
Towards Automatic Determination of Problem Bounds for
Object Instantiation in Static Model Verification

Work-In-Progress

Mathias Soeken Robert Wille Rolf Drechsler

Institute of Computer Science, University of Bremen
Group of Computer Architecture, 28359 Bremen

Bremen, Germany
{msoeken,rwille,drechsle}@informatik.uni-bremen.de

ABSTRACT
The application of formal methods in the detection of incon-
sistencies and design flaws within models has been intensely
studied in recent years. Since consistency checking is in prin-
ciple undecidable due to the infinite number of possible sys-
tem states, problem bounds have to be defined making the
analysis tractable. However, defining these problem bounds
requires detailed design knowledge and, thus, impedes an
automatic verification flow.

In this paper, we present first ideas and results of how
to automatically determine valid problem bounds for con-
sistency checking algorithms. For this purpose, we make
use of automatic proof engines for linear integer arithmetic.
We describe the approach by means of class diagrams given
in the Unified Modeling Language (UML) extended by con-
straints given in the Object Constraint Language (OCL).

1. INTRODUCTION AND BACKGROUND
Verifying and validating the correctness of a model in the

absence of a concrete application became an active research
area in recent years. Especially in the context of model
driven engineering (MDE) in which a model is the starting
point for all successive design steps, fundamental flaws can
be detected before the first code line has been written. Ver-
ification techniques exist to detect static inconsistencies or
erroneous dynamic behaviors such as dead locks or unreach-
able operations and system states. While this provides au-
tomatic verification methods, it also finds application in the
interactive design process with the user. For example, these
methods enable to generate certain system states which can
assist the user in creating the model and acquire a better
understanding due to guided model exploration. With the
application of automatic proof engines, these tasks can be
handled quite efficiently. In particular, techniques based on
Boolean satisfiability or SAT Modulo Theory (SMT) have
been applied to verify models written in UML/OCL [12,
11], Alloy [8], or Kodkod [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM 978-1-4503-0914-1.

Model

Verification Task

Problem Bounds

Solver

Witness

no solution in bounds

Encode

satisfiable

unsatisfiable

Figure 1: Model Verification

Consistency checks comprise thereby both, static and dy-
namic questions. In the static view on the model, common
verification tasks are e.g. the check whether a non-trivial
system state can be generated or if the model includes in-
dependent OCL constraints [6]. On the other side, the ex-
ecutability of operations, the reachability of wanted or un-
wanted system states as well as the detection of dead locks
are typical verification tasks targeting the dynamic view of
a model. Solutions dealing with both static [12, 9, 1, 2] and
dynamic aspects [11, 3] have been presented in the past.

One possible flow which is applied for that purpose is de-
picted in Figure 1. Given a model and a verification task, the
problem is encoded as an instance of the satisfiability prob-
lem which can be processed by an appropriate solve engine.
From the solver’s solution, a witness can be constructed,
e.g. a valid system state or a sequence diagram depending
on the verification task and the input model. Otherwise, if
no solution can be found, it can be concluded that no such
witness exists.

However, since the models contain data structures which
(theoretically) have an infinite range, most verification tasks
are in principle undecidable. Thus, it is necessary to specify
problem bounds such as the number of objects in a system
state or the domain of data types such as integers. While
for the latter one established bounds (e.g. 64-bit integers)
can be assumed without illegally simplifying the model too
much, no obvious bounds for the number of objects exist.
Instead, all approaches presented so far require that these
problem bounds have to be specified by the designer. This
usually requires detailed design knowledge.



Model

Verification Task

Problem Bounds

Solver

Witness

no solution in bounds

Encode

satisfiable

unsatisfiable
sat

LIA Solver

Model Relations

Encode

unsat

Figure 2: Automatic Determination of Problem
Bounds

In this paper, we propose first solutions to automatically
determine valid problem bounds for the number of object
instantiations that can be used for consistency checks on
the model. Thus, if the model is determined to be incon-
sistent, the user can be assured that this is because of con-
tradictory constraints but not because of invalid specified
problem bounds. For this purpose, we consider UML [10]
class diagrams that are extended by OCL [14] constraints.
Further, we consider static consistency checks, i.e. we are
in particular interested in determining a valid number of
instances per class for the resulting system state.

