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Abstract—An important branch in quantum computing in-
volves accurate resource estimation to assess the cost of run-
ning a quantum algorithm on future quantum hardware. A
comprehensive and self-contained workflow with the quantum
program in its center allows programmers to build comprehen-
sible and reproducible resource estimation projects. We show
how to systematically create such workflows using the quantum
programming language Q#. Our approach uses simulators for
verification, debugging, and resource estimation, as well as
rewrite steps for optimization.

I. INTRODUCTION

Quantum computing has the potential to efficiently solve
some computational problems that are intractable to solve
on classical computers [1], [2]. Quantum programming lan-
guages [3] allow developers to formalize quantum algorithms
in terms of quantum programs that can be executed. While
execution on a physical scalable fault-tolerant quantum com-
puter is not yet possible, the execution of quantum programs
is already of high interest today, as it allows the developer to
verify the implementation and to estimate the cost of running
the algorithm, once the quantum hardware is available.

Verification is the task of checking whether the quantum
program correctly implements the quantum algorithm. Several
methods for verification exists, ranging from full-state simu-
lation (e.g., [4]), automatic functional verification (e.g., [5],
[6]), formal verification with program logics (e.g., [7]), or
interactive theorem provers (e.g., [8]). Resource estimation is
the task of assessing the cost of running a quantum algorithm
on a future quantum computer. Assuming specific quality
and performance capabilities of the quantum computer, such
as clock speed, topological constraints, noise models, and
error correction overheads, resource estimation computes the
required space in number of physical qubits and required
runtime. Recent studies report resource estimates for various
quantum computing applications, including quantum chem-
istry [9], [10], quantum cryptanalysis [11], [12], constraint sat-
isfaction and optimization [13], and quantum simulation [14],
[15]. In all these studies, the authors have not applied a
systematic workflow to obtain the resource estimates. As a
consequence, the presented results are difficult to compare,
to reproduce, and to verify. A few frameworks for resource
estimation have been proposed in the past. Recently, Oumarou
et al. presented QUANTIFY [16], an open-source framework
for the quantitative resource analysis of quantum circuits;
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Fig. 1. The proposed resource estimation and verification workflow starts
from a quantum algorithm and returns verification, visualization, and resource
estimation results. The workflow consists of three stages: in the Implement
phase, the programmer expresses the algorithm as a Q# program. In the
Rewrite phase, the compiler can optimize the program using automatic rewrite
steps. Finally, the Test phase addresses various tasks such as verification,
visualization, and resource estimation.

Suchara et al. presented QuRE [17], a layout estimation tool
targeting evaluation on physical quantum technologies.

In this work, we show how to systematically integrate
quantum resource estimation workflows in Q# [18]. In addition
to using the quantum programming language, we achieve this
by making use of simulators and rewrite steps. Simulators are
algorithms that execute a Q# program and perform various
actions for intrinsic quantum operations. Rewrite steps stati-
cally translate a Q# program into a different Q# program by
applying rewrite rules on the program’s abstract syntax tree.

II. ESTIMATION AND VERIFICATION WORKFLOW

Fig. 1 illustrates the overall resource estimation and veri-
fication workflow. Input to the flow is a quantum algorithm;
outputs can be verification results, visualization artifacts, and
resource estimates. The workflow is made up of three stages:
implement, rewrite, and test. In the first stage, the developer
implements the quantum algorithm using Q#, a high-level
quantum programming language with built-in support for
quantum computing specific constructs such as qubit alloca-
tion, intrinsic quantum operations, generation of the adjoint
and controlled variants of an operation, or classical control
based on measurement results. It is important to note that in
this workflow the developer writes a single quantum program,
which will serve as “single source of truth” for all subsequent
steps.

In the second phase, the Q# compiler performs automatic
rewriting steps to optimize the Q# program. This phase



addresses two concerns: (i) some optimizations are difficult
to detect manually and dedicated optimization algorithms can
help to find these; (ii) some optimizations require to break
abstractions in the implementation level, for example, the
requirement to inline code, so as to unlock further cross-
boundary optimization opportunities. The second phase is
mostly automatic, although some rewrite steps may require
manual configuration.

The third phase executes the resulting Q# programs (the
manually written one and the automatically optimized one)
using a variety of simulators, depending on the required
results. A simulator controls the execution of a program and
performs specific actions whenever qubits are allocated and
intrinsic operations are executed. Here are several examples
of most commonly used simulators and their purposes:

• The ResourcesEstimator updates counters for different
operations, calculates the depth, and keeps track of the
maximum number of allocated qubits.

