
Automatic Property Generation for the
Formal Verification of Bus Bridges

Mathias Soeken∗ Ulrich Kühne† Martin Freibothe‡ Görschwin Fey∗ Rolf Drechsler∗

∗University of Bremen, 28359 Bremen, Germany
{msoeken,fey,drechsle}@informatik.uni-bremen.de

†LSV ENS de Cachan, 94235 Cachan, France
kuehne@lsv.ens-cachan.fr

‡OneSpin Solutions GmbH, 80339 Munich, Germany
Martin.Freibothe@onespin-solutions.com

Abstract—The automatic verification of designs is a challenging task
and of high interest due to increasing time-to-market constraints. In this
paper, we focus on the verification of bus bridges which are used in many
hardware systems to connect two buses running different protocols. We
developed an approach to assist the automatic generation of properties
from the protocol specification for the formal verification of bus bridges.
The technical contribution is that the final set of the verification suite
is functionally complete in respect to the underlying verification tool
which shows the absence of any verification holes. The approach uses an
abstract model of bus bridges in terms of state machines which enables a
generic work flow. In experimental evaluations we applied the approach
to bus bridges based on the OCP/IP protocol family.

I. INTRODUCTION

Typically today’s hardware designs are Systems on Chip (SoC)
including Networks on Chip (NoC). This is achieved by assembling
many functional cores subject to intellectual property (IP cores)
and connecting them via bus structures. Often multiple different
protocols are used in the interconnect of a single system. Correct
behavior of the communication interfaces is crucial for the operation
of the full system and a bottleneck in today’s design flows. This
particularly holds for SoCs having more than one bus. Here, we
propose a methodology to automatically generate a provably complete
verification suite for the formal verification of bus bridges.

Bus bridges are dedicated hardware cores that connect two buses,
e.g. if they run different protocols or to decouple different parts of
the system. The coarse structure of most bus bridges is very similar.
Both protocols are implemented in terms of a master and a slave
component in the bus bridge itself. Fig. 1 shows an abstract view of
a bus bridge. Requests originating on Bus A are handled by the slave
interface Slave A. These requests are passed to Protocol B which
often involves internal storage and a transformation step. Finally, the
master interface Master B passes the request to Bus B. Analogously,
response data from Bus B is mapped back to Bus A.

The complexity of designing and verifying a bus bridge depends
on how similar or different the Protocols A and B are and on
the protocols themselves. There are several types of transformations
that may be necessary in order to correctly pass a request from
one bus to the other. Address translations are needed whenever
the buses have different address spaces. If Protocols A and B do
not belong to the same protocol family, also commands have to
be transformed. Such translations range from simply substituting
the operation codes to more complex operations like splitting up
bursts or joining single transactions to bursts. Even within a single
protocol family, individual configurations often differ in the subset
of implemented commands and in the bit widths of address and data
signals resulting in different protocols. Blocking and non-blocking
transactions have to be respected.

Finally, even given a precise specification of the connected pro-
tocols, there remains a degree of freedom in how to implement a
bus bridge. Depending on the requirements with respect to chip area

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project VerisoftXT under contract
no. 01 IS 07008 C.

Slave A Store/Map Master B

Bus A Bus B

Master A Store/Map Slave B

Bus A Bus B

Fig. 1. Overview of a bus bridge

and performance, the designer chooses (among other parameters) the
size and depth of data buffers, whether to implement only a subset
of operations, and whether to use pipelining of different phases of
transactions. As all these decisions influence the architecture of the
bus bridge, an automatic verification approach needs to take into ac-
count system-level knowledge, like throughput, real-time constraints
etc. This flexibility and configurability of design specifications has
to be met when developing an automatic verification approach.

A related area is transducer synthesis, i.e. the automatic synthesis
translating one protocol into another protocol. There exist both
library-based [15], [4], [5] and protocol specification based [11],
[3], [13] approaches to automatically generate hardware cores that
translate between different protocols. However, verification of such
synthesis steps is required and is even harder as different implemen-
tations are valid for the same specification.

An automated verification approach based on the analysis of
simulation traces is described in [12]. Another approach for the
automatic verification of bus interfaces has been proposed in [8].
A generator produces a property suite for the verification of OCP
interfaces. Neither the automatic verification of a full bus bridge is
addressed nor can the functional completeness of the verification suite
be guaranteed.