The paper is structured as follows. In the next section,
the general idea is sketched by means of examples leading to
an extension of the current verification flow. Afterwards, de-
tails and first experimental results of the proposed approach
are presented in Section 3 and Section 4, respectively. Fi-
nally, Section 5 discusses related work before the paper is
concluded in Section 6.

2. GENERAL IDEA
We propose to extend the flow from Figure 1 as shown

in Figure 2. That is, before the actual model verification
is executed, a pre-process is applied which automatically
determines appropriate bounds for the object instantiation.
For this purpose, the relations between the respective classes
are considered. In the context of UML class diagrams, these
relations are expressed by means of both associations (and
their multiplicities) and OCL constraints. Those are en-
coded in terms of a Linear Integer Arithmetic (LIA) [4] in-
stance and, afterwards, solved by an according LIA solver.
From the result of this solving process, the respective prob-
lem bounds can be obtained.

The following example illustrates the general idea in more
detail.

Example 1. Figure 3 shows two class diagrams. From
the associations of the first diagram, one can conclude that
in a valid system state at least twice as many instances
of class B than instances of class A must exist. In con-
trast, the second diagram bounds its instantiations by means
of an OCL invariant. More precisely, the invariant con-
straints that in a valid system state the number of instances
of class B must be even.

That is, the bounds of object instantiation can be deduced
from the corresponding UML and OCL constraints. How-
ever, while the bounds can easily be determined in simple
UML diagrams as shown in Figure 3, this determination be-
comes more complex considering models composed of hun-
dreds or even thousands of classes. In order to cope with
increasing complexity, all these relations and constraints
are encoded as a set of linear (in)equations. Then, these

A B
1 2

(a) Expressed by associations

A B
1 *

bs

inv: bs->size().mod(2) = 0

(b) Expressed by OCL

Figure 3: Relations between UML classes

A B
m1..m2 n1..n2

(a) Binary association

A B
m1..m2 n1..∗

(b) With infinite bound

R

A B

C

(c) Ternary association

RA B

C

1 1

1

OCL constraint

(d) Alternative repr.

Figure 4: UML constraints

(in)equations can be solved e.g. by SMT solvers with LIA [4]
support. From the solution of the solver, valid problem
bounds can be deduced. On the other hand, if no valid
problem bounds can be determined, it can already be de-
duced that no solution exists for any bounds, i.e. the model
is inconsistent due to an invalid specification of the model
bounds.

3. IMPLEMENTATION
In this section, a first implementation of the proposed idea

is presented. So far, the approach fully supports relations ex-
pressed by associations. Possible directions how to support
relations expressed by OCL constraints are left for future
work. However, the general idea is discussed by means of an
example.

To encode the outlined problem, a formula

f : IN0 × IN0 × · · · × IN0 → IB

is created. For this purpose, a variable xC ∈ IN0 is intro-
duced for each class C in the considered UML model. Each
xC-variable represents the number of objects to be derived
from class C. Using these variables, all restrictions enforced
by the associations are encoded.

Figure 4(a) shows a generic binary UML association in-
cluding multiplicities defined over intervals. This UML con-
straint expresses that each object of class B must be linked
to at least m1 (lower bound), but at most m2 (upper bound)
objects of class A (0 ≤ m1 ≤ m2). The same applies to
class A analogously. The conjunction of the following LIA
constraints are used to encode this relation.

First, constraints ensuring the existence of the minimal
number of objects are added. This is expressed by

xA ≥ max{1,m1} ∧ xB ≥ max{1, n1}. (1)

The terms max{1,m1} and max{1, n1} imply that each class
is instantiated at least once. This is necessary, since empty
system states are not considered.



A

B C

a 1

bs 3..5
2
bs

*
cs

Figure 5: Example Model

Second, the correlation of xA and xB is constrained. For
the case of m1 = m2 = 1 and n1 = n2, constraining the
correlation is straightforward. Then, for each object derived
from class A, n1 objects from class B are needed. To encode
this correlation, the LIA constraint xB = n1xA needs to
be added. If additionally m1 = m2 > 1, this constraint is
extended to m1xB = n1xA. Given that, the generic LIA
constraint additionally considering intervals (i.e. m1 < m2

and n1 < n2) can be deduced

m2xB ≥ n1xA ∧ m1xB ≤ n2xA. (2)

Using these formulations most of the UML constraints can
be encoded. Beyond that, only the following special cases
have to be addressed separately:

• Infinite upper bounds
In fact, infinite upper bounds (i.e. associations with
m2 =∞ or n2 =∞) weaken the restrictions on the
number of objects derived from a class. Accordingly,
parts of the LIA constraints from Eq. (2) can be re-
moved. As an example, for the association depicted
in Figure 4(b) with n2 = ∞, the term m1xB ≤ n2xA

evaluates to limn2→∞ m1xB ≤ n2xA = m1xB ≤ ∞.
This is always true and, thus, the term can be omit-
ted. Analogously, this can be done for m2 =∞.

