
A Synthesis Flow for Sequential Reversible Circuits

Mathias Soeken∗ Robert Wille∗ Christian Otterstedt∗ Rolf Drechsler∗†

∗Institute of Computer Science
University of Bremen, 28359 Bremen, Germany

†Cyber-Physical Systems, DFKI GmbH
28359 Bremen, Germany

{msoeken,rwille,ostedt,drechsle}@informatik.uni-bremen.de

Abstract—In this paper, a synthesis flow for sequential re-
versible circuits is proposed. In particular, a methodology is
introduced which transforms a finite state machine into a Boolean
function representing the sequential behavior. Having that, any
combinational synthesis approach can be exploited in order to
perform the actual synthesis. Heuristics ensure that encodings
for the states are applied which keep the costs of the resulting
circuits low. Experiments show the applicability of the approach.

I. INTRODUCTION

During the last decades, the number of transistors in
integrated circuits has been doubled approximately every
18 months (also known as “Moore’s Law”). Even if this
development may continue in the upcoming years, physical
limits will be reached in the future. In particular, power
dissipation is going to become crucial. While nowadays power
dissipation particularly is caused e.g. by non-ideal behavior
of transistors and materials (where higher levels of integra-
tion and improved fabrication process may help), a more
fundamental limit (namely “Landauers Barrier” [1]) will be
approached. Landauer stated that at each time information
is lost during computation (e.g. when an AND operation
transforms two input signals into a single output signal),
energy is dissipated. Extrapolating the recent achievements
in the development of conventional CMOS technologies, this
amount of power dissipation will halt further miniaturization
in the future [2].

As a consequence, researchers intensely studied alternative
technologies. In this context, reversible circuits [3] are promis-
ing. They perform reversible operations only, i.e. they do not
lose information during the computation and, thus, can avoid
power dissipation caused by information loss. Motivated by
this, synthesis of reversible circuits became an active research
area [4], [5], [6], [7].

However, most of the existing approaches address synthesis
of combinational reversible circuits only, while the existing
work on sequential reversible circuits mainly focuses on the
realization of latches [8], [9], [10], [11]. As an exception,
in [12] the conceptual design of sequential reversible circuits
has been explored. However, no precise synthesis procedure
was proposed. In contrast, a synthesis method based on finite
state machines has been introduced in [13]. This approach,
however, relies on a particular selected synthesis method
which further requires the construction of reversible state
machines.

In this paper, a synthesis flow is proposed which auto-
matically realizes a sequential circuit for an arbitrary finite
state machine. It generalizes the synthesis approach from [13]
by allowing conventional finite state machines as well as an

arbitrary synthesis method for the actual realization of the
reversible circuit. This enables the possibility to choose a
suitable approach in favor of a desired cost criteria.

The general idea is as follows: First, the given sequential
behavior is transformed into a combinational description.
Afterwards, state-of-the-art synthesis techniques (e.g. [4], [5])
are applied to generate the circuit structure. Having that, the
specified behavior can sequentially be executed in reversible
logic.

One important aspect is the precise encoding of the respec-
tive states. We observed, how the choice of a state encoding
affects the costs of the resulting circuit. Motivated by this,
heuristics are considered aiming for the determination of
“good” encodings, i.e. encodings that lead to circuits with low
costs.

The proposed approaches are evaluated using differ-
ent (combinational) synthesis methods. This is the first case
study investigating the applicability of an established sequen-
tial synthesis flow in the domain of reversible logic. Experi-
ments show that the costs of the resulting circuits depend on
the synthesis method applied in the second step.

In the remainder of the paper, the proposed approaches
are described using the following structure: The next section
provides basics on reversible circuits as well as selected syn-
thesis approaches and briefly introduces finite state machines.
Section III discusses sequential reversible circuits in general,
while Section IV presents the proposed synthesis approach.
Section V deals with the optimization of the state encodings.
Finally, Section VI provides the results of the experimental
evaluation, while the paper is concluded in Section VII.

II. PRELIMINARIES

To keep the paper self-contained, basics on reversible cir-
cuits, the respective synthesis approaches, and finite state
machines are briefly reviewed in this section.