In this work, we propose a methodology to assist the automatic
generation of a functionally complete verification suite for bus
bridges. The underlying generic model allows us to formally verify
a wide range of implementations including features like transaction
pipelining. Our main contribution is the underlying generic model
used for verification. Once the model is available and configured to
match the actual bus bridge, the generation of the formal properties
is straightforward and tool-driven. The generated set of formal
properties is functionally complete by construction due to the use of
the Gap Free Verification (GFV) methodology [1], [2] and confirmed
by the OneSpin 360 MV tool [10]1.

We exemplify our approach for bus bridges having interfaces to
the Open Core Protocol (OCP) [9]. The highly configurable OCP
standard specifies a variety of different actual protocols which are
of practical interest. For other protocol specifications than OCP the

1The GFV methodology itself is not focus of this work. We refer the
interested reader to [1], [2]

978-1-4244-9756-0/11/$26.00 ©2011 IEEE

READY

READ-BUSY

read init read

write idle

wait

Fig. 2. A simple conceptual state machine

proposed verification approach can be applied as well when the
design matches the generic verification model.

Our approach only requires a minimal amount of manual setup
work. The run times to automatically generate the verification suite
are negligible.

The paper is structured as follows. Basic definitions are given in the
following section. In Section III the general idea is sketched, while
Section IV describes the approach in more detail. After an evaluation
of the approach in Section V, the paper is concluded in Section VI.

II. PRELIMINARIES

To keep the paper self-contained, all necessary definitions are given
in this section. After a brief introduction into verification, an overview
of OCP is given.

A. Verification Methodology
The basic idea of the underlying formal verification approach is

checking the design against a set of properties describing the correct
behavior of the design.

In the used methodology, the behavior is split up and described by
operation properties. Each of the properties describes an operation
of the Design Under Verification (DUV), possibly spanning multiple
clock cycles. Thereby, all the outputs during the operation and some
conceptual state of the DUV at the end of the operation need to
be described unambiguously. Each operation is a transition of one
conceptual state of the design to another conceptual state. As a result
the set of properties forms a Conceptual State Machine (CSM) that
describes the design at the specification level. Paths in the CSM
correspond to allowed sequences of design operations. The properties
are chained together by defining for each property the exact time point
where the control is handed over to the successor property, also called
right hook of the property.

Example 1: Assume that the operations of a design are read and
write. The write-transaction can be processed immediately, while the
read-transaction needs to wait for the data to be available (i.e. it is
split into three operations). Fig. 2 shows the CSM of this design that
has two conceptual states, READY and READ-BUSY. The properties
are shown at the edges in the CSM. Since the write-operation is
completed within a single cycle, the operation does not change the
conceptual state. The read-operation is verified using three properties.
First, the design requests to read data and changes the conceptual state
to READ-BUSY. The state is active until data is available (property
wait), before the transition read is enabled and the state machine
returns to the READY state. The property idle verifies the behavior
when no read or write is requested. By this, the design is verified.
Additionally to the CSM the verification tool can be supported by
using invariants. Proven invariants can safely be reused as constraints
in other parts of the DUV. This enables compositional verification and
is e.g. used in [6].

As a design typically only works correctly within the specified
environment, this environment has to be modeled during verification
as well. This includes the modeling of protocols used by connected
components. Here, Finite State Machines (FSMs) are used for this
purpose. These FSMs are described in terms of constraints. The
FSMs ensure the valid behavior of protocol states, i.e. it is not the
aim to verify the robustness of the design against violations of the
protocol specification by the environment.

Slave FIFO Master

Bus A Bus B

Signal Mapping, FIFO Operations

Slave-CSM FIFO-CSM Master-CSM

Spec

Master-FSM

Spec

Slave-FSM

D
es

ig
n

Au
to

.
ge

n.
In

pu
ts

Fig. 3. Overview of generated properties and user-required input

The functional completeness of the verification suite is guaranteed
by construction using the Gap-Free Verification (GFV) methodol-
ogy [1], [2]. The verification tool OneSpin 360 MV implements
GFV and checks the completeness automatically. The methodology
ensures that all operations in all modes are described and that all
outputs are determined for any input trace. By this, successful GFV
guarantees that no design behavior is missed during verification. This
methodology is assumed as given in this work and the completeness
of the generated verification suite is claimed in respect to the
methodology.