• Unary associations
Unary associations represent a special case of binary
associations. Their mapping to LIA constraints is al-
ready covered by the encoding from Eq. (2). Note that
unary associations are only valid, if they define an n-
to-n relation or if they have infinite bounds.

• n-ary associations
Arbitrary n-ary associations (with n > 2) can be map-
ped to LIA constraints in a recursive manner. To il-
lustrate this, consider the ternary association given in
Figure 4(c). According to [7], this can be transformed
to equivalent binary associations by adding a helper
class (denoted by R) and the following OCL constraint
(see also Figure 4(d)):

R->forAll(r,r’|
(r.ra=r’.ra and r.rb=r’.rb and r.rc=r’.rc)
implies r=r’

)

By applying this method recursively, n-ary associa-
tions with n > 3 can be transformed accordingly. From
this representation, the respective LIA constraints can
be derived. Note that the OCL constraint is not con-
sidered in the LIA instance, and therefore, this may
lead to false positives. However, contradictions caused
by such an association will then be detected in the
successive consistency checking step.

Table 1: First results

Model Classes Associations Run-Time (s)
CarRental 6 4 0.00
OCLMetamodel 16 4 0.00
Sudoku 5 7 0.00
Train 6 9 0.00
PyQt4 631 757 2.11
Android 713 3459 2.64
Java6 2462 53985 651.44

Example 2. Consider the model depicted in Figure 5.
Applying Eq. (1) and Eq. (2) to this model leads to the fol-
lowing encoding:

(xA ≥ 1) ∧ (xB ≥ 3xA)
∧ (xB ≥ 3) ∧ (xB ≤ 5xA)
∧ (xC ≥ 1)

Passing this encoding to a respective solving engine might
lead to the results xA = 1, xB = 3, and xC = 1. That is,
one object each of class A and class C and three objects of
class B are a valid number of instances for this model.

4. EXPERIMENTAL RESULTS
Table 1 shows first experimental results obtained by this

approach. Here, the bounds on the number of objects have
been determined for UML models where the relations be-
tween the classes are specified by associations only. As
examples, selected benchmarks from the USE tool [5] and
larger models that have been re-engineered from software li-
braries are applied. As can be seen, even for class diagrams
composed of more than 2,000 classes, the respective bounds
can be determined within a couple of minutes. The obtained
results can be used in successive verification steps such as
consistency checking.

Besides associations also OCL constraints may imply de-
pendencies between numbers of object instances. One ob-
vious expression is size(). For example, in conjunction
with allInstances() the expression

A.allInstances()->size()

directly corresponds to xA. A similar situation exists when
size() is applied to a navigation expression as in Example 1.

It is left for future work to determine further OCL opera-
tions and more complex expressions that can be transformed
into LIA constraints. Also the limitations of these transfor-
mations have to be examined. Some expressions are hard to
translate, e.g.:

some_int = 5 implies bs.size() = 3

This would require to transform also attribute values into
the LIA instance which significantly increases the search
space.



5. RELATED WORK
All presented automatic methods for consistency checking

require either an exact number of instances or an interval.
In Alloy [8], the problem bound is denoted as scope which
can be defined exactly or by lower and upper bounds. If
no scope is given, Alloy performs some basic analysis to
automatically detect a good scope, e.g. a singleton is only
instantiated once. However, no relation between model ele-
ments (signatures in Alloy) is taken into account. If no in-
formation can be obtained from the model, a default scope
of 3 elements per signature is applied.

Also the Kodkod-based approach integrated in USE [9] as
well as the CSP-based approach presented in [2] allow the
specification of intervals, but not only for classes, also for
associations and attribute domains.