A. Reversible Circuits
A Boolean function f : IBk → IBk is reversible if it is

bijective, i.e. if the function maps each input pattern to a
unique output pattern. Hence, for these functions it is possible
to obtain the input pattern to a given output pattern. Reversible
circuits are logical circuits that realize reversible functions. In
order to preserve the reversibility, fan-out and feedback are
not allowed directly [14]. Thus, a reversible circuit is realized
as a cascade of reversible gates. The Toffoli gate [15] is the
most widely used gate and is also universal, i.e. all reversible
functions can be realized by means of gates of this type only.
It consists of a set of control lines and a target line. The value

2012 IEEE 42nd International Symposium on Multiple-Valued Logic

0195-623X/12 $26.00 © 2012 IEEE

DOI 10.1109/ISMVL.2012.72

299

x1 x1

x2 x2

x3 x3 ⊕ x1x2

(a) Toffoli gate

1 0

0 1

1 0

(b) Toffoli circuit

Fig. 1. Toffoli gate and Toffoli circuit

of the target lines is inverted, if and only if all control lines
are assigned a logic value 1. The functionality can be obtained
from Fig. 1(a), whereby the first two lines denote a control line
and the third one denotes the target line.

Example 1: A reversible circuit composed of Toffoli gates
is depicted in Fig. 1(b). This circuit maps e.g. the input pattern
101 to the output pattern 010. Note that due to the reversibility
this computation can be performed in both directions on the
circuit.

B. Synthesis of Reversible Circuits
Several approaches for the synthesis of (combinational)

reversible circuits have been proposed in the past. They rely
on different functional descriptions like truth tables or decision
diagrams, and, accordingly, differ in their scalability. In this
work, we apply the following two synthesis methods1:

(1) The transformation-based synthesis approach proposed
in [4] works on a truth table description of the function to
be synthesized. Traversing each row of the truth table, at
every step gates are added to the circuit so that the identity
between the inputs and outputs of the considered row is
achieved. These gates are chosen so that they do not alter rows
earlier in the table. After all rows are processed, the cascade
of gates identified in reverse order is a circuit realizing the
given reversible function. The transformation-based synthesis
approach is applicable to reversible functions only.

(2) The KFDD-based synthesis approach proposed in [6]
works on a Kronecker Functional Decision Diagram (KFDD)
representing the function to be synthesized. The approach
traverses each node of a KFDD in a depth-first manner and
stores a cascade for each visited node. Afterwards, these
cascades are merged leading to a circuit realizing the given
function. This may result in constant inputs and garbage
outputs, i.e. circuit lines with a fixed constant value assigned
to the primary input and circuit lines whose primary output
values are don’t care, respectively. This approach is applicable
not only to reversible functions, but also irreversible functions.

C. Finite State Machines
Finite state machines are used to describe the behavior of

sequential circuits to be synthesized. One commonly used state
machine is the Mealy machine [16], which provides an output
function in addition to an input-sensitive transition relation.

Definition: A Mealy machine is a 5-tuple

M = (S, so,Σ,Λ, T)

with a finite set of states S, an initial state s0 ∈ S, a finite
input alphabet Σ, a finite output alphabet Λ, and a transition

1However, any other synthesis approach can easily be integrated in the
proposed flow as well.

Combinational reversible circuit
PI

PPI

PO

PPO

FF

Fig. 2. Sequential reversible circuit

function T : S × Σ → S × Λ, which maps a source state
together with a letter of the input alphabet to a next state and
a signal of the output alphabet.
In the following, we consider a state machine to be determin-
istic. A finite state machine is deterministic, if for each state
and for each letter in the input alphabet, there exists exactly
one transition to a source state and a corresponding output
signal, i.e.:

∀s ∈ S : ∀i ∈ Σ : ∃!(s′, o) ∈ S × Λ : T (s, i) = (s′, o).

A non-deterministic finite state machine can be transformed
to a deterministic finite state machine using the powerset con-
struction. An example of a deterministic finite state machine
is given in Fig. 4(a) and considered later in detail.