B. Open Core Protocol
The openly licensed Open Core Protocol (OCP) [9] standard is a

configurable specification of interfaces. Each actual configuration is
a description of a particular protocol. For this purpose OCP specifies
a wide range of transactions from simple write and read accesses to
complex transactions in burst mode. The interface signals in OCP
protocols are grouped into data-flow, sideband, and test signals. The
two latter ones are optional groups of signals. Further, the data-
flow signals are separated into the categories basic signals, simple
extensions, burst extensions, tag extensions, and thread extensions.
In this work we are supporting all basic signals for the automatic
generation of properties for verifying the designs. However, due to a
generic approach it is easy to integrate other signals as well.

A configuration file for OCP describes which protocol elements
are to be implemented, e.g. the transactions used, the handshake
mechanisms for data transfer, how signals from the specification are
named in the concrete implementation etc. Thus, OCP is a formal
description of interfaces implying an underlying semantic. But other
aspects like, e.g. response times after receiving a request are not
specified in this file.

III. GENERAL IDEA

In this section the general idea of the automatic approach for
verifying bus bridges is sketched. Essentially, a generic model of
bus bridges is the core of the approach. This generic model is
configured to automatically generate the verification suite consisting
of (1) CSMs formally capturing the behavior of the DUV and
ensuring the completeness of verification, and (2) FSMs modeling
the environment. The latter is required since the bus bridges often
implicitly assume that the environment operates according to the
specification, i.e. the DUV is not robust against protocol violation.

The general flow for the presented approach can be seen in
Fig. 3. The inputs for the approach are given in the upper part. The
middle part sketches the components of the automatically generated
verification suite. Finally, the design under verification is given in the
lower part. Details on these three layers are described from bottom
to top in the following.

The bottom part sketches the design of the bus bridge to be
considered. Compared to the general structure of a bus bridge

described in Section I, only one direction is considered as the other
case is symmetric. For now, we assume that storage and mapping of
transactions and addresses is done using a FIFO-like memory. The
design is separated into three main parts Slave, FIFO, and Master. We
call each of these three parts a cluster in the following. The separation
of the functional blocks enables a compositional verification, ensuring
scalability and efficiency of the proofs.

In the middle layer of the figure the generated data and the model
used by the verification approach is indicated. For each cluster of the
DUV a CSM is generated. Invariants and constraints at the interfaces
of the three clusters are generated automatically. Constraints for
modeling the environment of the bus bridge are generated in terms
of FSMs.

The upper part shows all information required as input data for
the automatic generation. More precisely, the buses connected to the
bridge are generically described by protocol specifications for the
corresponding slave and master, respectively.

The communication between slave and master in the bridge is
modeled using generic FIFO memories. The automatically generated
properties for the FIFOs are built on top of generic functions and
predicates, e.g. push, pop, and empty, that have to be specified
by the user to adapt the properties to a specific design. For this
purpose the user manually specifies these predicates that are specific
to a particular implementation. Given a designer’s knowledge this is
typically easily done. Furthermore, the depth of the FIFO, i.e. the
number of entries which can be saved, has to be specified manually
(in the special case of depth 0 no data is stored but passed through
combinatorially). Note that the FIFO depth depends on the DUV
implementation and not on the connected interfaces. We assume that
two FIFO-like communication channels are used to separate (1) the
transactions from slave to the master and (2) the responses from the
master to the slave. Further, it is assumed that the functionality of
these channels can be expressed using generic FIFO instructions.

The FIFOs between the slave and the master form the interface
from Protocol A to Protocol B. Thus, according to our approach, the
abstract view of a bus bridge consists of two transformations. The
transactions of Protocol A are transformed to a generic sequential
FIFO protocol by the slave, which is then transformed to Protocol B
on the master side. One example are different bus widths that require
splitting of transactions from the wider bus into multiple transactions
on the smaller bus.

Note that while the current implementation of our approach covers
the basic cases for the OCP protocol, the nature of the FIFO protocol
is specific to the implementation of the DUV. Therefore, the mapping
of the generic FIFO interface to the actual implementation will need
the designer’s knowledge for more complex designs.

