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Abstract—This paper considers the optimization of reversible
and quantum circuits. Both represent the basis for emerging
technologies e.g. in the area of quantum computation and
low power design. An approach called window optimization is
described that does not consider the circuit as a whole, but
smaller sub-circuits of it (so called windows). Two schemes for
extracting the windows and three approaches for their optimiza-
tion are considered. Application scenarios show that applying
the proposed optimizations leads to significant reductions of the
circuit cost.

I. INTRODUCTION
In the last years, research in the area of reversible and

quantum logic became attractive due to its applications in
domains like quantum computation [1] and low-power de-
sign [2]. These applications offer promising alternatives, while
traditional technologies (like CMOS) will reach their limits in
the future due to shrinking transistor sizes and, in particular,
power dissipation. As a result, first synthesis approaches have
been introduced that realize Boolean functions as cascades of
reversible or quantum gates (see e.g. [3], [4], [5], [6], [7], [8],
[9]).
However, the results obtained by synthesis approaches often

are sub-optimal. Thus, post-synthesis optimization is applied
to reduce the costs of a circuit. For reversible and quantum
logic, first attempts in optimization have been made in the last
years. For example, template matching [10], [11] is a search
method which looks for gate sequences that can be replaced by
alternative cascades with lower costs. The approach introduced
in [12] analyzes cross-point faults to identify redundant con-
trol connections in reversible circuits (removing such control
lines reduces the costs of the circuit). However, in particular
for large circuits, the respective computation times of both
approaches are extremely high.
In this paper, we introduce a window optimization approach

for both, reversible and quantum circuits. The general idea is
not to consider the circuit as a whole, but smaller sub-circuits
of it (so called windows). A similar approach has already been
introduced in [13] for pure reversible circuits. Here, windows
are replaced by optimal sub-circuits representing the same
function. However, only windows with three or four inputs
are considered. Furthermore, all 23! = 40, 320 optimal three-
input circuits are stored in a lookup table. This is not feasible

for quantum circuits since besides the classical logic values
0 and 1, two additional quantum values are possible. Thus,
43! > 1089 possible sub-circuits have to be considered which
cannot be handled by a lookup table. Another re-synthesis
method has been proposed in [8] which either extracts the
sub-circuits randomly or exhaustively. These two optimization
methods are proposed along with many others. However, they
are not evaluated on their own merits.
In contrast, here another way of window optimization is

proposed. More precisely, we introduce two schemes for
extracting the windows and three approaches to optimize
them afterwards. Two scenarios show the application of these
methods and evaluate the resulting reductions. Overall, circuits
can be efficiently optimized with respect to their cost applying
the proposed window optimization.
The remainder of this paper is structured as follows: The

next section briefly introduces reversible and quantum circuits.
Window optimization, i.e. how to extract and how to optimize
the windows of a given circuit, is described in Section III.
Afterwards the proposed approaches are evaluated by two ap-
plication scenarios in Section IV. Finally, Section V concludes
the paper.

II. REVERSIBLE LOGIC AND QUANTUM CIRCUITS

A logic function is reversible if it maps each input as-
signment to a unique output assignment. Such a function
must have the same number of input and output variables
X := {x1, . . . , xn}. Since fanout and feedback are not allowed
in reversible logic [1], a circuit G realizing a reversible
function is a cascade of reversible gates g, i.e. G = g1 . . . gd

where d is the number of gates. A reversible gate has the form
g(C, T ), where C = {xi1 , . . . , xik

} ⊂ X is the set of control
lines and T = {xj1 , . . . , xjl

} ⊂ X with C ∩ T = ∅ is the set
of target lines. C may be empty. The gate operation is applied
to the target lines iff all control lines meet the required control
conditions. Control lines and unconnected lines always pass
through the gate unaltered.
In the literature, several types of reversible gates have

been introduced. Besides the Fredkin gate [14] and the Peres
gate [15]), (multiple controlled) Toffoli gates [16] are widely
used. Each Toffoli gate has one target line xj , which is inverted
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Fig. 1. Reversible circuit with input/output mapping
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Fig. 2. Decomposition of a Toffoli gate to a quantum circuit

iff all control lines xi1 , . . . , xik
have the value 1. That is, a

multiple controlled Toffoli gate maps (x1, . . . , xj , . . . , xn) to
(x1, . . . , xi1xi2 · · ·xik

