
A Hybrid Method for Spectral Translation
Equivalent Boolean Functions

Mathias Soeken, Eleonora Testa
École Polytechnic Fédérale de Lausanne, Switzerland

Email: mathias.soeken,elonora.testa@epfl.ch

D. Michael Miller
University of Victoria, Canada

Email: mmiller@uvic.ca

Abstract—The equivalence of Boolean functions with respect
to five invariance (aka translation) operations has been well con-
sidered with respect to the Rademacher-Walsh spectral domain.
In this paper, we introduce a hybrid approach that uses both the
Reed-Muller and the Rademacher-Walsh spectra. A novel hybrid
algorithm that maps a Boolean function to a representative
function for the equivalence class containing the original function
is presented. The algorithm can be used to determine a sequence
of translations that maps one function to an equivalent function.
We present experimental results that show the hybrid algorithm
can determine the equivalence classes for 5 variables much more
efficiently than before. We also show that for 6 variables where
there are 150,357 equivalence classes, 8 are very difficult, a
further 58 are difficult and the remainder are straightforward
in terms of the CPU time required by the hybrid algorithm.

I. INTRODUCTION

The equivalence and classification of Boolean functions
has been a topic of interest for some time. Two Boolean
functions are equivalent with respect to a particular class of
transformations if there is a sequence of translations that maps
one function to the other. Function equivalence partitions the
Boolean functions for a particular number of variables into
equivalence classes. Such classes are of interest since, for
example, if one has an inexpensive implementation for one
function f in the class, a sequence of translations to map g to
f provides a potentially efficient implementation for g. Finding
the least costly translation sequence affects the overall cost.

NPN equivalence which allows for negation of inputs,
permutation of inputs and negation of the function, was
considered in 1963 by Harrison [1]. NPN equivalence has
been applied in technology mapping [2] and a variety of other
applications in logic design.

A Boolean function can be transformed to the Rademacher-
Walsh (RW) spectral domain [2]–[7]. Unlike the functional
domain where the individual 2n function values provide local
information, each of the 2n integer-valued spectral coefficients
provide global information about the function. Two XOR-
based spectral translations added to the NPN operations allow
for the spectral classification of Boolean functions where the
number of equivalence classes is far smaller than for NPN
equivalence [5]–[8]. This classification was termed restricted
affine equivalence by R. J. Lechner in [9].

As an alternative to working in the RW domain, a Boolean
function can be transformed to the Reed-Muller spectral
domain [10] where different information is highlighted in
comparison to the functional and RW domains. In this paper,

we present a novel hybrid spectral algorithm which works in
both the RM and RW domains to transform a Boolean function
f to the unique representative function for the equivalence
class that contains f . We validate the algorithm by generating
representative functions for the spectral equivalence classes
for 1 ≤ n ≤ 5 variables using function neighbourhood
searching as introduced by Fuller [11]. The results show the
hybrid approach is much more efficient than the RW approach
presented by two of the authors in [12].

Determining function equivalence and enumerating the
spectral equivalence classes for more than 5 variables are very
difficult computational tasks. There are 264 Boolean functions
of 6 variables which are known to partition into 150,357
equivalence classes [13] . By way of further verifying the
hybrid algorithm we have applied it to 150,357 functions, one
per equivalence class, extracted from the data base available
at [14]. The results show the efficiency of the hybrid approach
except for a small number of cases.

The rest of the paper is organized as follows. Section II pro-
vides the necessary background for the paper particularly with
respect to the RM and RW spectra. The new hybrid algorithm
is described in Section III and its application with respect
to spectral equivalence classes is examined in Section IV.
Experimental results are shown in Section V and Section VI
provides observations and suggestions for ongoing research.
A description of the RW TRANSFORM algorithm employed
by the new hybrid algorithm can be found in [12].