III. SEQUENTIAL REVERSIBLE CIRCUITS

While a significant number of approaches for the combina-
tional synthesis of reversible circuits has been introduced in the
past, research on design solutions for sequential logic elements
is still at the beginning. One major issue is the treatment of
feedback, which is not directly allowed in reversible circuits.
Two different paradigms to overcome this restriction are
currently under detailed consideration.

The first paradigm (suggested e.g. in [12]) assumes that
a reversible circuit retains its state as long as its signal
values remain unchanged. Then, a combinational circuit can
be treated as a core component of a sequential device. More
precisely, using e.g. a conventional (i.e. irreversible) controller,
output values from one cycle are applied to the respective
input signals of the next cycle. Therefore, the clocking as
well as the feedback is handled by the controller, while the
actual computation is performed on a combinational reversible
circuit.

The second paradigm considers the realization of the se-
quential elements directly in reversible logic inhibiting the
restrictions necessary for reversible circuits. For this purpose,
several suggestions on how to realize the respective memory
elements as flip-flops, latches, or registers have been made
(see e.g. [8], [9], [10]). Using these basic sequential elements,
more complex sequential components can be constructed.

In both cases, the resulting sequential circuit has a structure
as depicted in Fig. 2. Besides primary inputs (PIs) and
primary outputs (POs), the circuit has additional lines for the
connection to the sequential element, referred to as pseudo
primary inputs (PPIs) for the present state and pseudo primary
outputs (PPOs) for the next state. For the first paradigm, a
conventional irreversible flip-flop can be used. An external
controller performs the computation and stores the signals of
the PPOs in memory elements which serve the values for the

300

f : IBn → IBm

Reversible Circuit

f : IBk → IBk

Transformation

Synthesis

Embedding

Synthesis

Fig. 3. Synthesis flow

PPIs in the next cycle. If instead a reversible memory element
is used, the design corresponds to the second paradigm.

IV. SYNTHESIS OF SEQUENTIAL REVERSIBLE CIRCUITS

In this section, the proposed synthesis flow is described.
First the main flow is outlined, followed by a more detailed
description of the respective steps.

A. Main Flow
The main flow of the proposed synthesis approach is de-

picted in Fig. 3. Starting from a deterministic finite state ma-
chine, a Boolean function representing the sequential behavior
is obtained. This function serves as input for the successive
combinational synthesis approaches and may be irreversible.
Thus, this function has to be embedded into a reversible one
if the applied synthesis approach supports reversible function
descriptions only. Afterwards, the circuit can combinationally
be synthesized. Since the synthesized function included the
sequential behavior of the finite state machine, a combinational
circuit with pseudo primary inputs and pseudo primary outputs
results which can be treated as a sequential circuit as described
in Section III. In the following, the respective steps are
described in detail.

B. Transforming the State Machine into a Boolean Function
In order to transform the sequential behavior of a finite state

machine M = (S, s0,Σ,Λ, T) into a Boolean function which
can serve as input for combinational synthesis approaches,
the elements in the sets S, Σ, and Λ are encoded as bit-
vectors. This can be done in two steps: First, the respective
elements are transformed into a numerical representation,
which afterwards can be represented as bit-vectors. Given
that, the transition relation of the finite state machine can be
expressed in terms of a bit-vector mapping.

More precisely, let M ∈ {S,Σ,Λ}. Since M is finite, the
containing elements can be enumerated using the function

enum : M → {0, . . . , |M | − 1} (1)

which assigns each element in M to a unique value from 0
to |M | − 1, where |M | denotes the cardinal number of M .
Having the numerical representation for the elements in M ,
they can be expressed as bit-vectors using the binary expansion

bv : {0, 1, . . . , |M | − 1} → IBdlog2 |M |e, (2)

s0

s1s2

0/1

1/0

0/2

1/0
0/0

1/0

(a) Finite state machine

t1 t0 r t′1 t′0 o1 o0
0 0 0 0 1 0 1
0 0 1 0 0 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0

(b) Resulting function

Fig. 4. Encoding of a state machine representing a Modulo-3 counter

which maps each natural number ν ∈ {0, . . . , |M | − 1} to a
bit-vector ~b = (b0 . . . bdlog2 |M |e−1) = bv(ν), such that

ν =

dlog2 |M |e−1∑
i=0

2ibi.