⊕ xj , . . . , xn).
Example 1: Fig. 1 shows a reversible circuit representing

the function 3 17 (taken from [17]). Control lines are denoted
by , while the target lines are denoted by . This circuit
maps e.g. the input 101 to the output 010.
Quantum circuits realize functions with the help of quantum

gates [1]. Quantum circuits are inherently reversible and
manipulate qubits rather than pure logic values. The state of
a qubit can be expressed as |Ψ〉 = α|0〉 + β|1〉, where |0〉
and |1〉 denote pure logic states 0 and 1, respectively, and
α and β are complex numbers such that |α|2 + |β|2 = 1.
The most frequently occurring quantum gates are the NOT
gate (a single qubit is inverted), the controlled-NOT (CNOT)
gate (the target qubit is inverted if the single control qubit
is 1), the controlled-V gate (also known as a square root of
NOT, since two consecutive V operations are equivalent to
an inversion), and the controlled-V+ gate (which performs the
inverse operation of the V gate and, thus, is also a square root
of NOT).
Since quantum circuits are inherently reversible, every re-

versible circuit can be transformed to a quantum circuit. To
this end, each gate of the reversible circuit is decomposed into
a cascade of quantum gates. Thus, quantum circuits are often
synthesized by a two-stage approach: First a reversible circuit
consisting of multiple control Toffoli gates is synthesized and
afterwards each gate of the resulting circuit is mapped to a
cascade of quantum gates.
Example 2: Fig. 2 shows a quantum gate cascade which

can be used to transform a Toffoli gate to a quantum circuit.
The cost of a reversible or quantum circuit are defined by the

sum of the quantum cost of each gate. For quantum circuits,
each gate has quantum cost of one (i.e. the cost of a quantum
circuit is equal to the number of gates). For reversible circuits,
the quantum cost depends on the number of control lines.
For example, a Toffoli gate with no or one control line has
quantum cost of one, while a Toffoli gate with two control
lines has quantum cost of five. To calculate the respective cost,
metrics as introduced in [18] and further optimized e.g. in [11]
are applied.
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Fig. 3. Resulting windows using the SWO scheme

Example 3: The reversible circuit shown in Fig. 1 has cost
of 14, while the quantum circuit given in Fig. 2 has cost of 5.

III. WINDOW OPTIMIZATION

In this section, window optimization of reversible and quan-
tum circuits is introduced. In the following, the general idea is
described. Instead of considering the overall circuit as a whole,
smaller sub-circuits (so called windows) are extracted. Then,
these windows are locally optimized. Different options exist
on (1) how to determine the windows and (2) which method
is applied for its optimization. By cascading the optimized
windows, a new circuit with lower cost results. Two algorithms
for window extraction are introduced in the next subsection.
Afterwards, possible optimization methods are proposed. The
effect of the respective strategies on the resulting circuit cost
is evaluated in detail in the next section.

A. Extracting Windows
Two strategies are proposed to extract windows from a

given reversible or quantum circuit. The first one shifts a
window of fixed size across the circuit from left to right.
The windows can overlap and they are usually shifted by
one gate after optimization has been applied. This strategy
is easy to implement and allows a concrete definition of the
window sizes. In particular for optimization approaches that
are applicable to circuits of a certain size only, appropriate
windows can be extracted with this method. Empty lines
within a window (i.e. lines neither being a control line nor
a target line of any gate in the window) can be ignored. In
the following, extracting windows by this scheme is denoted
by Shift Window Optimization (SWO).
Example 4: Fig. 3 shows a circuit consisting of nine gates.