• The QuantumSimulator performs a full-state simulation
and can be used to test various properties of the code (for
example, show that two operations implement the same
unitary), but the number of qubits it allows to allocate is
very limited.

• The ToffoliSimulator can only be applied to quantum
operations that use only classical gates, so that the
quantum state can be represented by assigning each qubit
a Boolean value. It is useful for testing such operations.

The Microsoft Quantum Development Kit provides API to
extend existing simulators or build custom simulators from
scratch for various applications. A CHP simulator [19] imple-
mentation1 is one example for such a custom simulator.

The workflow is universal. Eventually, an actual quantum
hardware backend can be used instead of a simulator—without
changing the initial Q# program.

III. RUNNING EXAMPLE

Throughout this paper, we use quantum fanout as a running
example. Quantum fanout implements the unitary operation

F : |ϕ〉 ⊗ |0〉⊗k 7→ |0〉 ⊗ |ψ1 . . . ψk〉, (1)

where ϕ〉 = α|0〉 + β|1〉 and |ψ〉 = |ψ1 . . . ψk〉 = α|0〉⊗k +
β|1〉⊗k. Pham and Svore have shown that F can be im-
plemented in constant depth with CNOT and Hadamard op-
erations, as well as measurements, by using O(k) helper
qubits [20]. Fig. 2 illustrates the operation as a quantum circuit
diagram for k = 4. The left-hand side depicts a straightforward
linear-depth implementation that uses only CNOT gates. Note
that the first k CNOT gates share the same control line -
the source qubit |ϕ〉. The last CNOT gate brings the source
qubit |ϕ〉 into the |0〉 state. In the constant-depth optimized
implementation on the right-hand side, we use H gates to
initialize some of the helper qubits in the state |+〉 = H|0〉.
This implementation of quantum fanout applies three layers
of CNOT gates, independent of the value of k.

1github.com/qsharp-community/chp-sim
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Fig. 2. Quantum circuit representation for quantum fanout with k = 4.
The left-hand side shows a linear-depth implementation using CNOT gates.
The right-hand side shows the constant-depth implementation. Here, si =
r1 ⊕ · · · ⊕ ri. If |ϕ〉 =

(α
β

)
, we obtain for the resulting qubit register |ψ〉 =

|ψ1ψ2ψ3ψ4〉 = α|0000〉+ β|1111〉.

IV. IMPLEMENTATION PHASE

In this section, we describe how to implement the quantum
fanout operation in Q#. We will only highlight some notewor-
thy parts in the implementation, and refer the reader to the
QDK documentation2 for further details. The implementation
is as follows:
operation ApplyFanout(

source : Qubit,
target : Qubit[]) : Unit is Adj {

body (...) {
5 AssertAllZero(target);

let k = Length(target);
Fact(k > 1, "There must be at least two copies");

10 using (qs = Qubit[2 * k - 3]) {
let evens = qs[0..2...];
let odds = qs[1..2...];

ApplyToEach(H, evens);
15 ApplyToEach(CNOT,

Zipped(evens, Most(target)));
ApplyToEach(CNOT,

Zipped(Most(target), odds + [Tail(target)]));
ApplyToEach(CNOT,

20 Zipped([source] + evens, evens));

let rx = ForEach(MResetX, [source] + odds);
let rz = Mapped(IsResultOne,

ForEach(MResetZ, evens));
25

let s = Mapped(Fold(Xor, false, _),
Prefixes(rz) + [rz]);

ApplyToEach(ApplyIfOne(_, Z, _),
30 Zipped(rx, Most(target)));

ApplyToEach(ApplyIf(X, _, _),
Zipped(s, target));

}
AssertAllZero([source]);

35 }

adjoint (...) {
AssertAllZero([source]);

