
Synthesis of Reversible Circuits with Minimal Lines for Large Functions

Mathias Soeken1 Robert Wille1 Christoph Hilken1 Nils Przigoda1 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{msoeken,rwille,chilken,przigoda,drechsle}@informatik.uni-bremen.de

Abstract— Reversible circuits are an emerging technology
where all computations are performed in an invertible manner.
Motivated by their promising applications, e.g. in the domain of
quantum computation or in the low-power design, the synthesis
of such circuits has been intensely studied. However, how to auto-
matically realize reversible circuits with the minimal number of
lines for large functions is an open research problem.

In this paper, we propose a new synthesis approach which relies
on concepts that are complementary to existing ones. While “con-
ventional” function representations have been applied for synthe-
sis so far (such as truth tables, ESOPs, BDDs), we exploit Quan-
tum Multiple-valued Decision Diagrams (QMDDs) for this pur-
pose. An algorithm is presented that performs transformations
on this data-structure eventually leading to the desired circuit.
Experimental results show the novelty of the proposed approach
through enabling automatic synthesis of large reversible functions
with the minimal number of circuit lines. Furthermore, the quan-
tum cost of the resulting circuits is reduced by 50% on average
compared to an existing state-of-the-art synthesis method.

I. INTRODUCTION

Reversible computation is an emerging technology that has
established itself as a promising research area. In reversible
circuits all computations are performed in an invertible man-
ner, i.e. bijections are realized. This reversibility opens up new
prospects for computation technology. For example, the do-
main of quantum computation – a new way of information pro-
cessing which enables to solve certain problems exponentially
faster compared to conventional methods [1] – profits from en-
hancements in this area, because every quantum circuit inher-
ently is reversible. For low-power design, reversible logic of-
fers interesting advantages since almost zero power dissipation
will only be possible if computation is reversible [2, 3].

Motivated by these applications, researchers started to de-
velop new design methods for such circuits. The number of
circuit lines is a major criterion. This is particularly caused by
the fact that, in the domain of quantum computation, each cir-
cuit line is represented by so called qubits – a highly limited
resource. Furthermore, the number of lines has a close relation
to the reliability of the circuit. Thus, it is well-accepted that the
number of lines in reversible circuits should be kept as small
as possible.

Accordingly, synthesis of reversible circuits focused on de-
termining realizations with the minimal number of lines. To
this end, the function to be synthesized has been represented
in terms of permutations, truth-tables, or similar descriptions
(see e.g. [4, 5]). Using such function representations, minimal-

ity of the circuit lines can easily be ensured. However, these
approaches suffer from the poor scalability caused by the ex-
ponential growth of the respective data-structures. As a result,
only small functions can be synthesized with them.

In order to overcome this limitation, approaches exploiting
more compact function representations, namely Exclusive Sum
of Products (ESOP) or Binary Decision Diagrams (BDDs),
have been introduced [6, 7]. While these methods enable syn-
thesis of large functions, they generate circuits whose number
of lines is way beyond the optimum1. Optimization approaches
aiming at the reduction of the number of circuit lines have been
proposed to address this drawback [9]. However, until today
only synthesis approaches exist that either guarantee the min-
imality of the number of circuit lines but are not scalable or
enable synthesis of large functions at the expense of a high
amount of additional circuit lines.

In this paper, a synthesis approach is proposed that pro-
vides a compromise between these contradictory properties.
Instead of applying non-scalable function descriptions (per-
mutations, truth-tables) or data-structures not directly aimed
at the representation of reversible functions (ESOPs, BDDs),
we make use of Quantum Multiple-valued Decision Dia-
grams (QMDDs) [10]. QMDDs are tree-like data-structures
that offer a compact representation for permutation matri-
ces. Since permutation matrices are used to describe re-
versible functions, QMDDs are an ideal data-structure to ef-
ficiently store and manipulate them. In fact, many relevant
reversible functions can be represented in polynomial space
using QMDDs, while e.g. truth tables always require an expo-
nential amount.

Given a QMDD that represents the function to be synthe-
sized, the general idea of the proposed approach is to apply re-
versible gate operations so that every vertex of the tree is trans-
formed into a corresponding identity structure. Then, these
gates can be composed into a circuit realizing the given func-
tion. The respective transformations are not trivial; however,
we show that basically the application of two transformation
rules lead to the desired results.

Overall, a synthesis approach is introduced that relies on
concepts that are complementary to existing ones. As con-
firmed by experimental evaluations, this enables the automatic
synthesis of large functions with the minimal number of circuit
lines for the first time. Furthermore, the quantum cost of the
resulting circuits are reduced by 50% on average compared to
an existing state-of-the-art synthesis method.

1In fact, the minimal number of circuit lines for large functions was un-
known until recently, but is now available for a selection of them in [8].

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

1C-4

85

x1 = 0 x′
1 = 1

x2 = 0 x′
2 = 0

x3 = 1 x′
3 = 1

1

0

1

1

0

0

1

0

0

g1 g2 g3 g4

(a) Reversible circuit

x1 x2 x3 x′
1 x′

2 x′
3

0 0 0 1 0 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 0 0 1

1 0 1 0 0 0

1 1 0 1 1 0

1 1 1 1 1 1

(b) Truth table

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 0 0 0 0 0 1 0 0

001 0 0 0 0 1 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 1 0 0 0 0 0 0 0

101 0 1 0 0 0 0 0 0

110 0 0 0 0 0 0 1 0

111 0 0 0 0 0 0 0 1

x2
x1

x3
Inputs

O
u
tp

u
ts

(c) Permutation matrix

x1

x2 x2 x2

x3 x3

1

0 0 0 0 0 0 0 0 0

0 0 0 0

(d) QMDD

Fig. 1. Reversible circuit and its function representations

The remainder of this paper is structured as follows. The next
section briefly reviews the core concepts of reversible circuits
as well as the applied QMDD data-structure. Afterwards, Sec-
tion III introduces the general idea as well as the main con-
cepts of the proposed approach before the actual algorithm is
described in detail in Section IV. Section V shows the correct-
ness and completeness of the approach. Finally, Section VI
reports experimental results, while Section VII concludes the
paper and provides an outlook on future work.