Given the mappings defined in (1) and (2), the binary encoding
for an arbitrary element µ ∈M is defined by

enc(µ) = bv(enum(µ)). (3)

Using this encoding function, the finite state machine can be
transformed into a Boolean function. Therefore, a function

f : IBdlog2 |S|e × IBdlog2 |Σ|e → IBdlog2 |S|e × IBdlog2 |Λ|e

is created, which represents the transition relation T : S×Σ→
S × Λ, i.e. which is defined by

f(enc(s), enc(i)) = (enc(s′), enc(o)),with T (s, i) = (s′, o).

Example 2: Consider the finite state machine given in
Fig. 4(a) which represents a modulo-3 counter. The finite
state machine consists of three states S = {s0, s1, s2} and
has an input alphabet Σ = {0, 1} denoting the states of a
reset signal r as well as an output alphabet Λ = {0, 1, 2}
denoting the possible output values o, respectively. Applying
the transformation described above, a function results whose
truth table is shown in Fig. 4(b) and which represents the
sequential behavior of the considered finite state machine. The
encoded states are represented by the variables t1, t0 as well
as t′1, t

′
0, while the encoded inputs and outputs are represented

by r and o1, o0, respectively.
Having such a function description, existing synthesis ap-

proaches can be applied to generate the desired sequential
circuit. However, the resulting function often is not reversible.
Thus, if the applied synthesis approach supports reversible
functions only, an additional embedding is required.

C. Embedding
Usually, k circuit lines are needed to realize a reversible

function f : IBk → IBk in reversible logic. However, in
order to embed an irreversible function into a reversible one,
additional circuit lines with constant inputs or don’t care
outputs are needed [17]. This is illustrated in the following
example.

Example 3: Consider again the finite state machine and the
respective function from Fig. 4. It can be seen, that the output
pattern 0000 occurs four times and, thus, the function is not
reversible. Adding one additional garbage line (holding don’t

301

t1 t0 r t′1 t′0 o1 o0 -
0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0
0 1 1 0 0 0 0 1
1 0 0 0 0 0 0 ?
1 0 1 0 0 0 0 ?

(a) Adding one garbage line

0 0 0 t1 t0 r t′1 t′0 o1 o0 - -
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 1 1

(b) Minimal number of garbage lines

Fig. 5. Embedding of an irreversible function

care values), the first two of these output patterns can be made
unique as shown in Fig. 5(a). But, the two remaining 0000-
outputs remain ambiguous. Thus, one more garbage output is
needed. Furthermore, in order to adjust the number of inputs
according to the number of outputs, three constant inputs have
to be added. Then, a reversible function as (partially) shown
in Fig. 5(b) results, which includes the representation of the
considered finite state machine.

In general, if the obtained function description is irreversible
and not supported by the synthesis approach at hand, garbage
outputs have to be added until all output patterns are unique.
Afterwards, constant inputs have to be added accordingly.
Then, a reversible function results, which can be passed to
the synthesis engine.

V. OPTIMIZATION OF THE STATE ENCODINGS

In the previous section, the synthesis flow for sequential
reversible circuits has been described. One important aspect is
the precise encoding of the respective states in S. In contrast
to the inputs Σ and the outputs Λ, which need to keep their
functional values, the encoding of the states can arbitrarily be
chosen as long as a unique encoding for each state s ∈ S is
ensured. In particular, the encoding function in Eq. (3) can be
replaced by any function enc : M → IBdlog2 |M |e. This enables
significant reductions in the costs of the resulting circuits as
illustrated in the following example.

Example 4: Consider again the finite state machine shown
in Fig. 4(a). Using the binary expansion in order to encode
the states, the function from Fig. 4(b) is obtained lead-
ing to a circuit with quantum costs of 412. If instead all
states s0, s1, s2 ∈ S are encoded by

enc(s0) = 10, enc(s1) = 00, enc(s2) = 11,

the synthesis approach generates a circuit with quantum costs
of 35 — a reduction by 15%.