In summary, the following input needs is required to automatically
generate the property set:

• A protocol specification of the buses, e.g. a textual OCP con-
figuration file

• A signal mapping of specification signal names to actual names
in the design

• Functions describing the internal implementation of the com-
munication channels between master and slave as a generic
FIFO and the translation of transactions (in terms of concrete
verification source code)

• Design specific parameters which cannot be extracted from the
specification of the connected components, e.g. pipeline depth
and response times

Example 2: Throughout this paper, the design of the bus bridge
in Fig. 4(a) is used as a running example. The connecting buses run
OCP/IP protocols in two different configurations. The master of Bus
A (left side) is connected to a slave and the slave of Bus B (right side)
is connected to a master, respectively. External components connected
to the bus bridge are not shown in the figure. Also, the actual
implementation of other components connected to the bus is not

Slave

FIFO

Master

B
us

A

B
us

B

push

rw

addr

wdata

full

pop

rw’

addr’

wdata’

empty

rvalid

rdata

Clk

SReset

MCmd MCmd’

MAddr MAddr’

MData MData’

SCmdAccept

SCmdAccept’SResp

SResp’SData

SData’

MDataValid

SDataAccept

(a) Design

Clk

t=0 t=1 t=2 t=3 t=4

MCmd WR IDLE

SCmdAccept

push

rw

pop

rw′

MCmd′ IDLE WR

MDataValid

SDataAccept

(b) Example trace for a write transaction

Fig. 4. Running Example

required. Only the specification in terms of generated FSMs is used
for the automatic verification approach. Other bus participants are
assumed to comply with the specified protocol. Internally, the slave
communicates with the master using a FIFO that is synchronized via
a clock signal.

All components are reset via the SReset signal. A command is
specified via the MCmd signal and can either be IDLE (no request),
WR (write request), or RD (read request). Depending on the chosen
command, the signals MAddr and MData specify an address (to
write to or to read from) and data in case of a write access. As
return value, the slave accepts a command with SCmdAccept and
responds to a request with SResp which returns DVA (data valid) in
case of a valid response. Finally, in case of a read transaction the
corresponding data is transmitted to the connected master via the
SData signal. The master implements a data handshake mechanism
using the MDataValid and SDataAccept signals, respectively2.

An example trace for a write transaction is given as a waveform
in Fig. 4(b). After the command has been accepted, i.e. SCmdAccept
asserts, the corresponding transaction and related data are stored in
the internal FIFO signals. Afterwards, they are processed by the
master interface to pass the transaction to Bus B. In case of a read
transaction the read data would be returned to Bus A directly using
the rvalid and rdata signals.

IV. METHODOLOGY

In this section the generation of the verification suite is described
in more detail. First we show the structure of the verification
model, i.e. the FSMs and CSMs, in Section IV-A and Section IV-B,
respectively. Afterwards, we discuss the advantages of this approach
in Section IV-C.

A. Environment Constraints – Finite State Machines
The FSMs model all valid protocol compliant behavior of the

environment by implementing certain constraints on the primary
inputs of the DUV. A transaction is split into multiple phases, like
a request phase followed by a response phase. This is similar to

2Although a data handshake is modeled, the transaction is still sequential,
since the respective signals are sensitive to a common clock signal.

P P

start∧!end / ev

end / ev

start∧end / ev

Request Phase (P =RQ) (ev =ACPT)
start: MCmd 6= IDLE

end: SCmdAccept = 1

Datahandshake Phase (P =DH) (ev =DATAVALID)
start: ACPT ∧ dhreq

end: SDataAccept = 1

Response Phase (P =RS)
start: respreq ∧ [(ACPT∧!dhreq) ∨DATAVALID]

end: SResp = DVA

Fig. 5. Finite state machines for request, data handshake, and response phase

the configurable synthesis approach in [14]. Different scenarios are
possible, e.g. in some cases a write request does not require a
response phase. For each phase an FSM is created. Finishing one
phase by reaching a certain state in the FSM triggers a state transition
in the following FSM, i.e. the next phase. The parallel composition of
the FSMs describes all traces conforming to any specified interaction
on the bus. The separation into different phases allows for concurrent
phases of different transactions. This kind of pipelining is common
in modern protocols. Furthermore, this enables a simple description
of transactions and the concept is easily extensible.