II. BACKGROUND

To keep this paper self-contained, the following section
briefly reviews the basics on reversible functions and circuits.
Afterwards, the QMDD data-structure is introduced which is
utilized to compactly represent and synthesize reversible func-
tions.

A. Reversible Functions and Circuits

A Boolean function f : IBr → IBr is reversible if it is bi-
jective, i.e. if each input pattern is uniquely mapped to a cor-
responding output pattern. The synthesis problem is defined as
the task of determining a reversible circuit for a given func-
tion f .

Reversible circuits differ from conventional circuits, since
e.g. fanout and feedback are not directly allowed [1]. Usually,
they are built as a cascade of reversible gates including e.g. the
Toffoli gate [11], the Fredkin gate [12], or the Peres gate [13].
In this paper, we focus on circuits composed of Toffoli gates.

Definition 1 Let X = {x1, . . . , xr} be a set of variables
or lines. Then, a reversible circuit is described as a cas-
cade g1 . . . gd. A gate gi = (Ci, ti), i ∈ {1, . . . , d}, is a
tuple of a set Ci ⊂ {x� | x ∈ X, � ∈ {−,+}} of (pos-
itive and negative) control lines and a target line ti ∈ X
with {t−i , t+i } ∩ Ci = ∅. The target line ti of a Toffoli gate
is inverted if and only if all positive (negative) control lines
evaluate to one (zero). The values of all remaning lines are
passed through the gate unaltered. That is, the Toffoli gate
maps (x1, . . . , xti , . . . , xr) to (x1, . . . ,

∧
x∈Ci

ẋ⊕xti , . . . , xr)

with ẋ = x for any x+ and ẋ = x for any x−.

Example 1 Fig. 1(a) shows a reversible circuit with three lines
and composed of four gates. The target lines are denoted
by , while a represents a positive control line and a rep-
resents a negative control line. For example, assigning the in-
put pattern 001 to the circuit results in the output pattern 101.
Due to the reversibility, this computation can be performed in
both directions.

The cost of reversible circuits is usually measured by quan-
tum cost as introduced by Barenco et al. in [14]. The quantum
cost of a single reversible gate depends on the number of con-
trol lines. For example, a Toffoli gate with one or no positive
control line has quantum cost of 1, while a Toffoli gate with
two positive control lines has quantum cost of 5. In general,
the quantum cost of a Toffoli gate with |Ci| positive control
lines amount to at most 2|Ci|+1 − 3, i.e. this value increases
exponentially in the worst case. If negative control lines occur,
the same cost metric is applied except for the case where the
Toffoli gate is entirely composed of negative controls. Then,
the cost is increased by two [15].

Besides quantum cost, also the number of circuit lines is an
important metric. Since for quantum computation each circuit
line is represented by qubits, this value should be kept as small
as possible. In this paper, we consider synthesis of reversible
circuits with the minimal number of circuit lines.

B. Quantum Multiple-valued Decision Diagrams

Common canonical representations for reversible functions
are truth tables and permutation matrices. In the following,
these representations are briefly reviewed leading to the more
compact QMDD data-structure which is utilized in this paper.

A reversible function with r variables describes a permuta-
tion σ of the set {0, . . . , 2r − 1}. This permutation can also
be described using a permutation matrix, i.e. a 2r × 2r matrix
F = [fi,j]2r×2r with fi,j = 1 if i = σ(j) and 0 otherwise,
for all i = 0, . . . , 2r − 1. That is, each column (row) of the
matrix represents one possible input pattern (output pattern) of
the function. If fi,j = 1, then the input pattern in column j
maps to the output pattern in row i.

Example 2 The truth table of the function realized by the cir-
cuit in Fig. 1(a) is given in Fig. 1(b). From this truth table, the
permutation matrix shown in Fig. 1(c) is obtained.

1C-4

86

x1

n p′ n′ p

Fig. 2. QMDD and edge labels

As can be seen, the size of a permutation matrix grows expo-
nentially with respect to the number of input/output variables.
However, QMDDs [10] provide an efficient data-structure
which enables a much more compact representation of permu-
tation matrices.

Definition 2 A QMDD is a directed acyclic graph composed
of

• two terminal vertices labeled by 0 and 1 representing
the matrix [0]1×1 and the matrix [1]1×1, respectively, and

• non-terminal vertices labeled by a primary input xi and
representing sub-matrices.

The QMDD structure is based on recursively partitioning a
2r × 2r matrix F into four sub-matrices, each of dimension
2r−1 × 2r−1. Accordingly, each non-terminal vertex has four
outgoing labeled edges targeting child vertices representing
from left to right (see also Fig. 2)

• the top-left sub-matrix where xi maps from 0 to 0 (edge is
denoted as negative and labeled n),

• the top-right sub-matrix where xi maps from 1 to 0 (edge
is denoted as pseudo-positive and labeled p′),

• the bottom-left sub-matrix where xi maps from 0 to 1
(edge is denoted as pseudo-negative and labeled n′), and

• the bottom-right sub-matrix where xi maps from 1 to 1
(edge is denoted as positive and labeled p).