As shown by the example, the choice of the encoding of
the states has a significant impact on the cost of the resulting
circuit. Motivated by this, further (heuristic) encodings are
considered, namely:
Random Encoding. Here, randomly generated permutations
of the binary expansions are generated and, afterwards, a
corresponding circuit is synthesized. If the costs of the re-
sulting circuit are lower than the costs of the currently best
realization, the newly generated permutation is saved. This
will be repeated for a fix number of iterations. Afterwards,
the best permutation and therefore the best circuit is returned.
Encoding based on the Hamming-distance. For many syn-
thesis approaches, it can be observed that functions with a

2Using the transformation-based approach [4] for the synthesis.

s0

s1

s2s3

s4

0/1

1/0

0/2

1/0

0/3

1/0
0/4

1/0

0/0

1/0

Fig. 6. Finite state machine representing a Modulo-5 counter

low hamming-distance between their inputs and outputs can
usually be realized with a fewer number of gates and, thus,
smaller costs. Therefore, the Hamming distance is a proper
criterion for the encoding of the states. A greedy scheme is
thereby applied: A state is encoded by a pattern which has
not already been applied for a previously considered state
and, additionally, has the lowest hamming-distance between
the current and the following state of each transition.

Encoding obtained by sifting. The best encoding can be
obtained by considering the resulting costs of circuits gen-
erated from all possible permutations of the respective state
encoding. However, this would lead to O(|S|!) possible per-
mutations to be considered. Using sifting techniques [18] this
complexity can be reduced to O(|S|2) possible permutations
to be considered, while, at the same time, often an acceptable
approximation of the best result can be obtained.

Example 5: In order to illustrate the impact of the different
state encodings, the considered heuristics have been applied to
a somewhat larger example, i.e. a modulo-5 counter which is
shown in Fig. 6. Encoding the states by means of the originally
applied binary expansion, a circuit with

36 gates, 16 lines, and quantum costs of 80
results. If in contrast the heuristics outlined above are applied,
circuits with

25 gates, 16 lines, and quantum costs of 73 (random),
32 gates, 14 lines, and quantum costs of 80 (Hamming), and
22 gates, 15 lines, and quantum costs of 66 (sifting)

can be obtained, respectively3. That is, the costs can be
reduced significantly.

VI. EXPERIMENTAL EVALUATION

In this section, experimental results obtained by the pro-
posed approach are reported. The synthesis flow depicted in
Fig. 3 has been implemented in C++ on top of RevKit [19]
and applied to finite state machines taken from the LGSynth93
benchmark set. As (combinational) synthesis approaches both,
the KFDD-based method [6] and the transformation-based
method [4], have been applied. All experiments have been
carried out on a 64-bit Intel Core 2 Duo with 2 GHz and
2 GB main memory running Linux 2.6. The timeout (denoted
by TO) was set to 3 000 CPU seconds.

3Using the KFDD-based approach [6] for the synthesis.

302

A. Evaluation of the Generic Synthesis Flow
The results of the first evaluation applying the concepts from

Section IV are listed in Table I. In the first 5 columns, the name
of the finite state machine along with the number of primary
inputs (#PI), number of primary outputs (#PO), number of
states (|S|), and number of transitions (|domT |) are given.
In the next columns, statistical data of the resulting circuits
are outlined. More precisely, the number of lines, the number
of gates, the quantum cost (QC) as well as the transistor
cost (TC) are provided4. Furthermore, the run-time in CPU
seconds needed to synthesize the respective circuits is given.

As can be seen, half the benchmark set cannot be synthe-
sized using the transformation-based synthesis approach. This
is because the method relies on truth table descriptions and,
thus, is not applicable for larger functions. Nevertheless, for
smaller finite state machines, reversible circuits with a small
amount of circuit lines can be realized. In contrast, if the
KFDD-based approach is applied, all circuits can be realized
in nearly no time and with very moderate costs. Only the
number of circuit lines is significantly higher. This fits with
the experiences made in synthesis of combinational reversible
circuits (see e.g. [6], [4]).