Applying the SWO scheme with a fix size of four, six windows
result. Two of them are highlighted in gray. After the left one
has been used for optimization, the window is shifted by one
gate, depicted by the right window.
The second strategy for window extraction considers sub-

circuits with respect to their number of lines. Starting
with i = 2, all windows with i circuit lines are considered.
Afterwards, i is incremented until the overall number of circuit
lines is reached (i.e. as long as i < n). More precisely,
Fig. 4 shows the respective pseudo code: Given G as a
circuit (line 1), windows are extracted and stored in the
set W (line 2). For each i, the approach starts at the first
gate of the circuit (line 3). W represents the current window,
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1 G := g1 . . . gd is a given circuit
2 W := ∅
3 foreach i ∈ {2, . . . , n − 1}
4 W := empty circuit
5 foreach j ∈ {1, . . . , d}
6 i f n umb e r o f l i n e s (Wgj )≤ i then
7 W := Wgj

8 e l s e i f n umb e r o f l i n e s (gj )≤ i then
9 W := W ∪ {W}

10 W := gj

11 e l s e
12 W := W ∪ {W}
13 W := empty circuit
14 end
15 end
16 end

Fig. 4. Determining windows W based on number of lines

which initially is empty (line 4). Then, the circuit is traversed
from left to right (line 5). According to the current gate gj ,
three different cases are considered:

• Adding gj to the current window would not exceed the
line limit of i (line 6, whereby number of lines
returns the number of non empty lines of a circuit). In
this case, the window is extended by gj (line 7).

• Only gj alone would not exceed the line limit of i (line 8).
In this case the current windowW is added to W (line 9)
and a new current window is initialized with gj (line 10).

• The gate is too large for the line limit of i (line 11). In this
case the current window W is also added to W (line 12),
but the new current window is initialized as an empty
circuit (line 13).

Windows with increasing number of circuit lines are thereby
considered. This scheme is denoted by Line Window Optimiza-
tion (LWO).
Example 5: Applying the proposed scheme to the circuit

from Example 4 with i = 3, windows as shown in Fig. 5
result.

B. Optimizing the Windows
Having the extracted windows, different synthesis and opti-

mization methods can be applied to them. This may improve
the costs of the respective sub-circuits and thus, lead to local
optimizations. In this work, three different approaches are
applied to optimize the windows: (1) re-synthesize the window,
i.e. apply the synthesis approach used to generate the whole
circuit to the windows, (2) generate a local optimum, i.e. re-
synthesize the respective window using exact approaches that
generate minimal results, and (3) apply existing optimization
approaches, i.e. instead of optimizing the whole circuit (which
may need a significant amount of run-time), only parts are
locally optimized. In the remainder of this section, all three
approaches and their respective pros and cons are described
in more detail.
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Fig. 5. Resulting windows using the LWO scheme

1) Re-synthesis: In the last years, several synthesis ap-
proaches for reversible logic have been developed (see e.g. [3],
[4], [5], [6], [8]). Given a function f to be synthesized as
input, a circuit representing f is generated. Applying such an
approach to re-synthesize the extracted windows may lead to
more compact sub-circuits.
As an example, the transformation-based approach proposed

in [4] (as well as its derivatives like [5], [8]) traverses each
line of the truth table of f and adds gates to the circuit
until the output values match the input values (i.e. until the
identity is achieved). Gates are chosen so that they do not alter
already considered truth table lines. This is achieved by adding
gates with many control lines. Thus, in particular for complex
functions often circuits with large gates (and therefore high
cost) result. In contrast, if smaller sub-circuits are iteratively
considered, the cost may be reduced since only a few (smaller)
gates have to be added to achieve an input-output mapping.
Besides that, re-synthesizing can be realized quite easily

since the synthesis approach at hand can simply be re-used. In
fact, only the windows (more precisely the respective functions
realized by the sub-circuit) have to be extracted. Thus, a
two-stage synthesis method can be applied. First, the desired
function is synthesized and, afterwards, the resulting circuit
is optimized by applying the same synthesis approach to the
windows. The application scenarios at the end of this paper
confirm, that already this simple approach leads to significant
improvements in circuit costs.
2) Exact Synthesis: In contrast to heuristic synthesis ap-

proaches, exact ones (e.g. [7], [9]) ensure minimality, i.e. they
generate circuits with a minimal number of gates or cost,
respectively. Unfortunately, they require significant run-time
and, thus, are only applicable to small circuits. However, since
windows can be restricted to both, the number of gates and
the number of circuit lines by the schemes introduced above,
exact synthesis represents a promising choice for window
optimization.
Applying exact synthesis, again only the respective func-

tions of the windows have to be extracted. Then, the resulting
window is synthesized using an exact method. Obviously, this
often leads to higher run-times in comparison to the heuristic
approaches above. But, minimality for the windows can be
assured.
3) Applying Existing Optimization Approaches: In the past,

optimization approaches already have been proposed (see
Section I). But so far, they only have been applied to the
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whole circuit. Furthermore, some of them require a significant
amount of run-time. In contrast, by applying the approaches to
smaller circuits, significant time reductions can be observed.
As a result, these approaches can be used to optimize the
respective windows.

