to support new constraints. An experimental

evaluation demonstrates that the approach is feasible although

formal methods are used under the hood.
In future work we want to concentrate on a better integration

into the work flow, e.g. by implementing the whole algorithm

as an Eclipse plugin. Furthermore, it would be interesting to

explore how scalable the approach performs when generating

very large instances and determine common patterns in the

constraints leading to a possible domain specific constraint

language for the generation of test programs.

REFERENCES

[1] Jackson, D.: Software Abstractions: Logic, Language, and Analysis.
MIT Press, Cambridge, MA, USA (April 2006)

[2] Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.:
Verifying UML/OCL models using Boolean satisfiability. In: Design,
Automation and Test in Europe. (March 2010) 1341–1344

[3] Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and valida-
tion of declarative model-to-model transformations through invariants.
Journal of Systems and Software 83(2) (2010) 283–302

[4] Object Management Group: OMG Meta Object Facility (MOF) Core
Specification. (August 2011) Version 2.4.1.

[5] Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs
in C compilers. In: ACM Conf. on Programming Language Design and
Implementation. (June 2011) 283–294

[6] Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski,
B., Yang, X.: Testing Static Analyzers with Randomly Generated
Programs. In: Int’l Symposium on NASA Formal Methods. (April 2012)
120–125

[7] Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based
on Java predicates. In: Int’l Symp. on Software Testing and Analysis.
(July 2002) 123–133

[8] Khurshid, S., Marinov, D.: TestEra: Specification-Based Testing of Java
Programs Using SAT. Journal of Automated Software Engineering 11(4)
(October 2004) 403–434

[9] Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox
fuzzing. In: ACM Conf. on Programming Language Design and
Implementation. (June 2008) 206–215

[10] Majumdar, R., Xu, R.G.: Directed test generation using symbolic gram-
mars. In: Int’l Conf. on Automated Software Engineering. (November
2007) 134–143

[11] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse
Modeling Framework. 2 edn. Addison-Wesley Professional, Amsterdam
(December 2008)

[12] The Eclipse Project: Xtext http://www.eclipse.org/xtext.
[13] Parr, T.: The Definite ANTLR4 Reference. The Pragmatic Bookshelf

(September 2012) First beta release.
[14] Warmer, J., Kleppe, A.: The Object Constraint Language: Precise

modeling with UML. Addison-Wesley Longman, Boston, MA, USA
(March 1999)

[15] The Eclipse Project: OCLinEcore
http://wiki.eclipse.org/MDT/OCLinEcore.

[16] Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class
diagrams. Artificial Intelligence 168(1-2) (October 2005) 70–118

[17] Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A
Challenging Model Transformation. In: Int’l Conf. on Model Driven
Engineering Languages and Systems. (October 2007) 436–450

[18] Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL Class
Diagrams using Constraint Programming. In: IEEE Int’l. Conf. on
Software Testing Verification and Validation Workshop. (April 2008)
73–80

[19] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language
reference manual. Addison-Wesley Longman, Essex, UK (January 1999)

[20] Pérez, C.A.C., Buettner, F., Clarisó, R., Cabot, J.: EMFtoCSP: A Tool
for the Lightweight Verification of EMF Models. In: Formal Methods
in Software Engineering: Rigorous and Agile Approaches. (June 2012)

[21] de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In Ramakr-
ishnan, C.R., Rehof, J., eds.: Tools and Algorithms for Construction
and Analysis of Systems. Volume 4963 of Lecture Notes in Computer
Science., Springer (April 2008) 337–340

[22] Schmideg, A.: CoffeeScript plugin for Eclipse using Xtext
https://github.com/adamschmideg/coffeescript-eclipse.

[23] Gerlach, S.: Xtext based Lua-Editor Blog entry at
http://xtexterience.wordpress.com/2011/05/17/xtext-based-lua-editor/.

[24] Seignard, X.: BibTEX Xtext https://github.com/xseignard/bibtex-xtext.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [11338.583 2551.181]
>> setpagedevice