B. Evaluation of the Optimization of the State Encodings
In a second series of experiments, the impact of the state-

encodings on the costs of the resulting circuits have been eval-
uated. The three additional encodings outlined in Section V
are considered. The results are presented in Table II5. The
denotation of the columns is similar to Table I, except that only
the differences with respect to the results from the previous
evaluation are reported.

The results clearly confirm the impact of the state encoding
on the costs of the resulting circuits. The random heuristic as
well as the sifting heuristic lead to significant improvements
compared to the encoding based on the binary expansion. In
contrast, the Hamming-distance heuristic does not perform
that well. Except for the Hamming-distance heuristic (where
just a single encoding is considered), all these optimizations
require a larger run-time with increasing size of the finite
state machines and, therefore, possible encodings. The best
results can be achieved with the most elaborated heuristic,
i.e. the sifting heurisitic which clearly outperforms the random
encoding.

Overall, using the proposed flow as well as the considered
optimizations, sequential reversible circuit can be realized ex-
ploiting combinational synthesis methods. While here results
obtained by the transformation-based approach and the KFDD-
based approach have been evaluated, any other synthesis
method can be integrated into the flow as well.

VII. CONCLUSION

In this paper, a synthesis flow for sequential reversible
circuits has been proposed. In particular, a finite state ma-
chine is transformed into a Boolean function representing
the sequential behavior. Afterwards, this function is realized

4For quantum cost and transistor cost the metric provided in [20] is applied.
5Please note that, due to page limitations, only the results obtained by the

KFDD-based approach are reported.

using combinational synthesis methods which may require an
additional embedding step. The approach has been applied
using different synthesis methods, therewith providing a case
study investigating the applicability of an established sequen-
tial synthesis flow in the domain of reversible logic for the
first time. Heuristics ensure that encodings for the states are
applied which keep the costs of the resulting circuits low.
The resulting circuits can be applied to different paradigms
proposed for sequential reversible circuits, i.e. the respective
pseudo primary inputs can be triggered by an external con-
troller or by reversible memory elements.

ACKNOWLEDGMENTS
This work was supported by the German Research Founda-

tion (DFG) (DR 287/20-1).

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development, vol. 5, no. 3, pp.
183–191, July 1961.

[2] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to binary logic switch scaling – a gedanken model,” Proc. of the IEEE,
vol. 91, no. 11, pp. 1934–1939, Nov. 2003.

[3] C. H. Bennett, “Logical reversibility of computation,” IBM Journal of
Research and Development, vol. 17, no. 6, pp. 525–532, Nov. 1973.

[4] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Confer-
ence. ACM, June 2003, pp. 318–323.

[5] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conference. ACM, July 2009,
pp. 270–275.

[6] M. Soeken, R. Wille, and R. Drechsler, “Hierarchical synthesis of
reversible circuits using positive and negative davio decomposition,” in
Workshop on Reversible Computation, July 2010, pp. 55–58.

[7] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of Reversible Circuits with Minimal Lines for Large Functions,”
in Asia and South Pacific Design Automation Conference, Jan. 2012.

[8] H. Thapliyal, M. Srinivas, and M. Zwolinski, “A beginning in the
reversible logic synthesis of sequential circuits,” in Int’l Conf. on
Military and Aerospace Programmable Logic Devices, Sept. 2005.

[9] M.-L. Chuang and C.-Y. Wang, “Synthesis of reversible sequential
elements,” in Asia and South Pacific Design Automation Conference.
IEEE, Jan. 2007, pp. 420–425.

[10] N. M. Nayeem, M. A. Hossain, L. Jamal, and H. M. H. Babu, “Efficient
design of shift registers using reversible logic,” in Int’l Conf. on Signal
Processing Systems. IEEE, May 2009, pp. 474–478.

[11] H. Himanshu and N. Ranganathan, “Design of reversible sequential
circuits optimizing quantum cost, delay, and garbage outputs,” J. Emerg.
Technol. Comput. Syst., vol. 6, pp. 14:1–14:31, 2010.