IV. APPLICATION SCENARIOS

Window optimization as proposed in the last section can
be applied in different manners, i.e. different combinations of
window extraction and application of optimization approaches
are possible. Furthermore, window optimization can be applied
to both, reversible circuits or directly to quantum circuits. In
this section, we evaluate the results of two scenarios in more
detail. The benchmark functions for our experiments have been
taken from RevLib [17]. All experiments have been carried
out on an AMD Athlon Dual Core 3 GHz with 4 GB of main
memory running Linux 2.6.27.

A. Applying Window-based Re-synthesis to Reversible Circuits
In a first scenario, both window extracting schemes

(i.e. SWO and LWO) together with re-synthesis are evaluated
on reversible circuits. Two synthesis approaches are applied,
namely a derivative of the transformation-based method (based
on the concepts of [8]; denoted by RMS in the following) and
the heuristic SWOP method (introduced in [19]). First, circuits
for a given function are synthesized using the mentioned
approaches. Afterwards, windows are extracted according to
the SWO and LWO scheme. Then, the resulting sub-circuits
are re-synthesized with the respective methods. If a circuit
with smaller cost results, the optimized window is substituted
by it.
The results are given in Table I. The first columns give

the name of the benchmarks as well as its number of circuit
lines. Column RMS and column SWOP list the quantum
cost (denoted by QC) and the run-time (denoted by Time)
that result if the respective synthesis approaches are directly
applied to the functions. Further, the cost reductions (denoted
by ΔQC) and the needed run-time (denoted by Time) are
listed when applying a window extraction strategy (denoted
by +LWO or +SWO, respectively) for each synthesis approach.
As can be seen, in particular the SWO scheme leads to

significant reductions. Over all circuits, reductions up to 2500
of quantum cost can be obtained. Applying the LWO scheme
the cost reductions are more moderate, but still significant.
Additionally, these results are achieved in very low run-time
(particularly, in comparison to the overall synthesis time).

B. Applying Window-based Template Matching and Exact
Synthesis to Quantum Circuits
In a second evaluation, the application of an optimization

and an exact synthesis approach to windows generated by the
LWO scheme from quantum circuits are investigated. To this
end, reversible circuits from RevLib [17] are mapped to quan-
tum logic (as described in Section II). The first three columns

of Table II show the name, the quantum cost, and the number
of lines of the resulting (quantum) circuits. Furthermore, these
circuits are optimized using the template matching approach
introduced in [11]. Already with that, quantum cost is reduced
as shown in the forth column of Table II (the needed run-time
for that is given in the fifth column). Using these (already
optimized) circuits as basis, window optimization is evaluated.
First, the template matching approach from [11] is applied

again to windows determined by the LWO scheme (denoted by
LWO+TM). The results are also presented in Table II. Column
ΔQC denotes the overall reductions compared to the original
circuit and the reductions that are additionally achieved by the
window optimization (in brackets). Column Time gives the
run-time needed for window optimization. Even if the whole
circuit already has been optimized by template matching, the
results show that for some benchmarks further reductions are
obtained if the optimization is applied to windows again.
These results can be further improved, if additionally exact

synthesis is applied to small windows. To evaluate this, exact
synthesis as proposed in [7] is applied to all windows with less
than twelve gates. The results are given in the columns denoted
by LWO+TM+ES (similarly, column ΔQC gives the overall
reduction and the reduction achieved compared to the already
optimized circuit). Since exact synthesis inherently requires
more run-time, the resulting optimization times increase. With
this increased effort, further reductions of the costs can be
achieved for all circuits.

V. CONCLUSIONS

In this paper, window optimization for reversible and quan-
tum circuits has been introduced and evaluated. Two schemes
for extracting the windows and three approaches to optimize
them have been considered, respectively. In two application
scenarios, it has been shown that significant reductions for
both, reversible and quantum circuits can be achieved, even
if e.g. windows are “only” re-synthesized with the synthesis
approach at hand and even if the whole circuits already have
been optimized.
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