40 let rx = Mapped(IsResultOne,
ForEach(MResetX, Rest(target)));

if (Fold(Xor, false, rx)) {

2aka.ms/get-started-qdk



Z(Head(target));
}

45 SWAP(source, Head(target));

AssertAllZero(target);
}

}

The operation takes as input the qubit source in the state
|ϕ〉 and the register target in the state |0〉⊗k. The algorithm
is implemented in the body-block (Line 4). The code uses
assertions to ensure that the target qubits are indeed in the
all-zero state when the operation is called (Line 5). After
determining the number of copies k, and asserting that there
are at least two copies, 2k − 3 helper qubits are allocated
(Line 10). All of them are in state |0〉. For convenience, we
split these helper qubits into the k − 1 qubits at even indexes
(evens) and the k− 2 qubits at odd indexes (odds). Next, we
initialize the helper qubits at even indexes in the |+〉 state
(Line 14). The use of the library operation ApplyToEach helps
to emphasize that all initializations take place at the same time.
Similarly, the next three lines apply the three layers of CNOT
gates. Note that the CNOT operation in Q# takes as input a
control qubit as first parameter and a target qubit as second
parameter. We can prepare the complete list of control and
target pairs by calling Zipped on two arrays. The input arrays
for each CNOT layer are constructed by combining source
qubit, target qubits, and the helper qubits accordingly.

Next, the measurements in X basis and Z basis are per-
formed, using ForEach instead of ApplyToEach, because we
are interested in the return value. The MResetX (Line 22)
and MResetZ (Line 24) operations return a variable of type
Result, which we convert into Boolean variables in case of the
measurements in Z basis, and use as classical controls in case
of the measurements in X basis. The ApplyIfOne operation
takes as input a result value, an operation, and an argument
to the operation. By fixing the second parameter to the Z
gate and replacing the first and third argument with ‘_’, one
obtains a partial operation that takes two inputs. This can be
used similarly how the CNOT operation was used to apply it
to a list of result and qubit pairs (Line 30). The results of
Z measurements ri need to be preprocessed into linear sums
si = r1 ⊕ · · · ⊕ ri as illustrated in Fig. 2. We can use array
helper functions such as Mapped, Fold, and Prefixes in order
to compute them (Line 27). Note the additional element [rz],
because the sum sk−1 is used twice.

The adjoint-block (Line 37) implements the inverse direc-
tion of the algorithm (its adjoint). Assertions help to state pre-
and post-conditions, which now appear in inverse order: when
calling the inverse operation, the source register must be in
state |0〉, and when leaving the operation, the target register
must be in state |0〉⊗k. Measurement operations (Line 41) and
phase correction (Line 43) are used to transform the target
register from α|0〉⊗k +β|1〉⊗k to (α|0〉+β|1〉)⊗ |0〉⊗k−1. In
other words, the first qubit of the target register is the expected
state for the source qubit. Since the source qubit is in state
|0〉, we can exchange these two using a simple SWAP operation
(Line 45).

V. REWRITING PHASE

The rewrite phase applies a sequence of rewrite steps to
the Q# program. These operate on the abstract syntax tree
of the program. The Q# compiler contains several rewrite
steps targeting performance and resource optimization, in-
cluding constant propagation, function inlining, and adjoint
gate cancellation [21]. An extension API in the compiler
allows developers to add custom compilation steps to their
projects [22].

VI. TESTING PHASE

In this section, we are describing the testing phase, in which
the Q# program is executed using various simulators. Each
simulation targets a different purpose. We discuss verification,
visualization, and resource estimation as the examples of
most common goals of program simulation in the following
subsections.

There are several ways to execute Q# programs in the testing
phase. The most convenient approach uses Q# or C# testing
projects. If the complete testing code can be written in Q#,
one can decorate an operation that has no input parameters
and a Unit return value with a Test attribute, marking it as a
test; we’ll show an example for such tests in this section. C#
tests can help to write more elaborate tests, especially useful
for sophisticated test data preparation and for post-processing
of simulation results.

A. Verification

We can perform various verification tasks as part of resource
estimation workflow. An example of functional verification
is comparing that two operations act identically for all input
states. We use the Choi-Jamiołkowski isomorphism [23], [24]
to reduce this equivalence check to one of a qubit state asser-
tion on two entangled registers. We can compute the fanout
operation from our running example using only classical gates,
as also illustrated by the quantum circuit on the left-hand side
in Fig. 2. The following Q# operation ApplyFanoutClassical

implements this approach:
operation ApplyFanoutClassical(source : Qubit,

target : Qubit[])
: Unit is Adj {

AssertAllZero(target);
5 Fact(not IsEmpty(target),

"There must be at least one copy");

ApplyToEachA(CNOT(source, _), target);
CNOT(Head(target), source);

10}

We then check that the optimized constant-depth quantum
fanout implementation and the classical CNOT-based imple-
mentation act identically. The following Q# test does this for
operation instances that use from 2 to 10 qubits (i.e., produce
1 to 9 copies of the input state).
@Test("QuantumSimulator")
operation CheckEquivalence() : Unit {
let Transform = ApplyWithInputTransformationA(