[12] M. Lukac and M. A. Perkowski, “Quantum finite state machines as
sequential quantum circuits,” in Int’l Symp. on Multiple-Valued Logic.
IEEE Computer Society, May 2009, pp. 92–97.

[13] L.-K. Chang and F.-C. Cheng, “Automatic synthesis of composable
sequential quantum boolean circuits,” in Int’l Conf. on Computer Design.
IEEE Computer Society, Oct. 2005, pp. 289–296.

[14] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. New York, NY, USA: Cambridge University Press, Oct.
2000.

[15] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, ser. Lecture Notes in Computer Science, J. W. de Bakker
and J. van Leeuwen, Eds., vol. 85. Springer, July 1980, pp. 632–644.

[16] G. H. Mealy, “A method for synthesizing sequential circuits,” Bell
Systems Technical Journal, vol. 34, Sept. 1955.

[17] R. Wille, O. Keszöcze, and R. Drechsler, “Determining the Minimal
Number of Lines for Large Reversible Circuits,” in Design, Automation
and Test in Europe. IEEE Computer Society, Mar. 2011.

[18] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in ICCAD, M. R. Lightner and J. A. G. Jess, Eds. IEEE
Computer Society, 1993, pp. 42–47.

[19] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: An Open
Source Toolkit for the Design of Reversible Circuits,” in Reversible
Computation 2011, ser. Lecture Notes in Computer Science, vol. 7165,
2012, pp. 64–76, RevKit is available at www.revkit.org.

[20] R. Wille and R. Drechsler, Towards a Design Flow for Reversible Logic.
Dordrecht, Heidelberg, London, New York: Springer, July 2010.

303

TABLE I
EXPERIMENTAL EVALUATION OF THE GENERIC SYNTHESIS FLOW

Transformation-based Synthesis [4] KFDD-based Synthesis [6]
Function #PI #PO |S| | domT | Lines Gates QC TC Run-time Lines Gates QC TC Run-time
lion 2 1 4 11 8 455 27 950 16 944 0.29 19 42 118 472 0.01
dk15 3 5 4 32 - - - - TO 38 108 300 1 200 0.00
tav 4 4 4 49 13 34 555 6 389 160 2 185 520 2 139.85 26 56 164 608 0.00
s8 4 1 5 20 11 6 124 827 909 324 320 52.11 36 101 281 1 160 0.00
bbtas 2 2 6 24 8 613 34 557 22 736 0.44 21 49 137 552 0.01
dk27 1 2 7 14 13 34 555 6 389 160 2 185 520 2 157.78 16 45 117 464 0.00
beecount 3 4 7 28 12 16 618 2 591 761 960 456 433.88 38 115 351 1 352 0.01
dk14 3 5 7 56 11 6 780 781 658 356 160 68.01 47 158 498 1 896 0.01
shiftreg 1 1 8 16 9 1 289 93 980 55 152 1.78 18 41 113 456 0.00
ex6 5 8 8 34 - - - - TO 72 228 624 2 544 0.01
bbara 4 2 10 60 13 34 770 6 515 290 2 219 744 2 079.11 53 149 449 1 760 0.01
modulo12 1 1 12 24 8 518 30 244 19 552 0.35 17 42 118 456 0.01
ex4 6 9 14 21 - - - - TO 55 142 398 1 560 0.02
mark1 5 16 15 22 - - - - TO 65 187 515 2 016 0.02
dk512 1 3 15 30 9 1 108 84 788 46 368 1.42 34 110 286 1 176 0.00
sse 7 7 16 56 - - - - TO 87 252 724 2 880 0.00
bbsse 7 7 16 56 - - - - TO 87 252 724 2 880 0.02
cse 7 7 16 91 - - - - TO 148 469 1 401 5 520 0.02
keyb 7 2 19 170 - - - - TO 87 274 794 3 168 0.03
s1 8 6 20 107 - - - - TO 182 601 1 845 7 224 0.04
s1a 8 6 20 107 - - - - TO 126 387 1 199 4 632 0.04
ex1 9 19 20 138 - - - - TO 191 603 1 683 6 816 0.06
pma 8 8 24 73 - - - - TO 168 574 1 782 6 928 0.07
donfile 2 1 24 96 11 6 669 816 380 350 176 60.77 67 224 644 2 616 0.00
dk16 2 3 27 108 13 40 145 6 739 746 2 481 920 2 744.57 96 388 1 160 4 600 0.01
styr 9 10 30 166 - - - - TO 235 873 2 497 10 032 0.06
sand 11 9 32 184 - - - - TO 288 949 2 793 11 144 0.24
tbk 6 3 32 1 569 - - - - TO 211 758 2 034 8 312 0.07
planet 7 19 48 115 - - - - TO 268 949 2 789 11 096 0.04
planet1 7 19 48 115 - - - - TO 268 949 2 789 11 096 0.05

