
Reducing the Number of Lines in Reversible Circuits
Robert Wille Mathias Soeken Rolf Drechsler

Institute of Computer Science
University of Bremen, Bremen, Germany

{rwille,msoeken,drechsle}@informatik.uni-bremen.de

ABSTRACT
Reversible logic became a promising alternative to tradi-
tional circuits because of its applications e.g. in low-power
design and quantum computation. As a result, design of re-
versible circuits attracted great attention in the last years.
The number of circuit lines is thereby a major criterion since
it e.g. affects the still limited resource of qubits. Neverthe-
less, all approaches introduced so far for synthesis of complex
reversible circuits need a significant amount of additional cir-
cuit lines – sometimes orders of magnitude more than the
primary inputs.

In this paper, we propose a post-process optimization me-
thod that addresses this problem. The general idea is to
merge garbage output lines with appropriate constant input
lines. To this end, parts of the circuits are re-synthesized.
Experimental results show that by applying the proposed
approach, the number of circuit lines can be reduced by
17% on average – in the best case by more than 40%. At
the same time, the increase in the number of gates and the
quantum costs, respectively, can be kept small.

Categories and Subject Descriptors
B.6 [Hardware]: Logic Design

General Terms
Algorithms

Keywords
Reversible Logic, Quantum Computation, Optimization

1. INTRODUCTION
The ongoing miniaturization of integrated circuits will

reach its limits in the near future. Shrinking transistor
sizes and power dissipation are the major barriers in the
development of smaller and more powerful circuits. At least
when the transistor size approaches the atomic scale, dupli-
cation of transistor density (according to Moore’s Law) will
not be possible any longer. Besides that, power dissipation
more and more becomes a crucial issue. Already today, the
amount of power dissipated in the form of heat to the sur-
rounding environment of a chip leads to immense challenges
in circuit design.

Reversible logic provides an alternative that may over-
come many of these problems in the future. For low-power
design, reversible logic offers significant advantages since
zero power dissipation will only be possible if computation

is reversible [8, 2]. Furthermore, quantum computation [13]
profits from enhancements in this area, because every quan-
tum circuit is inherently reversible and thus requires re-
versible descriptions. With the help of quantum circuits
many important problems (e.g. factorization) can be solved
exponentially faster than by traditional circuits. First phys-
ical realizations of both, reversible and quantum circuits,
already approved the benefits of these emerging technolo-
gies (see e.g. [3, 19]).

Driven by the promising results, research in the area of
reversible logic has been intensified in the last years. As a
result, besides verification [20, 22, 25], testing [14, 15, 16],
simulation [21, 5], optimization [11], and debugging [24],
in particular synthesis of reversible circuits is a main re-
search area. For example, approaches exploiting permuta-
tions [17], truth tables [11], positive-polarity Reed-Muller
expansions [7], exclusive-or sum-of-products [4], and binary
decision diagrams [23] have been introduced.

The number of circuit lines is thereby a major criterion.
If the function to be synthesized is reversible, the number
of circuit lines can be equal to the number of the primary
inputs and primary outputs, respectively. But e.g. to em-
bed irreversible functions, sometimes additional circuit lines
(with constant inputs) are unavoidable [10]. Moreover, to
guarantee that thereby the number of additionally added
circuit lines is minimal, the function to be synthesized must
be given in terms of a truth table (or similar descriptions).
Approaches that synthesize functions with more than 30
variables (e.g. the ones introduced in [4, 23]) or that ap-
ply compositions of basic blocks (e.g. hierarchical synthesis
methods like [26]) often need a significant amount of addi-
tional circuit lines – sometimes magnitudes more than the
primary inputs.

This is a problem since in particular in quantum computa-
tion, circuit lines are a highly limited resource
(caused by the fact that the number of circuit lines cor-
responds to the number of qubits). Furthermore, a high
number of lines (or qubits, respectively) may decrease the
reliability of the resulting system. Thus, keeping the num-
ber of circuit lines as small as possible is an important issue.
While this was not a problem as long as the synthesis ap-
proaches relied on a truth table description (allowing deter-
mination of minimal number of lines), with the emergence
of synthesis approaches for complex reversible systems, re-
duction of circuit lines becomes a crucial issue.