However, even specifying an appropriate interval requires
detailed design knowledge. Furthermore, with a growth of
the size of the intervals also the search space is increasing
which usually results in larger run-times. Thus, also these
approaches can benefit from the proposed pre-process as pre-
sented in this work. By finding valid problem bounds, there
is no need to specify intervals for the selection of object in-
stances, which likely results in an acceleration of the solving
process.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we sketched an approach to automatically

determine problem bounds that can be used for successive
consistency checks in UML/OCL models. For this purpose,
dependence relations between the number of instances in
the final system state are encoded as LIA constraints that
can be solved e.g. with an SMT solver. While encodings
expressing the UML associations have been proposed, the
incorporation of OCL expressions into the LIA instance has
been discussed and is left for future work. However, first
results already show that even for class diagrams composed
of more than thousand classes, bounds can automatically be
determined within a couple of minutes.

By using the proposed approach, no detailed design know-
ledge is required when applying automatic consistency
checks. Further, techniques that support to specify the prob-
lem bounds as intervals can benefit from this approach since
the search space can be reduced when applying exact prob-
lem bounds. Although we described the approach based on
UML/OCL class diagrams, it is applicable to other models
(e.g. in Alloy) as well since the same concepts are supported
just in a different syntax.

The development of a general approach considering both
UML and OCL constraints is left for future work. This fur-
ther applies to a tool integration to evaluate its scalability
and the influence to the flow of consistency checking. Fur-
ther, it is interesting how to obtain problem bounds in dy-
namic consistency checking such as the number of operation
calls to consider.

7. REFERENCES
[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.

UML2Alloy: A Challenging Model Transformation. In Int’l
Conf. on Model Driven Engineering Languages and
Systems, pages 436–450. Springer, Oct. 2007.

[2] J. Cabot, R. Clarisó, and D. Riera. Verification of
UML/OCL Class Diagrams using Constraint Programming.
In IEEE Int’l. Conf. on Software Testing Verification and
Validation Workshop, pages 73–80, Apr. 2008.

[3] J. Cabot, R. Clarisó, and D. Riera. Verifying UML/OCL
Operation Contracts. In M. Leuschel and H. Wehrheim,
editors, Integrated Formal Methods, volume 5423 of Lecture
Notes in Computer Science, pages 40–55. Springer, Feb.
2009.

[4] B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetic
Solver for DPLL(T). In T. Ball and R. B. Jones, editors,
Int’l Conf. on Computer Aided Verification, volume 4144 of
Lecture Notes in Computer Science, pages 81–94. Springer,
Aug. 2006.

[5] M. Gogolla, F. Büttner, and M. Richters. USE: A
UML-based specification environment for validating UML
and OCL. Science of Computer Programming,
69(1-3):27–34, 2007.

[6] M. Gogolla, M. Kuhlmann, and L. Hamann. Consistency,
Independence and Consequences in UML and OCL Models.
In Tests and Proofs, pages 90–104. Springer, July 2009.

[7] M. Gogolla and M. Richters. Expressing UML Class
Diagrams Properties with OCL. In T. Clark and
J. Warmer, editors, Object Modeling with the OCL, volume
2263 of Lecture Notes in Computer Science, pages 85–114.
Springer, 2002.

[8] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, Cambridge, MA, USA, Apr. 2006.

[9] M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive
Validation of OCL Models by Integrating SAT Solving into
USE. In Int’l. Conf. on Objects, Models, Components,
Patterns, volume 6705 of Lecture Notes in Computer
Science, pages 290–306. Springer, June 2011.

[10] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language reference manual. Addison-Wesley
Longman, Essex, UK, Jan. 1999.

[11] M. Soeken, R. Wille, and R. Drechsler. Verifying Dynamic
Aspects of UML Models. In Design, Automation and Test
in Europe, pages 1077–1082. IEEE Computer Society, Mar.
2011.

[12] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and
R. Drechsler. Verifying UML/OCL models using Boolean
satisfiability. In Design, Automation and Test in Europe,
pages 1341–1344. IEEE Computer Society, Mar. 2010.

[13] E. Torlak and D. Jackson. Kodkod: A Relational Model
Finder. In TACAS, volume 4424 of Lecture Notes in
Computer Science, pages 632–647. Springer, Apr. 2007.

[14] J. Warmer and A. Kleppe. The Object Constraint
Language: Precise modeling with UML. Addison-Wesley
Longman, Boston, MA, USA, Mar. 1999.


