
Determining Relevant Model Elements
for the Verification of UML/OCL Specifications

Julia Seiter1 Robert Wille1 Mathias Soeken1,2 Rolf Drechsler1,2

1Group for Computer Architecture, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, D-28359 Bremen, Germany
{jseiter,msoeken,rwille,drechsle}@informatik.uni-bremen.de

Abstract—Modeling languages such as UML or SysML received signif-
icant attention over the last years. They allow for an abstract description
of systems already in the absence of a precise implementation or a hard-
ware/software partitioning. Additionally considering textual constraints,
for example provided by means of OCL, enables to automatically check
the specified systems e.g. for consistency of the structure or reachability
of certain system states. However, for the majority of verification tasks,
not the entire model has to be considered.

In this work, we propose an approach that automatically determines
reduced system models, i.e. system descriptions that only include model
elements which are relevant for the considered verification task. Con-
sidering reduced models eases the access by the designer and supports
incremental design and verification schemes. But most important, they
improve the efficiency of the applied formal verification engine. Exper-
iments demonstrate that already small reductions in the model lead to
significant accelerations in the run-time of the verification engine.

I. INTRODUCTION
In the past, various approaches for verification of UML/OCL

(Unified Modeling Language [1], Object Constraint Language [2])
models have been developed providing the possibility to ensure
correctness of a system in an early design stage [3]–[5]. However,
proving correctness of a UML/OCL model is a difficult task [6] and
employing formal methods to a UML/OCL model often requires a
significant amount of run-time. Even small models can be difficult to
verify when the consideration of dynamic behavior results in a large
number of possible system states to be checked.

However, for the majority of models and verification tasks, it is not
necessary to consider the complete model – in particular when models
are composed modularly and verification tasks consider local aspects
only. In these cases, it is sufficient to perform the verification on a
reduced model containing only those elements which are relevant
to the task at hand. Especially in large models, each attribute is
often only affected by a subset of invariants and operations as many
components are just locally relevant.

In [7], a first approach to model reduction for the purpose of
verification, based on the idea of slicing presented in [8], has been
discussed. The authors propose to partition the model into several
sub models depending on the influence of the invariants. The single
slices are verified individually and the results are merged such that
correctness of all slices induces correctness of the original (complete)
model. Although this approach has proven to be effective in order
to reduce the time required for verification, it is not applicable for
the verification of dynamic behavior specified by UML or SysML
models since only invariants have been considered. As a result,
only verification tasks such as consistency can be conducted while
no support for tasks such as the executibility of a method or the
reachability of a good/bad state is provided.

In this paper, we propose a generic approach to model reduction
which is applicable to both, static and dynamic aspects, as well as its
corresponding verification tasks. Starting from an empty model and
a set of model elements derived from the verification task, elements
originating from the complete model and, in fact, being relevant to the
considered verification task are iteratively added to the empty model.
This eventually results in a reduced model which still is sufficient to
perform the respective checks.

As a result, the obtained model is smaller and, due to the re-
duced number of model elements to be inspected, easier to access
by the designer. Furthermore, the proposed approach supports an

incremental design and verification scheme as the designer is enabled
to verify only those parts of the model which recently have been
changed or added. Finally, also the applied verification engines profit
from the reduced model: Since fewer model elements have to be
considered, the run-time of the corresponding engines are improved.
This also has been experimentally evaluated. Our results show that
the consideration of a reduced model sometimes even enables to
solve verification tasks which could not be handled before due to
complexity reasons.

II. BACKGROUND AND NOTATION

UML/OCL enables to formally specify the structure and the
behavior of systems. UML class diagrams are usually the medium of
choice to represent the structure of a system. The main component
of a class diagram is a class that describes an entity of the model.
A class itself consists of attributes and operations, where attributes
describe the information which is stored by the class and operations
define possible actions that can be executed in order to change the
attributes’ values. Classes can be set into relation via associations.
The type of a relation is expressed by multiplicities that are added to
each association-end.