MostAndTail, _, _);
5

for (n in 2..10) {
AssertOperationsEqualReferenced(n,



Transform(ApplyFanout, _),
Transform(ApplyFanoutClassical, _));

10 }
}

To be generally applicable to a variety of quantum opera-
tions, the AssertOperationsEqualReferenced operation takes
as input two operations which act on a single qubit reg-
ister, whereas the ApplyFanout and ApplyFanoutClassical

operations expect a pair consisting of a single source qubit
and a target register as input. We can use Q# standard
library functions and partial application to apply an input
transformation to match the required signature (Line 4). This
example uses ApplyWithInputTransformationA, which takes
as input a transformation function that maps values of type
'U to type 'T, an operation that expects values of type
'T, and an a value of type 'U. The operation ApplyFanout

expects (Qubit, Qubit[]) as input argument (type 'T), which
is obtained by applying the function MostAndTail to an
input type Qubit[] (type 'U), required in the signature for
ApplyOperationsEqualReferenced.

Equivalence checking tests such as the one described in the
previous section make use of full-state quantum simulation,
which scales exponentially in the number of qubits, and is
therefore limited in its application. We call a quantum opera-
tion classical if it is implemented using only classical gates.
Quantum oracles are typical examples of classical operations.
Note that this does not mean that the operation computes
classically, since we can apply it to a quantum state in
superposition. However, since quantum operations are linear,
simulating classical operations can be done by simulating
their behavior on basis states, tracking the Boolean state of
each qubit. Q# provides the Toffoli simulator for this purpose,
which enables simulation of quantum programs that use many
more qubits compared to full-state quantum simulation.

The following operation implements a conditional swap
of two n-qubit quantum registers target1 and target2. To
reduce depth, it fans out the control qubit n − 1 times, and
then uses them to apply controlled SWAP operations in parallel.
operation MultiSwap(control : Qubit,

target1 : Qubit[],
target2 : Qubit[]) : Unit is Adj {

using (fanout = Qubit[Length(t1) - 1]) {
5 within {

ApplyFanout(control, fanout);
} apply {
for ((c, t1, t2) in

Zipped3(fanout, target1, target2)) {
10 Controlled SWAP([c], (t1, t2));

}
}

}
}

Since the ApplyFanout operation is implemented using non-
classical gates, our implementation of MultiSwap operation is
not classical, although the operation itself is conceptually clas-
sical. Replacing ApplyFanout with ApplyFanoutClassical

allows to use the Toffoli simulator, but then we cannot
compute accurate resource estimates which exploit the depth-
optimization of ApplyFanout. The emulation feature [25] in
Q# can solve this problem. It allows to override the behavior

of specific operations for specific simulators. We can, for ex-
ample, override the behavior of the ApplyFanout operation in
the Toffoli simulator, by applying the ApplyFanoutClassical

operation instead. One way to achieve this is to re-route the
operations when creating a ToffoliSimulator instance in a
C# host program:
var sim = new ToffoliSimulator();
sim.Register(typeof(ApplyFanout),

typeof(ApplyFanoutClassical),
typeof(IAdjointable));

The same technique can be applied, for example, to use
quantum-AND gates in the implementation of ripple-carry
adders [26].

Several Dump* operations provide simulation snapshots
when being used in full-state simulation. The DumpMachine op-
eration prints all amplitudes of the current quantum state over
all active qubits; DumpRegister is similar, but can be restricted
to a subset of all qubits. The DumpOperation operation prints
the matrix of a transformation implemented by an operation.
The Dump* operations can be useful when debugging the code
or writing more sophisticated tests.

B. Visualization

Quantum circuits help illustrate quantum computation. For
example, we have used them in this paper to illustrate quantum
fanout for a small example. Note that quantum circuits are
not sufficient to visualize arbitrary Q# programs, but they can
represent execution traces of Q# programs. Consequently, the
simulation architecture can be used to create quantum circuit
visualization during the execution of a quantum program, by
emitting visualization instructions whenever qubits are allo-
cated and released and whenever intrinsic quantum operations
are invoked. A blog post [27] describes such a custom simu-
lator implementation using 〈q|pic〉3 as visualization language.