In this paper, we propose a post-synthesis optimization
method that addresses this problem. Garbage outputs
(i.e. circuit lines whose output value is don’t care) are thereby
exploited. A multi-stage approach is introduced that (1) iden-
tifies garbage outputs producing don’t cares, (2) re-synthe-
sizes parts of the circuit so that instead of these don’t cares
concrete constant values are computed, and (3) connects
the resulting outputs with appropriate constant inputs. In
other words, circuit structures are modified so that they can
be merged with constant inputs resulting in a line reduc-
tion. For the respective re-synthesis step, existing synthesis
methods can be used.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06...$10.00

647

39.3

a a

b b

c c

(a) Reversible circuit

a a

b b

c cV
†

V V
†

(b) Quantum circuit

Figure 1: Reversible and quantum circuits

Experimental results show that applying this approach,
the number of circuit lines can be reduced by 17% on av-
erage – in the best case by more than 40%. Furthermore,
depending on the used synthesis approach, these line reduc-
tions are possible only with a small increase in the number
of gates and the quantum costs, respectively. In some cases
the costs even can be reduced. In this sense, drawbacks of
scalable but line-costly synthesis approaches are minimized.

The remainder of this paper is structured as follows. The
next section introduces reversible and quantum logic and
gives a brief review of the usage of additional circuit lines
in the respective circuits. Section 3 illustrates the general
idea of the proposed approach which is afterwards described
in Section 4. At the end of the paper, experimental results
as well as conclusions are given in Section 5 and Section 6,
respectively.

2. BACKGROUND
To keep the paper self-contained, this section briefly re-

views the basic concepts of reversible and quantum logic.
Afterwards, the usage of additional circuit lines and the

resulting consequences are illustrated.

2.1 Reversible and Quantum Logic
A logic function f :Bn → B

m over inputs X = {x1, . . . , xn}
is reversible iff (1) its number of inputs is equal to its num-
ber of outputs (i.e. n = m) and (2) it maps each input
pattern to a unique output pattern. That is, reversible
functions represent bijections. Reversible circuits are real-
izations of reversible functions. Fanouts and feedbacks are
thereby not allowed [13] so that a reversible circuit G is a
cascade of reversible gates gi, i.e. G = g1 . . . gd, where d
is the number of gates. Each gate consists of a (possibly
empty) set C = {xi1 , . . . , xik

} ⊂ X of control lines and a
set T = {xj1 , . . . , xjl

} ⊂ X with C ∩ T = ∅ of target lines.
The gate operation is applied to the target lines iff all control
lines meet the required control conditions. Control lines and
unconnected lines always pass through the gate unaltered.
As an example, the most widely used reversible gate, the
Toffoli gate [18], has one target line xj , which is inverted iff
all control lines are assigned to 1.

Example 1. Figure 1(a) shows a reversible circuit in-
cluding Toffoli gates. Control lines are denoted by , while

the target lines are denoted by . This circuit maps e.g. the
input 001 to the output 110.

Quantum circuits [13] are inherently reversible so that
they can easily be derived from every reversible circuit. Each
circuit line is thereby represented by a qubit – the counter-
part of the classical bit. The state of a qubit for two pure
logic states can be expressed as |Ψ〉 = α|0〉 + β|1〉, where |0〉
and |1〉 denote pure logic states 0 and 1, respectively, and α

and β are complex numbers such that |α|2 + |β|2 = 1. Fur-
thermore, each reversible gate is decomposed into a cascade
of quantum gates. Popular quantum gates are the NOT gate
(a single qubit is inverted), the controlled-NOT (CNOT)
gate (the target qubit is inverted if the single control qubit
is 1), the controlled-V gate (also known as a square root of
NOT, since two consecutive V operations are equivalent to

Table 1: Truth tables for the AND function
(a) AND function

a b a∧b
0 0 0 0
0 1 0 1
1 0 0 ?
1 1 1 0

(b) AND embedding

0 a b a∧b
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1

.

an inversion), and the controlled-V+ gate (which performs
the inverse operation of the V gate and thus is also a square
root of NOT).

Example 2. Figure 1(b) shows a quantum circuit which
realizes the same function as the circuit from Figure 1(a).