Example 1. Throughout the paper we are making use of a running
example as outlined by means of Fig. 1. It represents a fragment of a
smartphone on which apps can be executed. Both, software compo-
nents (i.e. the apps) and hardware components (i.e. the microphone
and the speaker) are specified. Three apps on the phone allow to
make a telephone call, to write a text message, and to play music.

The phone, the apps, and the hardware are represented by indi-
vidual classes which have attributes and operations depending on
their purpose. The phone is connected to all other classes by means
of 1-to-1 associations.

In order to express further properties or restrictions as well as
the behavior of a model, textual constraints provided by OCL [2]
can be added to a model. OCL conditions may appear as both, in-
variants or pre- and post-conditions of operations. Invariants are
global constraints that must be satisfied by all system states. Pre-
and post-conditions are considered only locally in the context of an
operation call. More precisely, an operation can only be invoked if
its corresponding pre-condition is satisfied. Afterwards, the following
system state needs to match the operation’s post-condition.

Example 2. According to the system description of the smart-
phone device in Fig. 1, the operation CallingApp::placeCall can
only be invoked if the user is not already on a call (denoted by
not inCall) and still has more than 10 units of credits left (denoted by
phone.credit >= 10). After the execution of this operation, a system
state must be reached where inCall is set to true.

In the remainder of this paper, UML/OCL models are formally
denoted as follows: A UML/OCL model is a tuple m = (C,R)
composed of a set of classes C and a set of associations R.

A class c = (A,O, I) ∈ C of a model m is a tuple composed
of attributes A ⊆ V , operations O, and invariants I ⊆ Φ. The set V
denotes all variables of the model, whereas the set Φ refers to all OCL
conditions of the model. An OCL condition ϕ ∈ Φ is defined as a
function ϕ : V ′ → IB with its domain dom(ϕ) = V ′ ⊆ V being a978-3-9815370-0-0/DATE13/ c©2013 EDAA

Speaker
volume: Integer
file: String
setVolume(volume: Integer)

Microphone
enabled: Boolean

CallingApp
inCall: Boolean
placeCall(number: String)
talk()
closeCall()

MessagingApp
enabled: Boolean
sendMessage()

MusicApp
songs: Sequence(String)
currentSong: Integer
playNextSong()

Phone
credit: Integer
charge(credit: Integer)

context CallingApp::placeCall(number: String)
pre: not inCall and phone.credit >= 10
post: inCall

context CallingApp::talk()
pre: inCall and phone.credit >= 10
post: phone.credit = phone.credit@pre - 10

context CallingApp::closeCall()
pre: inCall
post: not inCall

context MessagingApp::sendMessage()
pre: enabled and phone.credit >= 5
post: phone.credit = phone.credit@pre - 5

context MusicApp::playNextSong()
pre: currentSong < songs->size() - 1
post: currentSong = currentSong@pre + 1
post: phone.speaker.file = songs->at(currentSong)

inv i1: enabled = phone.callingapp.inCall

context Phone::charge(credit: Integer)
pre: credit > 0
post: self.credit = self.credit@pre + credit

Fig. 1. UML/OCL model of a smartphone specification

subset of the model’s variables. Furthermore, an operation o ∈ O is
defined as a tuple o = (P,C,B) with a set of parameters P ⊆ V
and pre- and post-conditions C ⊆ Φ and B ⊆ Φ, respectively.

An n-ary association r ∈ R of a model m is a tu-
ple r = (rends, rmult) with association ends rends ∈ Cn for a given
set of classes C and multiplicities rmult ∈ (IN0 × IN)n that is defined
as a range with a lower bound and an upper bound. Associations
ends are also variables of the model, i.e. rends ⊆ V .