Equivalent sub-matrices are shared, i.e. the respective vertices
have more than one parent. These basic concepts of QMDDs
are clarified in the following example.

Example 3 A QMDD representing the permutation matrix in
Fig. 1(c) is shown in Fig. 1(d). For clarity, edges to a 0 -
terminal are indicated as stubs. The root vertex of this QMDD
represents the overall matrix. Since this vertex is labeled
with x1, the child-vertices partition this matrix into four sub-
matrices with respect to x1. That is, the first successor repre-
sents all input/output mappings where x1 maps from 0 to 0
(i.e. the top-left sub-matrix is represented), the second suc-
cessor represents all input/output mappings where x1 maps
from 1 to 0 (i.e. the top-right sub-matrix is represented), and
so on. Since the first and the fourth sub-matrix are equal (see
shaded boxes in Fig. 1(c)), the respective vertices are shared.
Furthermore, consider the leftmost vertex labeled with x2 rep-
resenting the top-right sub-matrix. This vertex partitions this
sub-matrix further (now with respect to x2). Since the last
three sub-matrices of these vertices are entirely assigned to 0,
the corresponding edges directly point to the 0 -terminal. A
similar scheme is applied for all remaining vertices.

An important property of a QMDD is that all paths from the
root vertex to an 1 -terminal have the same length and traverse
the vertex labels in the same order. Thus, each of these paths
can be referenced by the unique sequence of the traversed edge
labels. Given a QMDD F , we call a path π from the root ver-
tex to an 1 -terminal an 1-path and denote it as π ∈ F . An
empty path is referred to as ε. Using 1-paths, the function rep-
resented by the QMDD can be determined as illustrated by the
following example.

Example 4 Consider again the QMDD depicted in Fig. 1(d).
The path npn (marked bold starting from the first outgoing
edge of x1 in Fig. 1(d)) represents the mapping of the input
assignment 010 to the output assignment 010. Since no pseudo
edges are in this path, the inputs and the outputs are equal. In
contrast, the path p′np′ (also marked bold in Fig. 1(d)) rep-
resents the mapping of the input assignment 101 to the output
assignment 000. Here, a pseudo-positive mapping is applied
to x1 and x3, i.e. these values map from 1 to 0. This is consis-
tent with the input/output mappings in the original truth table
(see Fig. 1(b)) of that function.

Overall, permutation matrices, and, therefore, reversible
functions, can efficiently be represented using QMDDs. More-
over, e.g. due to the sharing of vertices, QMDDs are much
more compact than exponentially large truth table- or matrix-
representations. Thus, they enable the treatment of signifi-
cantly larger functions. Furthermore, operations (e.g. the ap-
plication of a Toffoli gate to a given function) can easily be
performed on the QMDD data-structure. For a more detailed
treatment on QMDDs, we refer to [10].

III. MAIN CONCEPTS OF THE SYNTHESIS APPROACH

This section presents the main concepts of the proposed syn-
thesis methodology including the general idea as well as the
applied transformation rules. While this covers the basic con-
cepts, the actual algorithm is provided in the next section.

A. General Idea

The task of the proposed synthesis approach is to determine
a reversible circuit g1 . . . gd representing the function given
in terms of a QMDD F . The respective gates of the desired
circuit can be represented by permutation matrices and, thus,
also by QMDDs T1, . . . , Td. Since the composition of a re-
versible function with its inverse leads to the identity func-
tion (i.e. since F × F−1 = I), the synthesis problem can
be formulated as the search for Toffoli gates T1, . . . , Td so
that F × Td × · · · × T1 = I . In other words, the main goal of
the proposed synthesis approach is to determine a sequence of
Toffoli gates so that their application to F leads to a QMDD
representing the identity.

Clearly, the determination of the respective Toffoli gates is
crucial. However, the regular structure of a QMDD represent-
ing the identity can be exploited for this purpose. Consider
for example Fig. 3 showing a QMDD representing the identity
function over two variables. As can be seen, all p′- and n′-
edges of this QMDD point to the 0 -terminal, while all n- and
p-edges always point to the same child vertex (this is because

1C-4

87

x1

x2

1

0 0

0 0

Fig. 3. QMDD representing the identity matrix with two variables

x1

1

0 0

x1 x′
1 x1

1

0 0

(a) Applying a NOT gate

x1

x2 x2

1 1

0 0

0 0 0 0

x1

x2

1

0 0

0 0

x1 x′
1

x2 x′
2

(b) Applying a CNOT gate

Fig. 4. Simple QMDD modifications

only 0 to 0 and 1 to 1 mappings occur in an identity matrix).
Accordingly, Toffoli gates should be determined in such a way
that they establish this structure throughout a given QMDD F .
Possible cases illustrating how this can be achieved are given
in the following example.

Example 5 Consider the QMDD on the left-hand side of
Fig. 4(a) representing a 1 to 0 and a 0 to 1 mapping of x1. In
order to establish an identity structure, this needs to be trans-
formed into a 1 to 1 and a 0 to 0 mapping of x1. Since this is a
simple inversion of the output values, a single NOT gate, i.e. a
Toffoli gate (∅, x1), leads to the desired result.