Each state machine is built in the same manner. The general
structure is given in the left hand side of Fig. 5. A state machine
always consists of a phase variable P resulting in two states P and
P indicating whether the phase is currently ongoing or not. The initial
state is P . Transitions between states are labeled with a trigger and
an event variable. A trigger is a Boolean expression composed of
the expressions start and end. The trigger is always built in the
same manner, but the start and end expressions are adjusted for
each phase. The start expression indicates the beginning of a phase,
whereby the end expression indicates the end of a phase and triggers
the next phase, i.e. a transition in the corresponding FSM. If the FSM
is in the initial state when start is asserted while end is not, then
the state changes to P , meaning that the phase is ongoing. When
end asserts as well, the phase finishes in the same clock cycle,
thus, the transition results in the initial state. Being in the state P ,
when end asserts, then the state returns to the initial state P . In case
no transition can be enabled, it is implicitly assumed that the state
does not change and no event is emitted. In addition, whenever the
constraint end asserts, a newly introduced event ev is emitted. This
event is required for the parallel composition of the state machines
and can be used as variable in the start expression of another state
machine, i.e. another phase.

Example 3: Concrete definitions of three state machines for three
phases, namely the request, data handshake, and response phase are
given in the table in the right hand side of Fig. 5. Considering the
request phase, the phase state is indicated by RQ. The start condition
is enabled whenever the command requested by the master MCmd is
not IDLE. Further, the request phase ends whenever the command got
accepted by the slave, i.e., the signal SCmdAccept asserts. The event,
which is emitted by the request phase is ev =ACPT. A description
of the other phases is given in a later example in Section IV-C.
All the considered state machines are generated automatically from
the protocol specification.

With a slight extension of the FSMs, pipelining can be modeled.
For this purpose, a counter nP is added to the state machine counting
the number of the current transactions in the respective phase. The
counter is increased whenever a transaction starts, i.e. the start
constraint holds and it is decreased whenever a transaction ends,
i.e. the end constraint holds. In case the phase completes within a

P P

start∧!end /
ev , nP := 1

!start∧end∧nP = 1 /
ev , nP := 0

start∧end /
ev

start∧end /
ev

start∧!end /
ev ,nP := np + 1

!start∧end∧np > 1 /
ev ,nP := nP − 1

Fig. 6. Extended state machine for pipelined transactions

single clock cycle, the counter remains unchanged. Technically, three
further transitions have to be added to state P of the state machine.
These transitions handle the cases, that a new phase is started, that
a phase ended but the pipeline is still not empty, or that a phase
completes in one clock cycle (see Fig. 6).

B. Conceptual State Machines
Both the generated properties as well as the conceptual states

describe the CSMs, i.e. the operation of the design to be verified. Each
property is a transition in the CSM and corresponds to an operation
the design can perform.

For each cluster in the structural view of the design, i.e. slave,
FIFOs, and master, a CSM is constructed (compare to Fig. 3).
Analogously to the design of the FSMs described in the previous
section, the properties of the CSMs are designed in a generic way
to encapsulate the implementation details resulting from different de-
signs. Therefore, the properties are expressed on top of an abstraction
layer that hides the implementation details. This abstraction layer is
given by a collection of predicates and functions, some of which are
generated automatically. The remaining functions need to be supplied
by the user to adapt the CSM to the DUV. In our approach, that is
the description of the FIFO implementation.

The properties have an implication structure – if the assume part
evaluates to true, then the prove part needs to hold as well. Under
the assumption that the design is in a certain conceptual state, the
property proves that a transaction is correctly processed and that
the design reaches the next conceptual state. During the operation
all outputs to the adjacent clusters are specified, as well as the
internal state of the cluster. The following example demonstrates this
approach.

Example 4: As an example the CSM for the master is given in
Fig. 7. In this example, only non-blocking operations are allowed.
Therefore the single conceptual state master ready is sufficient.
All the properties immediately return to the single conceptual state
master ready. Note, that properties typically cover several clock
cycles even though they are given by a single transition in the CSM.

Consider the property proving a correct read transaction as given in
Fig. 8. Here, the property is written in ITL, a property language used
in the OneSpin 360 MV verification tool. Alternatively, the whole
approach could be implemented using System Verilog Assertions
(SVA) [7].