III. CONSIDERATION OF RELEVANT MODEL ELEMENTS

UML/OCL provides a formal description of a system to be realized.
As a result, the structure, the behavior, and properties of the described
system can be checked for correctness already in the absence of a pre-
cise implementation. Consistency checks [9] are a prominent example.
Various independently added constraints (e.g. invariants) may lead to
contradictions in the system which prohibits any valid system state
to be instantiated. Consistency checkers such as proposed in [10],
[11] can automatically determine whether a model is consistent or
not. Besides that, also verification tasks that consider the dynamic
aspects of a model [3], [4] are being considered. Here, it is checked
whether certain states (e.g. bad states, good states, deadlock states,
etc.) are reachable according to the formal description of the system
behavior through pre- and post-conditions of operations.

However, existing approaches usually consider the entire model
when addressing the respective verification tasks. This is crucial since
the automatic formal verification of UML/OCL models is a very
complex and time consuming task. In fact, the search space and, thus,
the run-time of the respective solve engines often grows exponentially
with respect to the model size. In contrast, for many verification tasks
not the entire model has to be considered.

Example 3. Assume that, for the formal system specifica-
tion from Fig. 1, it should be verified whether the opera-
tion MusicApp::playNextSong can ever be executed. For this, it
is sufficient to show that from a given initial state a system state
meeting the operation’s pre-conditions can be reached, i.e. a typical
reachability problem is addressed. However, not the entire model from
Fig. 1 needs to be considered. Obviously, the attributes used in the
pre-condition, i.e. currentSong and songs, are relevant for this case.
But since they are neither affected by any other operation nor an
invariant, all remaining model elements can be discarded. Hence,
a consideration of these two attributes as well as its corresponding
class MusicApp only is sufficient to solve this verification task.

Considering only relevant parts of a UML/OCL model during the
verification has some obvious benefits:
• A smaller model size accelerates the applied solving engines

since instead of the entire model only the relevant sub model is
considered.

• Manual interactions of the design team with the model are
improved. If e.g. a design flaw has been detected, the team can
focus on the affected parts of the model and are not being misled
by the remaining parts. This can also be exploited for automatic
debugging methods such as [12].

• Incremental design and verification schemes are improved. New
elements can subsequently be added to the model. In each
iteration, only the newly added model elements as well as
elements affected by them have to be checked for correctness.

In order to ensure completeness, all relevant model elements need
to be considered. Depending on the size of the model as well as on
the considered verification task, determining the relevant elements is
a non-trivial task.

Example 4. Assume now that it should be verified whether the oper-
ation CallingApp::placeCall can ever be executed. To meet the corre-
sponding pre-condition, the values of the attribute inCall of the same
class needs to be set to false. Furthermore, also the attribute credit
of the connected phone must have a certain value. Consequently,
the classes CallingApp and Phone with their attributes as well as
all invariants and operations whose post-conditions include these
attributes are relevant for the verification task. Moreover, also the
classes Microphone and MessagingApp and their attribute enabled
need to be considered as they affect the value of inCall and credit and,
thus, are also relevant to the verification task. In contrast, e.g. the
classes MusicApp and Speaker can entirely be ignored in this case.

Already in this simple example, all dependencies are not obvious
at a first glance. Hence, a structured approach which completely
determines all relevant model elements for a given model and
verification task is introduced in the next section.

IV. DETERMINING RELEVANT MODEL ELEMENTS

In this section, we describe the proposed reduction method
by means of Algorithm 1 with its inputs being the original
model m = (C,R) with classes C and associations R as well
as the considered verification task τ . From this model a reduced
model m′ = (C′, R′) is determined by following a bottom-up
scheme: While starting with an empty model at the beginning, the
algorithm subsequently enriches it with UML/OCL model elements
that need to be considered to solve the considered verification task.

The procedure includes the execution of the following steps:
1) Initialize (Lines 1–6): Initializes the empty

model m′ = (C′, R′) to be filled as well as the required
auxiliary data-structures and determines the initial UML/OCL
model elements relevant to the verification task.