Furthermore, consider the QMDD on the left-hand side of
Fig. 4(b). Here, the rightmost vertex labeled x2 needs to be
“inverted” in order to achieve a QMDD representing the iden-
tity. However, simply applying a NOT gate as before does
not work, since this would also affect the leftmost vertex la-
beled x2. Thus, to directly address the respective vertex, con-
trol lines are applied. More precisely, a Toffoli gate ({x+

1 }, x2)
is added. Because of the positive control line, the inversion
only applies if x1 is assigned the value 1, i.e. only for those
vertices that are connected by a p- or p′-edge to the parent
vertex labeled x1. Since the leftmost vertex is connected by
an n-edge, this vertex remains unaltered.

Overall, given a QMDD F , the general idea of the proposed
approach is to apply Toffoli gates so that every vertex of F (as
illustrated in Fig. 5(a)) is transformed into a corresponding
identity structure (i.e. a vertex as illustrated in Fig. 5(b)). Then,
the applied Toffoli gates can be composed into a circuit real-
izing F . While Example 5 only illustrated two special cases,
generic transformation rules have been developed that estab-
lish the desired identity structure for any given QMDD. These
rules are introduced in detail in the next section.

B. Transformation Rules

The purpose of the transformation rules is to transform
any given QMDD vertex such that it represents the sub-
matrix

[
A 0
0B

]
(see Fig. 5). Therefore, succeeding paths of a

vertex either need to be swapped or shifted.

x1

(a) Before

x1

0 0

(b) After

Fig. 5. Structurally transforming a QMDD

xi
n

p′ n′
p

xi xi

(a) Swapping

xj xj

xi

n
p′ n′

p n
p′ n′

p

0 0

xi xi

xj xj

(b) Conditional swapping (pos.)

xj xj

xi

n
p′ n′

p n
p′ n′

p

0 0

xi xi

xj xj

(c) Conditional swapping (neg.)

xj xj xj xj

xi

n
p′

n′ p

n

0 0
0 0

0 0

p
0 p′

0
0 0

0
n′0

xi xi

xj xj

(d) Shifting

Fig. 6. Reversible gates applied to QMDD vertices

In the following, we refer to these paths as follows:

Definition 3 Let v be a vertex of a given QMDD. An e-path
with e ∈ {n, p′, n′, p} is a path that starts in v with an e edge
and results in the 1 -terminal.

In order to perform the respective swaps and shiftings, two
generic rules are sufficient.

Rule 1 (Swapping) Applying a single NOT gate on line xi,
i.e. a Toffoli gate without any control line as shown in Fig. 6(a),
swaps all n- with p′-paths as well as all p- with n′-paths for
each vertex labeled xi. In order to swap only the paths of a
specific vertex v, positive and negative control lines are added
according to the path from the root vertex to v. More precisely,
each time a p- or p′-edge is traversed a positive control line
is added (see e.g. Fig. 6(b)) and each time an n- or n′-edge is
traversed a negative control line is added (see e.g. Fig. 6(c)).
In the remainder of the paper, we refer to a path addressing a
specific vertex v as μ. This rule has already been illustrated
above in Example 5.

Using the swapping rule, all paths that start in a vertex v
are modified. However, often only selected paths should be
modified (e.g. in the case where all succeeding paths point to a
non-terminal and, thus, swapping is not sufficient to generate
the identity structure). As a result, another rule is introduced
which enables the shifting of specific paths only.

Rule 2 (Shifting Rule) Similar to the swapping rule, also the
shifting rule applies positive and negative control lines in order
to address a specific vertex v of the QMDD. But to addition-
ally address specific paths to be modified, also control lines
according to these paths are added. More precisely, if xj is a
label of a successive vertex of v, then adding a control line on
line xj will shift only those paths who contain an outgoing p-
or p′-edge from vertices labeled xj . Analogously, adding a

1C-4

88

. . .
0

0

0

0

0

0μ = ε μ = n

μ = p

μ=nn
μ=np

μ=pn
μ=pp

Fig. 7. Flow of the main algorithm

negative control line will consider only paths who contain an
outgoing n- or n′-edge. As an example, consider Fig. 6(d). The
positive control line xj leads to a shifting of the second and the
third path, since only these paths have either a p- or a p′-edge
starting from the xj-vertices. Furthermore, this principle can
also be applied with more than one control line in order to
address more selective paths.

Note that the applied control lines will always affect two
edges, i.e. p and p′ in case of a positive control line and n
and n′ in case of a negative control line. However, it is suffi-
cient to consider the n- and p′-edges only. This is because after
shifting e.g. all p′-paths to the n-edge, not only the p′-edge will
point to the 0 -terminal, but also the corresponding n′-edge.
This is evidenced by the following theorem.

Theorem 1 Let M be a permutation matrix M =
[
AB
C D

]

of size 2r × 2r, such that A,B,C,D are of the same size,
i.e. 2r−1 × 2r−1. Then B (i.e. the sub-matrix represented by
a p′-edge) entirely is set to 0 if and only if C (i.e. the sub-matrix
represented by an n′-edge) entirely is set to 0.

Proof. A permutation matrix has exactly one 1-element per
row and column. If B = 0, then for each of the first 2r−1

rows, there must be a 1 in A and for each of the last 2r−1 rows,
there must be a 1 in D. Since a binary unitary matrix does not
contain more than 2r 1’s, C must be 0. The opposite direction
follows analogously. �

Based on the general concepts outlined above, the main flow
of the proposed synthesis algorithm can be summarized. This
is done in the next section.

IV. ALGORITHM

The formal algorithm of the proposed synthesis approach is
described in the following. Afterwards, an example illustrates
the application.