The costs of a reversible or quantum circuit are defined
by the number of quantum operations needed to realize the
circuit. For reversible circuits, the quantum cost depends
on the number of control lines of each gate. For example, a
Toffoli gate with no or one control line has quantum cost of
one, while a Toffoli gate with two control lines has quantum
cost of five. Further metrics for the remaining reversible
gates can be found e.g. in [1, 9]. For quantum circuits, each
gate has quantum cost of one (i.e. the cost of a quantum
circuit is equal to the number of gates). Besides quantum
cost, also the number of lines is an important metric which
is discussed in detail in the next section.

2.2 Additional Lines in Reversible Circuits
Usually, n circuit lines are needed to represent a reversible

function f : B
n → B

n in reversible logic. However, if irre-
versible functions should be synthesized, sometimes further
circuit lines with constant inputs must be added [10]. As an
example, consider the AND function depicted in Table 1(a).
This function obviously is irreversible, since (1) the number
of inputs differs from the number of outputs and (2) there
is no unique input-output mapping. Even adding an addi-
tional output to the function (leading to the same number of
inputs and outputs) does not make the function reversible.
Then, the first two lines of the truth table can be embedded
with respect to reversibility as shown in the rightmost col-
umn of Table 1(a), but no unique embedding for the third
truth table line is possible any longer. Thus, an additional
output (and therewith an additional circuit line with con-
stant input) must be added as depicted in Table 1(b).

More generally, at least �log2 μ	 free outputs are required
to make an irreversible function reversible, where μ is the
maximum number of times an output pattern is repeated
in the truth table [10]. The additional lines thereby cause
constant inputs (i.e. inputs that are set to a fixed value) and
garbage outputs (i.e. outputs that are don’t care for all pos-
sible input conditions). In the past, most of the reversible
synthesis approaches have been applied to functions with
minimal garbage and thus with minimal circuit lines, re-
spectively. However, minimality of additional lines can only
be guaranteed, if μ is available. This is the case if the func-
tion to be synthesized is given in terms of a truth table (or
similar descriptions), but not feasible if the functions e.g. in-
clude more than 30 primary inputs. As a result, synthesis
approaches for large functions (e.g. [4, 23]) lead to circuits
where the number of lines is significantly larger than the
optimal value.

A similar issue occurs if circuits are composed using basic
blocks. As an example, consider the reversible realization
of the AND function and the OR function as shown in Fig-
ure 2(a) and Figure 2(b), respectively. Composing these
circuits leads to a realization with two additional circuit

648

39.3

0 a ∧b

a −

b −

(a) AND

0 a ∨b

a −

b −

(b) OR

0 a ∨b

0 a ∧b

a −

b −

(c) Composed

1 −

a a ∧b

b a ∨b

(d) Minimal
Figure 2: Composition of circuits

lines as in Figure 2(c). In fact, both functions combined
can be realized with one additional circuit line only (see
Figure 2(d)). However, particularly complex sub-functions
(e.g. arithmetic), often can be synthesized by composition
only (i.e. by hierarchical synthesis approaches like [26]). In
these cases, minimality of the circuit lines cannot be ensured
so far.

Overall, while for small functions circuits with minimal
lines can easily be synthesized, synthesis of large functions or
complex systems often leads to a significant number of addi-
tional circuit lines. Since circuit lines are a limited resource
(in particular in quantum computation where the number
of circuit lines corresponds to the number of qubits), meth-
ods that optimize the resulting circuits with respect to the
number of lines are needed. Motivated by this, the question
considered in this paper is:

How can we efficiently reduce the number of lines
in reversible circuits?

In the next sections an approach for this purpose is pro-
posed.

3. GENERAL IDEA
In this section, we present an idea how to reduce the

number of lines in large reversible circuits. As discussed
above, synthesis approaches ensuring minimality of circuit
lines can only handle small functions (because they require
e.g. a truth table description). Thus, we consider line re-
duction as a post-synthesis problem. Our approach thereby
exploits a structure often occurring in circuits generated by
scalable synthesis approaches (e.g. [4, 23]) or by composed
reversible sub-circuits. This is illustrated by the following
running example.