2) Add classes (Lines 7–19): Adds UML/OCL classes to the
reduced model that have been identified as relevant to the
verification task and have not yet been considered. For this,
all classes C of the original model are traversed (see Line 9).
In each iteration, it is checked whether
• attributes (Lines 10–11),
• invariants (Lines 12–14), or
• operations (Lines 15–18)

have to be added. If so, the respective model element is added
to the reduced model. At the same time, it is checked whether
these additions imply the consideration of further UML/OCL
model elements.

Input: model m = (C,R), verification task τ
Output: reduced model m′ = (C′, R′)

1 InitializeC′ ← ∅, R′ ← ∅
2 foreach i ∈ {0, . . . , |C| − 1} do
3 c′ ← (∅, ∅, ∅)
4 C′ ← C′ ∪ {c′}
5 D ← deriveModelElements(τ)
6 Dvisited ← ∅
7 Classesforeach v ∈ D \Dvisited do
8 Dvisited ← Dvisited ∪ {v}
9 foreach ci = (Ai, Oi, Ii) ∈ C do

10 Attributesif v ∈ Ai then
11 A′i ← A′i ∪ {v}
12 Invariantsforeach ϕ ∈ Ii with v ∈ dom(ϕ) do
13 I′i ← I′i ∪ {ϕ}
14 D ← D ∪ dom(ϕ)
15 Operationsforeach o = (P,C,B) ∈ Oi do
16 foreach ϕ ∈ B with v ∈ dom(ϕ) do
17 O′i ← O′i ∪ {o}
18 D ← D ∪ dom(C) ∪ dom(ϕ)
19 C′ ← {c′ ∈ C′ | c′ 6= (∅, ∅, ∅)}
20 Associationsforeach r = (rends = (c1, . . . , cn), rmult) ∈ R do
21 if (c1 ∈ D) ∨ · · · ∨ (cn ∈ D) then
22 R′ ← R′ ∪ {r}
23 foreach ci ∈ {c1, . . . , cn} with c′i /∈ C′ do
24 c′ ← (∅, ∅, ∅), C′ ← C′ ∪ {c′}
25 if {c1, . . . , cn} ⊆ C′ then
26 R′ ← R′ ∪ {r}

Algorithm 1: Proposed algorithm

3) Add associations (Lines 20–26): Checks, depending on the
classes and the invariants that eventually remained in the
reduced model, which associations of the original model have to
be considered to solve the verification task. These associations
are then added to the reduced model.

In the following, the respective steps are outlined in detail.

A. Initialize

Following the bottom-up scheme, an empty model m′ = (C′, R′)
is initialized first (see Line 1). The classes are initialized as “empty
shells”, i.e. each class is added but being initialized with no attributes,
invariants, or operations whatsoever (see Line 2-4).

Besides that, auxiliary data structures are introduced which are
required later:
• The set D (for to deduce; initialized in Line 5) stores model

elements which have been identified as relevant for the con-
sidered verification task and, thus, have to be added to the
reduced model. Furthermore, these model elements might imply
the addition of further elements to be considered. This needs to
be deduced. Initially, the respective elements are derived from
the given verification task.

• The set Dvisited (initialized in Line 6) stores UML/OCL model
elements from which possible implications already have been
deduced. By this, it is ensured that elements which have been
added to D more than once are deduced just one single time.

Example 5. In order to generate a reduced model for the ver-
ification task as described in Example 4 (i.e. the executability of
callingApp::placeCall), the reduced model m′ = (C′, R′) is initial-
ized as described above and Dvisited is initialized empty. Finally,
the set D of model elements from which further implications may
be deduced is determined. For the considered verification task,
all elements of the pre-condition of callingApp::placeCall, i.e. the
attributes CallingApp::inCall, Phone::credit, and the association
end CallingApp::phone are identified as relevant. Hence, D is set
to {CallingApp::inCall,Phone::credit,CallingApp::phone}.