Two time-points are declared, where tacc represents the acceptance
of the command by the slave (line 3), and trsp represents the
end of the response phase (line 4). In the freeze block, signals
are captured at a certain time point. In this example, the current
command (line 6) and address (line 7) in the FIFO are read at time
t, the clock cycle where the operation is assumed to start. According
to the CSM, the source state, i.e. master ready is assumed by the

master readyreset
read,
write,
idle

Fig. 7. Overview of the generated conceptual state machines

 property prop master read;
 for timepoints:
 t acc = t + 0..4 waits for b SCmdAccept;
 t rsp = t acc + 0..4 waits for b SResp != NULL;
 freeze:
 CMD = fifo Cmd(fifo back)@t;
 ADR = fifo Addr(fifo back)@t;
 assume:
 at t: master ready state;

 at t: CMD == RD;
 prove:
 during[t, t acc]: master cmd out(CMD, ADR);
 during[t, t acc−1]: fifo pop idle;
 at t acc: fifo pop;
 at t rsp: resq valid;
 at t acc+1: master ready state;
 end property;

Fig. 8. ITL description of the master’s read property

property (line 9). Besides that, a read command is pending in the
FIFO (line 10). In the prove part of the property, the correct execution
of the read operation has to be proven (lines 12–15) and that the
property ends in the conceptual state master ready (line 16) which
is the property’s target state in the CSM. For the read operation,
the predicate master cmd out checks that the read command from
the FIFO will be correctly issued on the bus (line 12). While before
the acceptance of the command (tacc), no pop action is allowed on
the FIFO (fifo pop idle, line 13), at the time-point of acceptance the
current transaction is popped from the FIFO (line 14). Finally, as
soon as a response is coming in from the bus, the response queue
(resq) will be validated by the master (line 15). The response queue
is the communication channel between master and slave and in this
specific design realized by a combinatorial signal.
Note that the property allows the overlapping of successive transac-
tions, i.e. pipelining can easily be modeled: As soon as the conceptual
state master ready (the target state in the CSM) is reached at time
point tacc +1, the control is handed over to the next property, which
could be read, write, or idle. The response phase however ends later
at time point trsp, which means that the next transaction is allowed
to start before the current transaction is finished.

In a similar manner, properties are generated with the respective
proof goals for all the edges in the CSMs of the master and the
slave. In general, the properties for the slave are structured as follows.
The conceptual state slave ready and an incoming command from
Bus A are assumed. Furthermore, the FIFO needs to have at least
one free entry. Then, the command is acknowledged on Bus A, a new
transaction is issued on the FIFO interface as soon as the necessary
data is available, and the system returns to the state slave ready.
Similarly, a property for the master assumes a valid transaction in
the FIFO. The property proves that the respective command is issued
correctly on Bus B and that the transaction is removed from the
FIFO. If a response is expected, response data is transferred to the
slave by insertion into the response queue, and the system returns to
the state master ready. In addition to these transaction properties, and
to ensure a complete verification, there is an idle property for both
master and slave, checking the behavior in cases where no transaction
occurs.

In order to ease the compositional verification, invariants are
generated, including common proof goals of a cluster with respect
to the interface of its adjacent clusters. For example, an invariant
guarantees that there is no push operation taking place at the FIFO
interface as long as the incoming bus is idle. Proven invariants can
be used to constrain the inputs of adjacent clusters. This is depicted
in Fig. 9. At the boundaries of the bus bridge, it is proven that
the protocol specifications are respected by the DUV. Note that the
invariants and constraints are generated such that no cyclic reasoning
occurs [1], [2]. This is also checked automatically by the verification
tool used.

C

A

Slave
A C

C A

FIFOs
A C

C A

Master
C

A

Fig. 9. Constraints (C) and invariants (A) in compositional verification

The approach guarantees that the generated properties completely
cover the behavior of the bus bridge. As explained earlier this is
guaranteed by using the GFV methodology and formally proven by
OneSpin 360 MV.

C. Discussion

Our approach has an underlying abstract model of bus bridges to be
verified. Any implementation fitting into this model can be handled
by the approach. To verify a design, a concise protocol specification is
required and generic properties formally describing this specification
must be generated automatically. However, the model is very generic
and flexible.

At the bus interfaces, a high level of automation is achieved. Using
the encapsulation by constraints and decoupled state machines, it is
easy to allow different configurations of designs without changing the
basic structure. For every basic OCP configuration the resulting FSMs
representing the transactions will look as in Fig. 5, i.e. even when
no data handshake phase is required by the specification, the FSM
is generated. Using sub-expressions in the constraints start and end
ensures flexibility. Further, due to the use of event triggers, flexibility
is ensured. Other bus bridges running protocols that are similar to
OCP can be verified using the same methodology.