Example 3. Consider the circuit G = g1 . . . g12 depicted
in Figure 3(a) representing a 3-bit adder that has been cre-
ated by composing three single (minimal) 1-bit adders. This
circuit consists of three additional circuit lines (with con-
stant inputs). Not all of them are necessarily required. Fur-
thermore, there are a couple of garbage outputs whose values
are don’t care.

In particular of interest in this circuit is the first usage
of a line with a constant input and the last usage of a line
with a garbage output. For example, the constant input at
line 4 (counted from top) is firstly used by the fifth gate,
while at the same time the value of the last line is not
needed anymore after the second gate. Since the value of the
garbage output doesn’t matter (because it is a don’t care),
this might offer the possibility to merge the line including
the constant input with the line including the garbage out-
put. More precisely, if it is possible to modify the circuit so
that a garbage output returns a constant value (instead of
an arbitrary value), then this constant value can be used in

0 cout

b2 −

a2 −

0 s2

b1 −

a1 −

0 s1

cin s0

b0 −

a0 −

(a) Original circuit

b2 −

a2 −

0 s2

b1 cout

a1 −

0 s1

cin s0

b0 −

a0 −

(b) Optimized circuit

Figure 3: Line reduction in a 3-bit adder circuit

the rest of this circuit. At the same time, a constant input
line can be removed. More formally:

Proposition 1. Without loss of generality, let
G = g1 . . . gd be a reversible circuit with a constant input
at line lc and a garbage output at line lg (lc �= lg). Further-
more, let gi be the first gate connected with line lc (including
the constant input) and let gj with j < i be the last gate
connected with line lg (including the garbage output). If it

is possible to modify the sub-circuit G
j
1 = g1 . . . gj so that

line lg becomes assigned to a constant value, then line lc can
be removed from G. For all gates formerly connected with
line lc, line lg can be used instead.

Note that the constant value of the selected line lc is
thereby of no importance. If necessary, the needed value
can easily be generated by an additional NOT gate (i.e. a
Toffoli gate without any control lines). Furthermore, con-
stant outputs can only be produced if the considered circuit
includes additional lines with constant inputs.

Example 3 (continued). Reconsider the adder circuit
G = g1 . . . g12 in the running example. The constant in-
put at line 1 is firstly used by gate g9, while the values of
the garbage outputs at line 5, line 6, line 9, and line 10, re-
spectively, are not needed anymore after gate g8. Since the
sub-circuit G8

1 = g1 . . . g8 can be modified so that e.g. the
garbage output at line 5 becomes assigned to the constant
value 0 (see dashed rectangle in Figure 3(b)), line 1 can be
removed and the newly created constant value from line 5
can be used instead. The resulting circuit is depicted in Fig-
ure 3(b) and consists of 9 instead of 10 lines.

Note that the respective modification of a sub-circuit is
not always possible. For example, consider the constant
input at line 4 (firstly used by gate g5) and the garbage
outputs at line 9 and line 10 (not needed anymore after
gate g4). This might offer the possibility to remove one more
circuit line. But, the sub-circuit G4

1 = g1 . . . g4 cannot be
modified accordingly since a realization of the 1-bit addition
together with an additional constant output requires more
garbage outputs.

Using these observations an algorithm for reducing the
number of lines in reversible circuits can be formulated. The

649

39.3

a −

b f1

0 −

0 f2

0 f3

(a) Determine sub-circuit

a −

b b′

0 −

0 f2

(b) Re-synthesize sub-circuit

a 0

b b′

0 −

0 f2

a 0

b f1

0 −

0 f2

0 f3

(c) Insert new sub-circuit

a f3

b f1

0 −

0 f2

(d) Merge the lines

Figure 4: Reducing the number of circuit lines in four steps

next section describes the respective steps in detail. After-
wards, the experiments in Section 5 show that significant re-
ductions for practical relevant circuits can be obtained with
this approach.

4. ALGORITHM
Based on the ideas presented in the last section, an algo-

rithm for circuit line reduction is proposed. The respective
steps are illustrated by means of an example in Figure 4.
At first, an appropriate sub-circuit is determined (a). After-
wards, it is tried to re-synthesize the sub-circuit so that one
of the (garbage) outputs returns a constant value (b). If this
was successful, the re-synthesized sub-circuit is inserted into
the original circuit (c). Finally, the newly created constant
output is merged with a line including a constant input (d).
The algorithm terminates if no appropriate sub-circuit can
be determined anymore. In the following the respective steps
are described in detail.