B. Add Classes

In the next step, class elements identified as relevant to the verifi-
cation task are added to the reduced model and further implications

are deduced. For this purpose, each model element v in the set D
is considered (except the already visited ones stored in Dvisited, see
Line 7). Each model element is flagged visited in Line 8. Then,
all classes ci = (Ai, Oi, Ii) ∈ C of the original model are traversed
(Line 9). In each iteration, it is checked whether attributes, invariants,
or operations from the original class ci also have to be considered in
the corresponding class c′i of the reduced model.

1) Add Attributes: In case of attributes, the respective check is
simple. If the currently considered model element v (which already
has been identified as relevant to the verification task) is an attribute
of the original class ci (i.e. if v ∈ Ai), then v is also added to the
class c′i of the reduced model (i.e. v is added to A′i, see Line 11).

Example 6. In the example, the attributes CallingApp::inCall
and Phone::credit are considered and all classes of the orig-
inal model are traversed. Since these attributes belong to the
classes CallingApp and Phone of the original model, these attributes
are added to the corresponding classes CallingApp′ and Phone′ in
the reduced model, respectively.

2) Add Invariants: Invariants are added to the reduced model in
a similar fashion. All invariants ϕ ∈ Ii of the currently considered
class ci whose domain dom(ϕ) contains the currently considered
model element v are traversed (see Line 12). These invariants are
added to the corresponding class c′i of the reduced model (i.e. ϕ is
added to I ′i , see Line 13). Besides that, the invariant ϕ may imply the
addition of further UML/OCL model elements to the reduced model.
In fact, all model elements within the domain of ϕ may affect the
value of the currently considered element v. As a consequence, all
these elements are relevant for the considered verification task and,
hence, need to be added to the reduced model. This is ensured by
adding all elements dom(ϕ) to the set D (see Line 14).

Example 7. To exemplarily illustrate this step, just consider the
attribute CallingApp::inCall. Since it is restricted by the invari-
ant Microphone::i1, this invariant is also added to the set of in-
variants for class Microphone′ in the reduced model. The currently
deduced model elements D are enriched by all model elements in the
domain of that invariant, i.e. D ← D ∪ {Microphone::enabled}.

3) Add Operations: Finally, each operation o = (P,C,B) of each
class ci is considered (Line 15). Here, particularly the post-conditions
are of interest. An operation has to be added to the reduced model,
only if it affects a UML/OCL model element (v in this case) that
already has been identified as relevant for the verification task. This
is the case when v is part of the post-condition B. Hence, each
constraint ϕ in the post-condition B of the currently considered
operation is checked (see Line 16). If v is in the domain of
such a constraint (i.e. if v ∈ dom(ϕ)), the operation is added
to the respective class c′i (see Line 17). Besides that, also here
implications requiring the addition of further model elements need
to be checked. In fact, in this case, the value of v directly depends
on the domain dom(ϕ) of the constraint ϕ ∈ B. Since additionally
the operation o is only invoked if the pre-condition C holds, also
the domain of dom(C) of the pre-condition C has to be further
considered. Hence, all these model elements are added to D (see
Line 18).

Example 8. Consider for example the attribute credit of the
class Phone. Since this attribute is restricted by the post-condition of
the operation MessagingApp::sendMessage, this operation is also
added to the set of operations for class MessagingApp′. A new
element is deduced as the domain of the operation’s pre-condition
contains MessagingApp::enabled.

All classes for which no component has been added remained empty
shells and can be dropped (Line 19). It remains the consideration of
the required associations R′ between these classes.

TABLE I
EXPERIMENTAL EVALUATION

Without reduction With reduction

B
en

ch
m

ar
k

V
er

ifi
ca

tio
n

ta
sk

A
ttr

.

In
v.

O
p.

C
on

d.

A
ss

oc
.

R
un

-t
im

e

A
ttr

.