Algorithm Q (QMDD-based synthesis). This algorithm out-
lines the main flow of the proposed approach.

Q1. [Traverse graph.] Traverse the QMDD from the root ver-
tex to the 1 -terminal in a breadth-first-manner. For each
visited vertex v apply step Q2.

Q2. [Apply transformations.] Transform v, such that the iden-
tity structure as in Fig. 5 results. This can be done by pro-
cessing Algorithm P on v with μ being the path from the
root vertex to v. Algorithm P is described in detail at the
end of this section.

It is important to understand the order in which the respec-
tive vertices are considered. For this purpose, consider Fig. 7
showing boxes illustrating (sub-)matrices to be considered by
the algorithm.

At the beginning, the algorithm considers the root vertex,
i.e. the vertex representing the whole matrix (shadowed in
Fig. 7). Applying Step Q2, the QMDD is transformed so that

this vertex is structured as shown in Fig. 5(b) (i.e. the p′- and
n′-edge point to the 0 -terminal). As a result, only two suc-
ceeding vertices (representing the top-left and the bottom-right
sub-matrix) are left to be considered (see second box in Fig. 7).
In order to individually address them, positive and negative
control lines are applied according to the μ-path as already
illustrated in Rule 1 and incorporated in the transformation
rules. As an example, in the second step of Fig. 7 the same
algorithm is applied to the resulting two sub-matrices once by
assigning μ to n and once by assigning μ to p. This process
is recursively applied until all vertices have been transformed
into the identity structure.

The following definitions formalize the correlation between
edges and control lines.

Definition 4 (Signature of a path) Given a path
π = e1 . . . er, the signature s(π) of that path is s1 . . . sr,
where si = + if ei ∈ {p, p′} and si = − otherwise.

Definition 5 (Path controls) Given a path π = e1 . . . er and
its signature s(π) = s1 . . . sr, the path controls c(π) for that
path is the set {x�1

1 , . . . , x�r
r }, where �i = si.

Overall, due to the breadth-first-traversal, Step Q2 can ex-
ploit that the considered vertex v is always reached by p and n
edges (as also illustrated in Fig. 7) and, thus, the application
of Toffoli gates can be controlled by the corresponding c(μ).
Having that, in each vertex v of a given QMDD the following
Algorithm P used in Step Q2 is applied:

Algorithm P (Shifting paths from p′ to n). This algorithm
modifies a vertex v in a QMDD F such that its p′-edge
points to the 0 -terminal. Without loss of generality it is as-
sumed that v is labeled xi and that v can be reached from
the root vertex using a path μ consisting of n- and p-edges
only. Let Πμ = {π | μπ ∈ F} be all paths in F from v to

the 1 -terminal.

P1. [Swap gate?] If |{π | p′π ∈ Πμ}| > |{π | nπ ∈ Πμ}|,
i.e. if there are more 1-paths going through the p′-edge
than through the n-edge, apply a Toffoli (c(μ), xi) to F .

P2. [Shift unique paths.] Let

U = {π | p′π ∈ Πμ∧ 	∃nπ′ ∈ Πμ : s(π) = s(π′)}

be all paths that go through p′ and have a signature that is
not present via a path through n. For each π ∈ U , apply a
Toffoli gate (c(μ) ∪ c(π), xi) to F .

P3. [Terminate?] If p′ points to a 0 -terminal, terminate.

P4. [Unify a path.] Apply a gate that is controlled by at least
c(μ)∪ {x+

i } lines and a target on a successive vertex such
that a path that starts with p′ can be made unique. After-
wards, return to step P2.

After applying this algorithm, all p′-paths of the consid-
ered vertex v are shifted to the n-edge (i.e. p′ does point to
the 0 -terminal). Then, according to Theorem 1, also the n′-
path of v is pointing to the 0 -terminal, i.e. the desired identity
structure has been established and Algorithm Q can continue
with the next vertex.

1C-4

89

x1

x2 x2 x2

x3 x3

1

0 0 0 0 0 0 0 0 0

0 0 0 0

x1

x2 x2

x3 x3

1

0 0

0 0 0 0

0 0 0 0

x1

x2

x3

1

0 0

0 0

0 0

x1 x1

x2 x2

x3 x3

x1 x1

x2 x2

x3 x3

Fig. 8. Algorithm applied to the QMDD in Fig. 1(d)

Example 6 Fig. 8 illustrates the application of the proposed
algorithm by means of the QMDD from Fig. 1(d). Starting at
the root vertex, first this vertex is supposed to be transformed
such that both, the p′- and the n′-edge point to the 0 -terminal.
That is, all p′-paths {p′np′, p′nn′} need to be shifted to the n-
edge. To address all these paths at once it is sufficient to set a
negative control on line x2, since each n-path, i.e. {npn, npp},
has a positive outgoing edge from x2-vertices. As a result, ap-
plying a Toffoli gate ({x−

2 }, x1) shifts both p′-paths at once to
the n-edge resulting in the desired form for the root vertex (as
depicted by means of the first arrow in Fig. 8).

Afterwards, only the left vertex labeled with x3 has to be
swapped. This vertex is reached via the path μ = nn rep-
resenting the signature {−−}. Therefore, applying a Toffoli
gate ({x−

1 , x
−
2 }, x3) finally leads to the QMDD representing

the identity matrix as depicted on the right hand side of Fig. 8.

V. COMPLETENESS AND CORRECTNESS

In this section the completeness and the correctness of the
algorithm is shown.