4.1 Determine an Appropriate Sub-circuit
In the considered context, appropriate sub-circuits are

characterized by the fact that they include at least one
garbage output which can be later used to replace a con-
stant input. Therefore, it is important to know when lines
of a circuit are used for the first time and when they are
not needed anymore, respectively. This is formalized by the
following two functions:

Definition 1. Let G = g1 . . . gd be a reversible circuit.
Furthermore, let l ∈ {1, . . . , n} be a line of this circuit.
Then, the function firstly used(l) returns i ∈ {1, . . . , d} iff
gi is the first gate connected with line l. Accordingly, the
function lastly used(l) returns i ∈ {1, . . . , d} iff gi is the last
gate connected with line l.

Using these functions, the flow to determine appropriate
sub-circuits can be described as follows:

1. Traverse all circuit lines lg of the circuit G = g1 . . . gd

that include a garbage output.

2. Check if line lg can be merged with another line lc
including a constant input, i.e. if there is a constant
input line lc so that firstly used(lc)> lastly used(lg). If
this check fails, continue with the next garbage output
line lg.

3. Check if circuit Gk
1 = g1 . . . gk with k = lastly used(lg)

can be modified so that line lg outputs a constant
value. If this check fails, continue with the next line lg
in Step 2. Otherwise, Gk

1 is an appropriate sub-circuit.

Example 4. Consider the circuit G = g1 . . . g6 depicted
in Figure 4(a). Applying the steps introduced above, the sub-
circuit G3

1 = g1g2g3 (marked by the dashed rectangle) is de-
termined.

Note that the order in which the garbage output lines lg
are considered typically has an effect. We consider the lines
with the smallest value of lastly used(lg) first. This is mo-
tivated by the fact that firstly used(lc) > lastly used(lg) is a
necessary condition which, in particular, becomes true for
small values of lastly used(lg). Besides that, the check in
Step 3 is strongly related to the re-synthesis of the sub-
circuit which is described next.

4.2 Re-synthesize the Sub-circuit
Given an appropriate sub-circuit Gk

1 , the next task is to
re-synthesize it so that one garbage output returns a con-
stant value (instead letting it a don’t care). Generally, any
available synthesis approach can be applied for this purpose.
But since we want to reduce the number of circuit lines, ap-
proaches that generate additional circuit lines (e.g. [4, 23])
should be avoided. Thus, synthesis methods that require
a truth table description (and therewith ensure minimality
with respect to circuit lines) are used so far (see Section 1).
Consequently, only sub-circuits with a limited number of
primary inputs are considered.

To address this issue, not the whole sub-circuit Gk
1 is re-

synthesized. Instead, a bounded cascade of gates which
affects the respective garbage output is considered. More
precisely, starting at the output of line lg, the circuit is tra-
versed towards the inputs of the circuit. Each passed gate
as well the lines connected with them are added to the fol-
lowing consideration1. The traversal stops, if the number
of considered lines reaches a given threshold λ (in our ex-
perimental evaluations, it turned out that λ = 6 is a good
choice).

From the resulting cascade, a truth table description is
determined. Afterwards, the truth table is modified, i.e. the
former garbage output at line lg is replaced by a constant

1In other words, the cone of influence of the garbage output
line lg is considered.

650

39.3

Table 2: Truth tables of the sub-circuit
(a) Orignal

a b 0 0 − b′ − f1

0 0 0 0 − 0 − 0
. . . − − − −

0 1 0 0 − 1 − 1
. . . − − − −

1 0 0 0 − 1 − 0
. . . − − − −

1 1 0 0 − 0 − 1
. . . − − − −

(b) After modification

a b 0 0 0 b′ − f1

0 0 0 0 0 0 − 0
. . . − − − −

0 1 0 0 0 1 − 1
. . . − − − −

1 0 0 0 0 1 − 0
. . . − − − −

1 1 0 0 0 0 − 1
. . . − − − −

output value. It is thereby important that the modifica-
tion preserves the reversibility of the function. If this is not
possible, the sub-circuit is skipped and the next line with a
garbage output is considered (see Step 3 from above). Oth-
erwise, the modified truth table can be passed to a synthesis
approach.