In
v.

O
p.

C
on

d.

A
ss

oc
.

R
un

-t
im

e

Traffic Exec. 4 3 3 15 1 >5000 3 2 3 15 0 0.21
light Exec. 4 3 3 15 1 15.88 3 2 3 15 0 11.19

Exec. 4 3 3 15 1 0.54 3 2 3 15 0 0.31
Reach. 4 3 3 15 1 >5000 1 1 0 0 0 0.00
Reach. 4 3 3 15 1 >5000 3 2 3 15 1 0.14
Reach. 4 3 3 15 1 >5000 3 2 3 15 1 0.04

Memory Exec. 6 2 5 26 2 >5000 5 1 5 26 2 0.28
Exec. 6 2 5 26 2 >5000 5 1 5 26 2 0.29
Exec. 6 2 5 26 2 >5000 5 1 5 26 2 0.26
Exec. 6 2 5 26 2 >5000 5 1 5 26 2 0.26
Exec. 6 2 5 26 2 >5000 5 1 5 26 2 0.27
Reach. 6 2 5 26 2 >5000 5 1 5 26 2 0.21
Reach. 6 2 5 26 2 >5000 1 1 0 0 0 0.00
Reach. 6 2 5 26 2 >5000 5 1 5 26 2 0.29

CPU Exec. 10 4 5 40 6 19.65 8 4 5 34 6 18.68
Exec. 10 4 5 40 6 5.44 8 4 5 34 6 5.41
Exec. 10 4 5 40 6 5.59 8 4 5 34 6 5.49
Exec. 10 4 5 40 6 5.60 8 4 5 34 6 5.41
Exec. 10 4 5 40 6 5.49 8 4 5 34 6 5.41
Reach. 10 4 5 40 6 5.71 8 4 5 34 6 5.58
Reach. 10 4 5 40 6 5.72 8 4 5 34 6 5.41
Reach. 10 4 5 40 6 5.90 8 4 5 34 6 5.35

C. Add Associations

To determine R′ two steps need to be performed. The first step
involves the addition of association due to references by association
ends that have been deduced and are stored in D. That is, whenever
an association end is in D, then the respective association is added
to R′ (Line 22). In addition all classes that are referred to by this
association but are not present in the reduced model, i.e. they are not
included in C′, need to be added back as empty shell (Line 23–24).
Afterwards, all associations whose association ends are contained
completely in C′ are also added to R′ (Line 25–26).

Example 9. The resulting reduced model contains the classes Phone,
CallingApp, MessagingApp and Microphone with all their attributes,
invariants, operations and pre- and post-conditions as well as the
associations between all of these classes as depicted in the original
model.

By applying this algorithm, a smaller and reduced system model
results that only includes those elements that definitely have to
be considered in order to address the respective verification task.
As a result, the benefits discussed in Section III can be exploited.
In particular, the run-time of the underlying solving engines can
significantly be improved as shown by the experimental evaluation
in the next section.

V. EXPERIMENTAL EVALUATION

The algorithm described in Section IV has been implemented in
Java and evaluated by applying it to several UML/OCL models. As
test cases, system specifications describing a traffic light preemption
(denoted by Traffic Light), a memory controller (denoted by Memory),
and a central processing unit (denoted by CPU) have been considered.
The executability of each operation in the respective models and the
reachability of three different system states have been considered
as verification tasks. As verification engine, the approach presented
in [3] has been applied. The experiments have been conducted on
a Linux 3.4 machine with a 2.4 GHz Intel Core i7 and 8 GB main
memory. The time-out has been set to 5000 seconds.

Table I shows the results of our evaluation. The first two columns
denote the name of the system model as well as the considered
verification task. Afterwards, the number of attributes (denoted by

Attr.), invariants (denoted by Inv.), operations (denoted by Op.), pre-
and post-conditions (denoted by Cond.), and associations (denoted
by Assoc.) are provided for both, the original model and the reduced
model obtained with the proposed algorithm. The resulting run-time
(in CPU seconds) needed by the verification engine is respectively
provided in the columns denoted by Run-time.