Theorem 2 The algorithm described in Section IV terminates
for each QMDD F that represents a permutation matrix.

Proof. We assume that Algorithm P terminates and first prove
that the main algorithm terminates under that condition. A
QMDD consists of a finite number of vertices. Therefore, also
the number of vertices per level is finite. It is sufficient to show,
that once a vertex is brought to the form that its p′ and n′ edge
point to the 0 -terminal, this will not be changed by succes-
sive steps. Algorithm P sets target lines only on the considered
vertex v or on successive vertices. Since all gates are con-
trolled at least by the signature of μ, no other vertex which is
at the same level as v is transformed by this. Since addition-
ally a breadth-first traversal is performed, already considered
vertices are never modified afterwards.

It is left to show that Algorithm P terminates. The Steps 1
to 3 of Algorithm P are straightforward. Therefore, it remains
to prove that a path going through p′ can always be made
unique. There must be a signature s that is not represented by
a path going through n, since if that would be the case accord-
ing to Theorem 1 p′ must point already to 0 . Controlling the
gate with x+

i in that step prohibits paths from being changed
going through the n edge. Setting a positive control line on the
respective line from vertex v can thus transform the paths go-
ing through p′ independently, resulting in a path representing
signature s.

Hence, the algorithm to transform F to the QMDD represent-
ing the identity matrix using Toffoli gates is complete. �

The algorithm is correct by construction since the QMDD is
transformed in each step according to the applied gate. If the
identity matrix results, than the sequence of gates represent a
reversible circuit realizing the initial function.

VI. EXPERIMENTAL EVALUATION

The QMDD-based synthesis method as introduced above
has been implemented in C++ and evaluated on different
benchmark functions. In this section, the obtained results are
presented. We distinguish between two evaluations. First,
the results obtained by the proposed approach are compared
to previous work, namely the transformation-based synthesis
method [5] and the BDD-based synthesis method [7]2. Af-
terwards, results showing the scalability of the proposed ap-
proach are discussed. All experiments have been conducted
on a 2.66 GHz Intel Core 2 Duo processor with 3 GB of main
memory running Linux 2.6. The timeout was set to 2 000 CPU
seconds.

A. Comparison to Previous Synthesis Approaches

Both the transformation-based method [5] and the BDD-
based method [7] represent state-of-the-art synthesis ap-
proaches with respective pros and cons (e.g. minimal num-
ber of circuit lines but poor scalability in case of the
transformation-based approach versus low quantum cost and
good scalability but a large number of circuit lines in case
of the BDD-based approach). The proposed QMDD-based
synthesis approach provides a promising compromise between
these contradictory properties.

In order to show this, all three approaches have been ex-
perimentally compared by means of a set of benchmark func-
tions taken from RevLib [17]. The results are presented in
Table I. The first column denotes the name of the respective
benchmark. Afterwards, the number of lines (r), the num-
ber of gates (d), and the quantum cost (QC) of the circuits
obtained by the respective synthesis approaches are reported.
Column t denotes the run-time in seconds required to gener-
ate these results. The columns ΔQCTBS and ΔQCBDD report
the absolute difference of the quantum cost measured for the
circuits obtained by the transformation-based method and by

2In order to conduct these comparisons, we applied the implementations of
these approaches as provided by RevKit [16].

1C-4

90

TABLE I
COMPARISON TO PREVIOUS SYNTHESIS APPROACHES

Transformation-based [5] BDD-based [7] QMDD-based
Benchmark r d QC t r d QC t r d QC t ΔQCTBS ΔQCBDD ΔrBDD

max46 10 284 11977 0.04 60 191 575 0.02 10 51 42248 0.03 30271 41673 -50
rd73 10 208 5889 0.03 26 85 229 0.02 10 147 13858 0.04 7969 13629 -16
sqn 10 216 7467 0.03 47 160 484 0.01 10 50 3507 0.03 -3960 3023 -37
sym9 10 231 4606 0.03 28 69 213 0.02 10 72 59168 0.04 54562 58955 -18
dc1 11 247 12123 0.04 28 77 193 0.03 11 25 426 0.02 -11697 233 -17
wim 11 753 32556 0.09 25 62 134 0.04 11 13 239 0.03 -32317 105 -14
z4 11 74 1069 0.04 26 75 187 0.04 11 59 3621 0.05 2552 3434 -15
cm152a 12 33 409 0.06 16 24 68 0.07 12 8 208 0.02 -201 140 -4
cycle10 2 12 19 1179 0.04 39 78 202 0.07 12 36 10684 0.07 9505 10482 -27
plus63mod4096 12 384 27274 0.12 23 49 89 0.07 12 26 5413 0.04 -21861 5324 -11
rd84 12 381 12117 0.11 37 114 314 0.08 12 278 33900 0.16 21783 33586 -25
sqrt8 12 1024 55095 0.23 31 95 259 0.08 12 55 3923 0.07 -51172 3664 -19
adr4 13 199 5195 0.16 33 93 237 0.19 13 75 5125 0.15 -70 4888 -20
dist 13 741 47281 0.32 94 331 1023 0.2 13 241 20624 0.31 -26657 19601 -81
plus127mod8192 13 769 58352 0.35 25 54 98 0.17 13 27 9148 0.1 -49204 9050 -12
plus63mod8192 13 447 38070 0.25 25 53 97 0.17 13 32 10282 0.1 -27788 10185 -12
radd 13 432 17074 0.24 21 55 95 0.17 13 75 5125 0.17 -11949 5030 -8
root 13 1000 59054 0.39 79 277 857 0.2 13 204 18497 0.27 -40557 17640 -66
squar5 13 83 1967 0.13 36 99 267 0.18 13 30 704 0.13 -1263 437 -23
clip 14 1304 111525 0.88 97 368 1196 0.45 14 232 22495 0.48 -89030 21299 -83
cm42a 14 2010 176497 1.21 32 79 151 0.44 14 10 260 0.24 -176237 109 -18
cm85a 14 625 29560 0.56 34 78 222 0.38 14 99 13368 0.24 -16192 13146 -20
pm1 14 2010 176497 1.2 32 79 151 0.45 14 10 260 0.24 -176237 109 -18
sao2 14 1176 101535 1.06 76 237 725 0.35 14 63 9018 0.27 -92517 8293 -62
co14 15 8270 617906 13.68 28 76 172 0.75 15 14 458710 0.24 -159196 458538 -13
dc2 15 803 43522 1.19 65 197 585 0.98 15 60 2974 0.56 -40548 2389 -50
misex1 15 1358 111286 2.4 39 103 283 0.99 15 35 1000 0.74 -110286 717 -24