Note that the modification of the truth table is only pos-
sible, if constant values at the primary inputs of the whole
circuit are incorporated. Constant inputs restrict the num-
ber of possible assignments to the inputs of the considered
cascade. This enables a reversible embedding with a con-
stant output.

Example 5. Consider the cascade highlighted by the
dashed rectangle in Figure 4(a) which is considered for re-
synthesis. Incorporating the constant values at the primary
inputs of the whole circuit, only the patterns shown in Ta-
ble 2(a) have to be considered. The outputs for the remaining
patterns are not of interest. This function can be modified
so that one of the garbage outputs returns a constant value,
while still reversibility of the overall function is preserved
(see Table 2(b)). Synthesizing the modified function, the
circuit shown on the right-hand side of Figure 4(b) results.
This circuit can be used to remove a constant line.

As shown by the example, re-synthesizing the respective
cascades in the described manner might lead to an increase
in the number of gates as well as in the quantum costs. This
is an expected behavior since circuit lines can be exploited
to buffer temporary values (see e.g. [12]). If such lines are
removed, additional gates may be required to recompute
these values.

4.3 Insert the Sub-circuit andMerge the Lines
If re-synthesis was successful, the last two steps are

straight-forward. At first, the considered sub-circuit is re-
placed by the newly synthesized one. Afterwards, the con-
sidered garbage output line lg is merged with the respective
constant input line lc, i.e. the respective gate connections
as well as possible primary outputs are adjusted. Finally,
line lc is removed since it is not needed anymore.

Example 6. Consider the circuit shown in Figure 4. Re-
placing the highlighted sub-circuit with the re-synthesized one
from Example 5, the circuit shown in Figure 4(c) results.
Here, line 1 and line 5 can be merged leading to the circuit
depicted in Figure 4(d) where line 5 has been removed.

5. EXPERIMENTAL RESULTS
The proposed approach for line reduction has been im-

plemented in C++ and evaluated using a set of reversible
circuits with a large number of constant inputs. As synthe-
sis method for step (b) of the optimization (see Section 4.2),
two different approaches have been evaluated, namely

1. an exact synthesis approach (based on the principles
of [6] and denoted by exact synthesis in the following)
that realizes a circuit with minimal number of gates
but usually requires a significant amount of run-time
and

2. a heuristic synthesis approach (namely the transforma-
tion-based method introduced in [11]; in the following
denoted by heuristic synthesis) that does not ensure
minimality but is very efficient regarding run-time.

As benchmarks, reversible circuits from [23] were used.
These circuits include a significant number of constant in-
puts that originated from the synthesis and thus cannot be
easily removed. The experiments have been carried out on
an Intel Core 2 Duo 2.26 GHz with 3 GB of main memory.

The results of the evaluation are presented in Table 3. The
first four columns give the name (Benchmark), the num-
ber of circuit lines2 (Lines), the gate count (d), and the
quantum cost (qc) of the original circuits. In the following
columns, the respective values after line reduction as well
as the run-time needed for optimization (in CPU seconds)
are reported. It is thereby distinguished between results ob-
tained by applying exact synthesis and results obtained by
applying heuristic synthesis in Step (b).

As can be seen by the results, the number of lines can be
significantly reduced for all considered reversible circuits.
On average, the number of lines can be reduced by 17% –
in the best case (spla with exact synthesis) by more than
40%3. As already mentioned in Section 4.2, reducing the
circuit lines might lead to an increase in the number of gates
as well as in the quantum costs. This is also observable in
the results.

In this sense, the differences between the applied synthesis
approaches provide interesting insights. While the applica-
tion of exact synthesis leads to larger run-times (in the worst
case more than 3 CPU hours are required), results from the
heuristic method are available within minutes. But, the dif-
ferences in the respective number of gates and the quantum
costs, respectively, are significant. If exact synthesis is ap-
plied, the increase in number of gates and quantum cost can
be kept small – for some circuits (e.g. cordic and spla) even
reductions have been achieved.