In all considered cases, it was possible to reduce the model.
Furthermore, the run-time has been improved significantly for several
tests. Without reduction, verification was limited by the applied time-
out in numerous cases. In contrast, after the obtained reduction, the
verification task could be solved easily within just a few seconds
or less. The run-time improvement depends not only the number of
removed model elements, but also on the particular element which
has been removed. This leads to the effect that the removal of a few
elements can already result in a significant reduction of the run-time.
Apparently, the removal of model elements changes the search space
in such a way that the respective verification tasks can be performed
much faster. As a result, a small model reduction often is sufficient
to improve the run-time of the verification significantly.

VI. CONCLUSION

In this work, we presented an algorithm for determining relevant
model elements for the verification of UML/SysML specifications.
Considering a reduced model leads to several benefits. Due to the
reduced number of model elements to be inspected, the resulting
model is smaller and, thus, easier to access by the designer. Incre-
mental design and verification schemes are supported as only those
parts of the model have to be verified which have recently been
changed or added. Moreover, the verification engines itself profit from
the consideration of a reduced model. As shown by an experimental
evaluation, even small reductions in the model may lead to significant
improvements in the run-time of the verification engine.

ACKNOWLEDGMENTS

This work was supported by the German Research Foundation
(DFG) within the Reinhart Koselleck project DR 287/23-1.

REFERENCES

[1] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage Reference Manual. Essex, UK: Addison-Wesley Longman, Jan.
1999.

[2] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML. Boston, MA, USA: Addison-Wesley Longman,
Mar. 1999.

[3] M. Soeken, R. Wille, and R. Drechsler, “Verifying Dynamic Aspects of
UML Models,” in Design, Automation and Test in Europe, Mar. 2011,
pp. 1077–1082.

[4] J. Cabot, R. Clarisó, and D. Riera, “Verifying UML/OCL Operation Con-
tracts,” in Integrated Formal Methods, ser. Lecture Notes in Computer
Science, M. Leuschel and H. Wehrheim, Eds., vol. 5423. Springer, Feb.
2009, pp. 40–55.

[5] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “UML2Alloy: A
Challenging Model Transformation,” in Int’l Conf. on Model Driven
Engineering Languages and Systems. Springer, Oct. 2007, pp. 436–
450.

[6] D. Berardi, D. Calvanese, and G. D. Giacomo, “Reasoning on UML
Class Diagrams,” Artif. Intell., vol. 168, no. 1–2, pp. 70–118, Oct. 2005.

[7] A. Shaikh, R. Clarisó, U. K. Wiil, and N. Memon, “Verification-driven
Slicing of UML/OCL Models,” in IEEE/ACM Int’l. Conf. on Automated
Software Engineering, Sep. 2010, pp. 185–194.

[8] M. Weiser, “Program Slicing,” in Int’l. Conf. on Software Engineering,
Mar. 1981, pp. 439–449.

[9] M. Gogolla, M. Kuhlmann, and L. Hamann, “Consistency, Independence
and Consequences in UML and OCL Models,” in Tests and Proofs.
Springer, Jul. 2009, pp. 90–104.

[10] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL Models Using Boolean Satisfiability,” in Design,
Automation and Test in Europe, Mar. 2010, pp. 1341–1344.

[11] J. Cabot, R. Clarisó, and D. Riera, “Verification of UML/OCL Class
Diagrams Using Constraint Programming,” in IEEE Int’l. Conf. on
Software Testing Verification and Validation Workshop, Apr. 2008, pp.
73–80.

[12] R. Wille, M. Soeken, and R. Drechsler, “Debugging of Inconsistent
UML/OCL Models,” in Design, Automation and Test in Europe, Mar.
2012, pp. 1078–1083.