r: Number of lines d: Number of gates QC: Quantum cost t: Run-time
ΔQCTBS (ΔQCBDD): Difference of the QC for circuits obtained by the QMDD-based method and the transformation-based method (BDD-based method)

the BDD-based method, respectively, compared to the circuits
obtained by the proposed QMDD-based method. Finally, col-
umn ΔrBDD reports the differences in the number of circuit
lines between the BDD-based method and their minimal value
(as ensured by both, the transformation-based and the QMDD-
based method).

First of all, it can be seen that run-time is not a crucial factor.
If the respective data-structure (i.e. the truth-table, the BDD, or
the QMDD) can be built, all synthesis approaches generate the
respective circuits very fast. However, the quality of the results
vary significantly.

Obviously, the BDD leads to the best results with respect
to quantum cost. But this comes at a high price: a very large
number of circuit lines which is way beyond the optimum. In
particular in the domain of quantum computation, where cir-
cuit lines are represented by qubits, this is crucial.

In contrast, both the transformation-based synthesis ap-
proach and the QMDD-based synthesis approach lead to cir-
cuits with the minimal number of circuit lines. As a conse-
quence, larger quantum cost have to be accepted3. But ap-
plying the proposed QMDD-based method, this amount can
significantly be reduced. In fact, on average circuits with
50% less quantum cost are generated in comparison to the
transformation-based approach. Besides that, the QMDD-
based method provides much better scalability as shown in the
next section.

3This already has been observed before in [18] for small functions. Here,
significant differences in the quantum cost have been observed already be-
tween circuits with the minimal number of lines and circuits with just one or
two additional lines.

B. Scalability of the QMDD-based Method

So far, no synthesis approach for large functions has been
proposed which ensures the minimality of the number of cir-
cuit lines. Accordingly, no established benchmark set in-
cluding large reversible benchmarks is available. Because of
this, we show the scalability of the proposed QMDD-based
method by means of structural examples (including the tof-
foli and the graycode function as well as arithmetic operations
such as the adder, the increase module, or the multiplier) en-
riched by a set of automatically generated random functions.
Since all these functions cannot efficiently be processed by the
transformation-based method anymore (assuming a timeout of
2 000 CPU seconds), only the results obtained by the QMDD-
based method are discussed in the following.

The results are presented in Table II. Again, the columns
denote the number of lines (r), the number of gates (d), the
quantum cost (QC) of the obtained circuits as well the run-
time (t) required to generate the respective results.

As can be seen, functions including up to 100 variables can
automatically be synthesized with the minimal number of cir-
cuit lines. The run-time varies depending on the respective
benchmark. While for example the increase operation or the
graycode function can be generated very efficiently, random
functions or the mutliplier do not perform that well. However,
it is left for future work to (theoretically) analyze for which
functions QMDDs perform well or not. At this point, we as-
sume that, similar to BDDs [19], different classes of functions
exist that either show a positive or a negative behavior with
respect to their synthesis capability.

Overall, the QMDD-based method is the first automatic syn-
thesis approach which is applicable to larger functions and at
the same time guarantees the minimal number of circuit lines.

1C-4

91

TABLE II
SCALABILITY OF THE QMDD-BASED METHOD

Benchmark r d QC t Benchmark r d QC t
adder9 18 3595 67768365 56.69 random1267 26 238 20122 1942.24
random1412 20 167 4219884 41.15 graycode40 40 39 39 0.00
random1752 20 15 195 29.74 increaser40 40 39 > 4294967296 0.05
random1242 20 1203 104323 48.73 toffoli40 40 1 > 4294967296 0.00
random1536 20 4 804 20.35 toffoli50 50 1 > 4294967296 0.01
multiplier5 20 11510 2241224 29.71 graycode50 50 49 49 0.00
adder10 20 8204 538649284 311.21 increaser50 50 49 > 4294967296 0.09
random1706 21 16 608 46.49 increaser60 60 59 > 4294967296 0.13
random1739 21 9408 1419008 4.75 toffoli60 60 1 > 4294967296 0.00
random1795 21 37 1975 38.53 graycode60 60 59 59 0.01
random1434 21 23 918 32.99 increaser70 70 69 > 4294967296 0.19
random1865 21 16 608 46.48 toffoli70 70 1 > 4294967296 0.00
random1383 22 2415 464628 184.31 graycode70 70 69 69 0.01
random1475 22 1902 281594 138.67 graycode80 80 79 79 0.01
random1543 22 2209 338220 206.72 toffoli80 80 1 > 4294967296 0.00
random1915 22 69 4196 80.34 increaser80 80 79 > 4294967296 0.32
random1369 22 16 800 71.41 graycode90 90 89 89 0.01
adder11 22 18445 > 4294967296 1677.82 toffoli90 90 1 > 4294967296 0.00
random1862 22 16 800 50.91 increaser90 90 89 > 4294967296 0.45
random1371 23 312880 100299312 489.52 graycode100 100 99 99 0.01
multiplier6 24 68241 17212234 794.38 increaser100 100 99 > 4294967296 0.69
random1201 25 9070 3646604 972.20 toffoli100 100 1 > 4294967296 0.01
random1937 25 19 908 900.31