6. CONCLUSION
Keeping the number of lines in reversible circuits as small

as possible is an important issue, in particular in the design
of quantum circuits. However, during synthesis of complex
reversible circuits, often additional lines are appended to the
circuit. In this paper, we presented a post-optimization ap-
proach for circuit line reduction. The general idea is thereby
to identify garbage outputs and re-synthesize them so that
they can be connected with a constant input. Experiments
show that using the proposed approach, the number of lines
can be reduced by 17% on average – in the best case by
more than 40%. Depending on the approach used for re-
synthesis, this might lead to an increase in the number of
gates and quantum costs, respectively. However, if exact
synthesis is applied for this purpose, the increase remains
small – in some cases even a reduction can be observed.

2Including both, the number of primary inputs/outputs as
well as the number of additional circuit lines.
3Note that thereby still the number of primary in-
puts/outputs are considered which cannot be reduced.

651

39.3

Table 3: Experimental results
Initial Line reduction with exact synthesis Line reduction with heuristic synthesis

Benchmark Lines d qc Lines ΔLines d Δd qc Δqc Time Lines ΔLines d Δd qc Δqc Time
4mod5 7 8 24 6 (-1) 10 (2) 26 (2) 0.00 6 (-1) 10 (2) 26 (2) 0.00
mini-alu 10 19 59 9 (-1) 19 (0) 88 (29) 1.96 9 (-1) 95 (76) 670 (611) 0.02
rd53 13 34 98 12 (-1) 35 (1) 99 (1) 0.12 12 (-1) 50 (16) 227 (129) 0.01
sym6 14 28 92 11 (-3) 28 (0) 92 (0) 41.11 11 (-3) 177 (149) 1340 (1248) 0.05
9sym 27 61 205 24 (-3) 61 (0) 209 (4) 3489.19 22 (-5) 362 (301) 2845 (2640) 0.51
sym9 27 61 205 24 (-3) 61 (0) 209 (4) 3485.33 22 (-5) 362 (301) 2845 (2640) 0.54
hwb5 28 88 276 26 (-2) 89 (1) 342 (66) 3913.73 25 (-3) 146 (58) 915 (639) 0.19
mod5adder 32 96 292 25 (-7) 96 (0) 381 (89) 1899.34 25 (-7) 223 (127) 1379 (1087) 487.93
rd84 34 102 302 25 (-9) 105 (3) 362 (60) 3056.40 25 (-9) 424 (322) 3416 (3114) 1.84
cycle10 2 39 71 195 31 (-8) 76 (5) 253 (58) 1290.73 30 (-9) 585 (514) 3867 (3672) 1.35
ham15 45 152 308 37 (-8) 164 (12) 365 (57) 2117.42 37 (-8) 677 (525) 4652 (4344) 3.82
hwb6 46 159 507 41 (-5) 172 (13) 572 (65) 2141.84 41 (-5) 485 (326) 3293 (2786) 1.38
cordic 52 100 324 40 (-12) 80 (-20) 264 (-60) 6280.85 39 (-13) 805 (705) 5909 (5585) 5.77
hwb7 73 281 909 66 (-7) 288 (7) 1010 (101) 1204.57 65 (-8) 586 (305) 4385 (3476) 5.12
bw 87 286 922 71 (-16) 292 (6) 1167 (245) 11255.00 72 (-15) 467 (181) 2623 (1701) 1.76
hwb9 170 699 2275 152 (-18) 718 (19) 2545 (270) 4656.58 152 (-18) 1354 (655) 8437 (6162) 254.10
ex5p 206 625 1821 165 (-41) 615 (-10) 2250 (429) 2625.17 171 (-35) 909 (284) 5651 (3830) 108.52
spla 489 1669 5885 267 (-222) 1007 (-662) 3805 (-2080) 342.75 329 (-160) 2945 (1276) 22392 (16507) 894.81

Acknowledgment
This work was supported by the German Research Founda-
tion (DFG) (DR 287/20-1).

7. REFERENCES
[1] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo,

N. Margolus, P. Shor, T. Sleator, J. Smolin, and
H. Weinfurter. Elementary gates for quantum
computation. The American Physical Society,
52:3457–3467, 1995.

[2] C. H. Bennett. Logical reversibility of computation.
IBM J. Res. Dev, 17(6):525–532, 1973.

[3] B. Desoete and A. D. Vos. A reversible
carry-look-ahead adder using control gates.
INTEGRATION, the VLSI Jour., 33(1-2):89–104,
2002.