TABLE II
EXPERIMENTAL EVALUATION OF THE OPTIMIZATION OF THE STATE ENCODINGS

Sequential Synthesis Sequential Synthesis Sequential Synthesis
Random (QC) Hamming (QC) Sifting (QC)

Function #PI #PO |S| | domT | Lines Gates QC Run-time Lines Gates QC Run-time Lines Gates QC Run-time
lion 2 1 4 11 -4 -6 -18 1.17 0 6 6 0.00 -4 -6 -18 0.02
dk15 3 5 4 32 0 1 -3 2.11 0 0 0 0.00 0 1 -3 0.09
s8 4 1 5 20 -3 -17 -61 2.66 2 25 33 -0.01 -5 -11 -43 0.18
bbtas 2 2 6 24 -2 -14 -26 1.28 -2 -9 -5 0.00 -1 -12 -24 0.12
dk27 1 2 7 14 -4 -13 -29 0.99 -4 -11 -31 0.01 -3 -12 -24 0.13
beecount 3 4 7 28 -1 -23 -71 1.92 -1 -5 -13 0.00 -3 -11 -43 0.29
dk14 3 5 7 56 -1 -4 -16 2.58 -1 30 14 -0.01 0 0 0 0.40
shiftreg 1 1 8 16 0 0 0 1.38 3 0 8 0.00 -5 -25 -53 0.24
ex6 5 8 8 34 -3 -37 -57 4.08 0 -26 -38 0.00 -11 -52 -120 0.74
bbara 4 2 10 60 -3 -23 -31 2.97 -6 -10 -14 -0.01 -1 -11 -23 0.91
modulo12 1 1 12 24 0 0 0 1.45 8 25 57 0.00 0 0 0 0.50
ex4 6 9 14 21 -15 -25 -73 3.84 -8 -3 -15 0.00 -14 -8 -52 2.24
mark1 5 16 15 22 -10 -16 -48 3.82 -7 -9 19 0.00 -11 -30 -58 2.84
bbsse 7 7 16 56 0 0 0 8.02 10 34 78 0.01 -8 -45 -121 5.44
cse 7 7 16 91 -1 11 -5 11.70 -1 2 -78 0.03 -26 -34 -166 8.73
keyb 7 2 19 170 0 0 0 11.43 36 155 331 0.01 -9 -44 -144 11.48
s1 8 6 20 107 15 42 -58 21.10 3 46 -6 0.01 -26 -127 -483 23.02
s1a 8 6 20 107 0 0 0 15.59 17 38 118 0.02 -21 -128 -396 16.43
ex1 9 19 20 138 0 0 0 24.50 31 92 276 0.02 -3 -53 -137 30.76
pma 8 8 24 73 0 0 0 26.15 -7 5 17 0.02 -15 -51 -167 50.24
donfile 2 1 24 96 0 0 0 4.07 7 38 98 0.00 -13 -50 -162 6.88
dk16 2 3 27 108 -6 -28 -48 5.09 3 31 59 -0.02 -19 -49 -153 12.45
styr 9 10 30 166 0 0 0 31.90 -12 8 56 0.03 -23 -90 -190 53.61
planet 7 19 48 115 -9 -43 -55 25.09 -11 8 48 0.01 -37 -102 -262 71.73∑

-47 -195 -599 214.89 60 470 1.018 0.12 -258 -950 -2.842 299.47

304