r: Number of lines d: Number of gates
QC: Quantum cost t: Run-time

VII. CONCLUSIONS AND FUTURE WORK

Ensuring the minimal number of circuit lines during synthe-
sis of reversible circuits is crucial. However, existing synthesis
approaches are either only applicable to small functions or lead
to circuits that are way beyond the minimum of the lines. In
this paper, we proposed a complementary method which over-
comes these limitations. Therefore, QMDDs are utilized, that
serve as an ideal data-structure to efficiently store and manip-
ulate reversible functions.
Given a QMDD representing the function to be synthesized,
Toffoli gates are applied so that every vertex of the QMDD is
transformed into an identity structure. Afterwards, the applied
Toffoli gates are composed to a circuit realizing the desired
function. Experimental results showed that in comparison to
similar approaches, circuits with 50% less quantum cost result
on average. Furthermore, circuits with the minimal number of
lines can automatically be realized for the first time for large
functions.

In this sense, the proposed approach provides a new synthe-
sis methodology that also builds the basis for further research.
In particular, future work will focus on the theoretical analy-
sis of the proposed approach. As shown in the experimental
evaluations, some functions can efficiently be realized using
the QMDD methods while other functions do not perform that
well. Besides that, also the direct application of the presented
ideas to quantum circuits is promising. However, although
QMDDs are also capable to represent dedicated quantum oper-
ations, the corresponding transformation rules are much harder
to develop.

ACKNOWLEDGMENTS

We would like to thank D. Michael Miller for providing
us with an implementation of the QMDD package introduced
in [10]. This work was supported by the German Research
Foundation (DFG) (DR 287/20-1).

REFERENCES
[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. New York, NY, USA: Cambridge University Press, Oct.
2000.

[2] R. Landauer, “Irreversibility and Heat Generation in the Computing Pro-
cess,” IBM Journal of Research and Development, vol. 5, no. 3, pp. 183–
191, July 1961.

[3] C. H. Bennett, “Logical Reversibility of Computation,” IBM Journal of
Research and Development, vol. 17, no. 6, pp. 525–532, Nov. 1973.

[4] V. Shende, A. Prasad, I. Markov, and J. Hayes, “Synthesis of reversible
logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp. 710 – 722, June
2003.

[5] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Confer-
ence. ACM, June 2003, pp. 318–323.

[6] K. Fazel, M. Thornton, and J. Rice, “ESOP-based Toffoli Gate Cascade
Generation,” in IEEE Pacific Rim Conf. on Communications, Computers
and Signal Processing. IEEE, Aug. 2007, pp. 206–209.

[7] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conference. ACM, July 2009,
pp. 270–275.

[8] R. Wille, O. Keszöcze, and R. Drechsler, “Determining the Minimal
Number of Lines for Large Reversible Circuits,” in Design, Automation
and Test in Europe. IEEE Computer Society, Mar. 2011, pp. 1204–
1207.

[9] R. Wille, M. Soeken, and R. Drechsler, “Reducing the number of lines
in reversible circuits,” in Design Automation Conference. ACM, June
2010, pp. 647–652.

[10] D. M. Miller and M. A. Thornton, “QMDD: A Decision Diagram Struc-
ture for Reversible and Quantum Circuits,” in Int’l Symp. on Multiple-
Valued Logic. IEEE Computer Society, May 2006, pp. 30–30.

[11] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, ser. Lecture Notes in Computer Science, J. W. de Bakker and
J. van Leeuwen, Eds., vol. 85. Springer, July 1980, pp. 632–644.

[12] E. Fredkin and T. Toffoli, “Conservative logic,” Int’l Journal of Theoret-
ical Physics, vol. 21, no. 3, pp. 219–253, Apr. 1982.

[13] A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A,
vol. 32, no. 6, pp. 3266–3276, Dec. 1985.

[14] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Phys. Rev. A, vol. 52, no. 5, pp. 3457–3467,
Nov. 1995.

[15] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne, “Quantum
Circuit Simplification and Level Compaction,” IEEE Trans. on CAD,
vol. 27, no. 3, pp. 436–444, Mar. 2008.

[16] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A Toolkit
for Reversible Circuit Design,” in Workshop on Reversible Computation,
July 2010, pp. 69–72, RevKit is available at www.revkit.org.

[17] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An Online Resource for Reversible Functions and Reversible Circuits,”
in Int’l Symp. on Multiple-Valued Logic. IEEE Computer Society, May
2008, pp. 220–225.

[18] D. M. Miller, R. Wille, and R. Drechsler, “Reducing reversible circuit
cost by adding lines,” in Int’l Symp. on Multiple-Valued Logic, May
2010, pp. 217–222.

[19] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Trans. on Computers, vol. C-35, no. 8, Aug. 1986.

1C-4

92

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