Example 5: Whether the data handshake phase and response phase
are specified in the OCP configuration, can be obtained from the
variables dhreq and respreq, respectively. Assuming that a data
handshake phase is not specified, i.e. dhreq is always false, the
respective start constraint never holds. However, in case a response
is required (respreq is true) and a request phase ends, i.e. the ACPT
signal asserts, the start constraint of the response phase evaluates to
true. Thus, the FSM for the response phase is triggered by the ACPT
signal, when there is no data handshake phase specified, otherwise,
the FSM is triggered by the DATAVALID event, emitted by the data
handshake FSM.
Verifying the internal communication and the translation of the
transactions is more difficult. The abstract FIFO interface allows
for a high degree of automation, as most of the proof goals for
the data flow are generated. FIFOs are typical elements used in bus
bridges for the internal communication. Thus, for designs of lower
complexity, the mapping from the abstract interface to the actual
implementation is easy. At the same time, the generic interface offers
enough flexibility to be applicable to more complex designs which
might not use FIFOs as communication channels. As an example,
we considered a bus bridge with incompatible data widths (32 bits
and 16 bits, respectively). In this case, the transformation, i.e. the
splitting of transactions is easily encapsulated in the push action of
the FIFOs.

Using the conceptual state machine of a design as a starting
point for the generation of the properties allows high flexibility and
extensibility of the approach. By adjusting the structure of the CSM,
a variety of different designs can be modeled. For example, when
switching from non-blocking reads to blocking read transactions,
a CSM as shown in Fig. 2 is used. Based on this CSM, also
burst transactions can be modeled by adding further transitions
(i.e. properties) describing the processing of the successive data items
during a burst. Essentially, the core structure of the CSM remains
the same. Further transactions in the specification extend these by
additional transitions and potentially by new intermediate states.

Table I
EVALUATION RESULTS

Lines of Code
Slave FSM 219
Master FSM 324
Properties 244
Invariants 76
Conceptual States 33
Completeness Check 120
Predicates 64
FIFO Predicates 108
Sum 1,188

(a) Generated property set

Proof time (s) Memory (MB)
Invariants 2.36 1,503
Properties 4.76 1,650
Completeness check for slave 2.44 1,055
Completeness check for FIFO 1.02 564
Completeness check for master 25.15 6,088
Sum 35.73

(b) Proof-time and memory usage for property verification

V. EVALUATION

This section presents a case study demonstrating our approach. The
design of the running example (Fig. 4) is used with the following
configuration. The slave uses a basic protocol with a request and
response phase, providing a read-operation and a write-operation.
On the second bus, the master uses a more enhanced protocol with
an additional data handshake phase. The communication from slave
to master is realized by a FIFO, whereas the opposite direction is
realized by a combinatorial signal.

The design has a size of about 600 lines of Verilog code. Based
on an OCP configuration file consisting of 64 lines of code, the
generated verification suite consists of 11 properties, 10 constraints,
13 assertions, and 90 predicates. Additionally, 21 predicates were
specified manually to describe the FIFO. Note, that most of the
manually specified predicates consist of a few lines only (compare
with Table I(a)).

Example 6: To demonstrate the compactness of the manually
generated FIFO predicates, consider Fig. 10 showing three predicates.
Here, the functions for the two pointers to the front and the back of
the FIFO as well as the data pointer to the top entry are described. As
can be seen, in this particular design they encapsulate concrete design
signals. However, when e.g. using fifo front in other invariants and
properties, the actual signal fifo/write ptr is referenced implicitly.
The verification suite has a size of about 1,200 lines of code. A
more detailed overview of the lines of code can be obtained from
Table I(a). As can be seen, the majority of the code is created for
the environment constraints and for the actual properties. In total
only 108 lines are not generated automatically but result from the
included FIFO predicates that are manually specified, i.e. 91% of the
verification code is automatically generated.

The design was verified on a 3 GHz AMD Athlon Dual Core
processor using 4 GB of main memory running Linux 2.6.31.
The automatic generation of the verification suite took less than
one second after providing the user input. Run time and memory
requirements for the verification are listed in Table I(b). The data is
separated for invariants, properties, and all completeness checks for
the three clusters. All checks can be performed in several seconds, in
total 35.73 seconds. However, the completeness check of the master
used 70% of the overall run time. This is explained by the additional
data handshake phase implemented in the master component of the
bridge.

The approach offers further advantages. Generated close to the
specification level, the properties are readable and have the same
underlying structure. Thus, properties are easily understood by the
designer for debugging purposes. Moreover, our methodology pro-
vides a structured way to the verification of the bus bridges.