Other visualizations are possible, for example, visualization
of quantum states (see, e.g., [28]), histograms for individual
qubit usages, or layout visualizations when assuming a topo-
logical structure for the qubits. Simulators for visualization are
particularly useful when working in an interactive development
environment such as Jupyter notebooks [29].

C. Resources estimation

The Q# resources estimator is a simulator that updates coun-
ters for every executed intrinsic operation. It also keeps track
of a maximum number of allocated qubits by observing qubit
allocation and release. Finally, it uses a tetris-style packing
algorithm to compute the circuit depth. It can be applied to a
large number of qubits as illustrated in the following example
that performs quantum fanout on one million qubits:
@Test("ResourcesEstimator")
operation ComputeResources() : Unit {
using ((source, target) =

(Qubit(), Qubit[1000000])) {
5 ApplyFanout(source, target);

}
}

3github.com/qpic/qpic



This test returns the overall resource costs for the code
inside the test operation, including the number of CNOT,
single-qubit Clifford, T , rotation, and measurement operations,
as well as qubit count and depth. Resource constraints can
check automatically whether the quantum operation obeys
resource upper bounds. As an example, we can assert that
implementation of quantum fanout does not use more than
3(k − 1) CNOT gates, not more than 2(k − 1) Hadamard
gates, and allocates not more than 2k − 3 helper qubits.

@Test("ResourcesEstimator")
operation DoesNotExceedCNOTCount() : Unit {
for (k in 10..30) {
using ((source, target) = (Qubit(), Qubit[k])) {

5 within {
AllowAtMostNCallsCA(3 * (k - 1), CNOT,

"Requires too many CNOT operations");
AllowAtMostNCallsCA(2 * (k - 1), H,

"Requires too many H operations");
10 AllowAtMostNQubits(2 * k - 3,

"Allocates too many qubits");
} apply {
ApplyFanout(source, target);

}
15 }

}
}

Several quantum algorithm research papers have used Q#
for concrete resource estimation, particularly in the field of
quantum cryptanalysis. We refer the user to [12], [30], [31],
[32] for further details and pointers to the Q# code used in
their projects.

VII. FURTHER APPLICATIONS

In the previous sections we covered a typical workflow of
developing a quantum library or an application and various
tests to validate it. This workflow is used, for example, in
the development of the libraries included in the Microsoft
Quantum Development Kit.

Another example of an application that heavily relies on
unit tests is developing learning materials, which include
programming exercises and testing harnesses for them [33].
Learners can use such exercises for self-paced or guided
learning.4 The advantage of providing testing harnesses for
programming exercises is that it enables immediate feedback
for the learner’s solution, which is an important component of
an effective learning process. The variety of code properties
that can be tested ensures the breadth of the topics that can
be covered by such exercises, and the tests can be written to
validate what the code does rather than how it accomplishes
it. Consequently, different solutions with the same outcomes
will be accepted as correct, as long as they operate within
the constraints given in the task. Such constraints can include
the same assertions used for resource testing, for example
the number of times a certain operation can be called or the
number of helper qubits that can be allocated.

Alternatively, such exercises can be used as automatically
graded programming assignments in a quantum computing
course. In [34], the authors describe an introductory quantum

4github.com/microsoft/QuantumKatas

computing course that relies on the Quantum Katas to intro-
duce quantum programming to the students and programming
assignments to assess the students’ work. In this case the
automated testing harnesses allowed the instructors to use the
time spent grading the assignments more efficiently compared
to grading written assignments of similar complexity manually.

VIII. CONCLUSION

In this paper, we presented a systematic resource estimation
and verification workflow for quantum algorithms based on the
quantum programming language Q#. The key advantage of the
proposed workflow is that a single quantum program is used
for all conducted analyses. The program itself acts as reference
implementation for the quantum algorithm and is agnostic
to the simulators used in the testing. No dedicated code is
written that targets resource estimation or verification. Instead
the simulators control how a program is executed and apply
the right semantics to intrinsic operation calls and qubit allo-
cation. Developers can apply simulator-specific optimizations
by means of rewriting steps. This is particularly important for
resource estimation, in which clever optimization techniques
can reduce the resource cost by trading off abstractions in the
original program such as operation call hierarchies and generic
compositional library operations.

Our proposed workflow allows to create reproducible re-
source estimation projects in a single self-contained envi-
ronment. The workflows can be extended through custom
simulators and custom rewriting steps. Several verification
methods help to ensure correctness of the implementation, for
example, when trying to improve resource counts.
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