[4] K. Fazel, M. A. Thornton, and J. E. Rice. ESOP-based
Toffoli gate cascade generation. In IEEE Pacific Rim
Conference on Communications, Computers and
Signal Processing, pages 206–209, 2007.

[5] D. Goodman, M. A. Thornton, D. Y. Feinstein, and
D. M. Miller. Quantum logic circuit simulation based
on the QMDD data structure. In Int’l Reed-Muller
Workshop, 2007.

[6] D. Große, R. Wille, G. W. Dueck, and R. Drechsler.
Exact multiple control Toffoli network synthesis with
SAT techniques. IEEE Trans. on CAD, 28(5):703–715,
2009.

[7] P. Gupta, A. Agrawal, and N. K. Jha. An algorithm
for synthesis of reversible logic circuits. IEEE Trans.
on CAD, 25(11):2317–2330, 2006.

[8] R. Landauer. Irreversibility and heat generation in the
computing process. IBM J. Res. Dev., 5:183, 1961.

[9] D. Maslov and G. W. Dueck. Improved quantum cost
for n-bit Toffoli gates. IEE ELECTRONICS
LETTERS, 39:1790, 2004.

[10] D. Maslov and G. W. Dueck. Reversible cascades with
minimal garbage. IEEE Trans. on CAD,
23(11):1497–1509, 2004.

[11] D. M. Miller, D. Maslov, and G. W. Dueck. A
transformation based algorithm for reversible logic
synthesis. In Design Automation Conf., pages
318–323, 2003.

[12] D. M. Miller, R. Wille, and R. Drechsler. Reducing
reversible circuit cost by adding lines. In Int’l Symp.
on Multi-Valued Logic, 2010.

[13] M. Nielsen and I. Chuang. Quantum Computation and

Quantum Information. Cambridge Univ. Press, 2000.
[14] K. N. Patel, J. P. Hayes, and I. L. Markov. Fault

testing for reversible circuits. IEEE Trans. on CAD,
23(8):1220–1230, 2004.

[15] M. Perkowski, J. Biamonte, and M. Lukac. Test
generation and fault localization for quantum circuits.
In Int’l Symp. on Multi-Valued Logic, pages 62–68,
2005.

[16] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes. A
family of logical fault models for reversible circuits. In
Asian Test Symp., pages 422–427, 2005.

[17] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.
Hayes. Synthesis of reversible logic circuits. IEEE
Trans. on CAD, 22(6):710–722, 2003.

[18] T. Toffoli. Reversible computing. In W. de Bakker and
J. van Leeuwen, editors, Automata, Languages and
Programming, page 632. Springer, 1980. Technical
Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[19] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S.
Yannoni, M. H. Sherwood, and I. L. Chuang.
Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance. Nature,
414:883, 2001.

[20] G. F. Viamontes, I. L. Markov, and J. P. Hayes.
Checking equivalence of quantum circuits and states.
In Int’l Conf. on CAD, pages 69–74, 2007.

[21] G. F. Viamontes, M. Rajagopalan, I. L. Markov, and
J. P. Hayes. Gate-level simulation of quantum circuits.
In ASP Design Automation Conf., pages 295–301,
2003.

[22] S.-A. Wang, C.-Y. Lu, I.-M. Tsai, and S.-Y. Kuo. An
XQDD-based verification method for quantum
circuits. IEICE Transactions, 91-A(2):584–594, 2008.

[23] R. Wille and R. Drechsler. BDD-based synthesis of
reversible logic for large functions. In Design
Automation Conf., pages 270–275, 2009.

[24] R. Wille, D. Große, S. Frehse, G. W. Dueck, and
R. Drechsler. Debugging of Toffoli networks. In
Design, Automation and Test in Europe, pages
1284–1289, 2009.

[25] R. Wille, D. Große, D. M. Miller, and R. Drechsler.
Equivalence checking of reversible circuits. In Int’l
Symp. on Multi-Valued Logic, pages 324–330, 2009.

[26] R. Wille, S. Offermann, and R. Drechsler. SyReC: A
programming language for synthesis of reversible
circuits. In Int’l Workshop on Logic Synth., 2010.

652

39.3