1 macro unsigned fifo front := fifo/write ptr; end macro;
2 macro unsigned fifo back := fifo/read ptr; end macro;
3 macro unsigned fifo top := fifo entry(fifo back); end macro;

Fig. 10. Example predicates for three selected FIFO functions

VI. CONCLUSION

In this work, a verification methodology for bus bridges is
presented. A partially automatic approach has been proposed that
generates a provably functionally complete verification suite based
on GFV. No design behavior can be missed. The design is separated
into three clusters and the properties are generated based on abstract
descriptions of both the design and the environment. As input the
protocol specification and some implementation specific parameters
are required. Thus, the approach can be applied to different designs.
We evaluated the approach using OCP/IP as protocol specification,
which describes a large family of protocols. In this case 91% of the
verification suite were automatically generated.

In future work we will improve the degree of automation by using
formal methods to derive certain implementation specific parame-
ters that are currently user input. Furthermore, we will apply the
methodology to ease the debugging step for failing properties as
well. Currently counterexamples have to be analyzed at a low level.
Mapping these counterexamples to a higher level of abstraction assists
the designer in this step.

REFERENCES

[1] J. Bormann. Vollständige formale Verifikation. PhD thesis, Technische
Universität Kaiserslautern, 2009.

[2] J. Bormann and H. Busch. Method for the determination of the quality
of a set of properties, usable for the verification and specification of
circuits, 2009. US Patent 7571398, priority Sep 2005, granted Aug 4th,
2009.

[3] V. D’Silva, S. Ramesh, and A. Sowmya. Bridge over troubled wrappers:
Automated interface synthesis. In VLSI Design, pages 189–194. IEEE
Computer Society, 2004.

[4] F. Gharsalli, S. Meftali, F. Rousseau, and A. A. Jerraya. Automatic
generation of embedded memory wrapper for multiprocessor SoC. In
Design Automation Conference (DAC), pages 596–601. ACM, 2002.

[5] A. Grasset, F. Rousseau, and A. A. Jerraya. Automatic generation
of component wrappers by composition of hardware library elements
starting from communication service specification. In IEEE International
Workshop on Rapid System Prototyping (RSP), pages 47–53. IEEE
Computer Society, 2005.

[6] T. A. Henzinger, M. Minea, and V. S. Prabhu. Assume-guarantee reason-
ing for hierarchical hybrid systems. In Hybrid Systems: Computation and
Control, 4th International Workshop, HSCC 2001, Rome, Italy, March
28-30, 2001, Proceedings, pages 275–290, 2001.

[7] IEEE System Verilog Working Group. IEEE Standard for SystemVerilog
– Unified Hardware Design, Specification, and Verification (IEEE Std
1800-2005). IEEE, 2005.

[8] J. Moondanos, L. Loh, and H. Stump. OCP and
verification of configurable OCP interfaces. Technical
report, Jasper Design Automation, 2010. presentation slides,
http://www.ocpip.org/uploads/dynamic areas/Ct9Rr6XmkN84Y6MvTou
u/947/OCP.IP.2010.ppt, last access 2010-05-11.

[9] OCP-IP. Open Core Protocol International Partnership, 2010.
http://www.ocpip.org.

[10] OneSpin Solutions GmbH. GapFreeVerification Process Manual. Tech-
nical report, Munich, 2009. Version 2009 12.

[11] R. Passerone, J. A. Rowson, and A. L. Sangiovanni-Vincentelli. Auto-
matic synthesis of interfaces between incompatible protocols. In Design
Automation Conference (DAC), pages 8–13, 1998.

[12] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rülke. Automatic
Generation of Complex Properties for Hardware Designs. In Design,
Automation, and Test in Europe (DATE), pages 545–548, 2008.

[13] A. Roychoudhury, P. S. Thiagarajan, T.-A. Tran, and V. A. Zvereva.
Automatic generation of protocol converters from scenario-based specifi-
cations. In IEEE Real-Time Systems Symposium (RTSS), pages 447–458.
IEEE Computer Society, 2004.

[14] S. Watanabe, K. Seto, Y. Ishikawa, S. Komatsu, and M. Fujita. Protocol
transducer synthesis using divide and conquer approach. In Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 280–
285. IEEE, 2007.

[15] D. Wingard. MicroNetwork-Based Integration for SoCs. In Design
Automation Conference (DAC), pages 673–677. ACM, 2001.