II. BACKGROUND

A. Spectra of Boolean Functions

Definition 1: An n-input Boolean function is a mapping
f : Bn → B where B = {0, 1}. The input variables are
x1, . . . , xn and the function is denoted f(x1, x2, . . . , xn).

A Boolean function f can be represented by a “truth”
(column) vector with 2n entries. In this work, we use both
{0, 1} coding, denoted F , and the so-called {1,−1} coding
[7], denoted F ∗, where 1 denotes logic-0 and −1 denotes
logic-1. For example, the AND function for 3 variables has

F =
[
0 0 0 0 0 0 0 1

]t
(1)

which in {1,−1} coding becomes

F ∗ =
[
1 1 1 1 1 1 1 −1

]t
(2)

1

Note, that column vectors are written as transposed row
vectors for space considerations.

Definition 2: The Reed-Muller (RM) spectrum of a Boolean
function is given by

R =MnF (3)

where
Mn =

[
Mn−1 0
Mn−1 Mn−1

]
, M0 =

[
1
]

(4)

The arithmetic is over GF (2).
For example, for F given in (1), the RM spectrum is

R =
[
0 0 0 0 0 0 0 1

]t
(5)

A Boolean function f(X), X = {x1, x2, . . . , xn} can be
written in the form

f(X) = a0⊕a1x1⊕a2x2⊕a3x1x2⊕· · ·⊕a2n−1x2x2 . . . xn
(6)

where ∀aα ∈ {0, 1}. This is the algebraic normal form of the
function and corresponds directly to the positive polarity Reed-
Muller expansion of the function, The aα in (6) are precisely
the Reed-Muller spectral coefficients denoted

R =
[
r0, r1, r2, r12, r3, . . . , r1,2,...,n

]t
(7)

Definition 3: The Rademacher-Walsh (RW) spectrum, in
Hadamard order, of a Boolean function is given by

S = TnF ∗ (8)

where
Tn =

[
Tn−1 Tn−1

Tn−1 −Tn−1

]
, T 0 =

[
1
]

(9)

Given [1,−1] coding, each row of the RW transform matrix
represents a function which is the XOR of a subset of the
variables x1, x2, . . . , xn. Note that the top row denotes the
constant 0 function, i.e. the XOR of no variables. The elements
of S are for this reason, identified by the variables involved
in the corresponding XOR function where, as is standard
notation, 0 denotes the empty set i.e. no variables. For example
for n = 3,

S =
[
s0 s1 s2 s12 s3 s13 s23 s123

]t
. (10)

For example, for F ∗ given in (2), the RW spectrum is

S =
[
6 2 2 −2 2 −2 −2 2

]t
(11)

Each RW spectral coefficient can be seen to measure the
correlation of f and the XOR function corresponding to the
coefficient. A value of 2n indicates perfect correlation i.e. f is
the XOR function, whereas a value of −2n indicates perfect
correlation to the inverse of the XOR function.

Note that for clarity we are using R for the RM spectrum
and S for the RW spectrum. Readers are cautioned that in
many references R has a different interpretation as it is used
for a RW spectrum computed using a function vector in {0, 1}
coding.

It is readily verified that (Mn)−1 = Mn over GF (2) and
that (Tn)−1 = 1

2nT
n. As a consequence, we observe that the

RM and RW spectra of a Boolean function are unique.

We have presented the calculation of spectra as a matrix
multiplication for clarity. In practice, fast transform techniques
[7] are used and the computational complexity is O(n2n).

B. Coefficient Ordering

The coefficients in equations (7,10) are in ‘natural’ order. In
this work we use an alternative ordering [6], which we term
index ordered, which groups the coefficients by the number
of variables associated with the coefficient. For example, for
n = 3, this order is

R =
[
r0|r1 r2 r3|r12 r13 r23|r123

]t
(12)

and similarly for S. Unless otherwise specified, spectra will
be considered to be index ordered which in general is

R = [r0|r1 r2 r3 . . . rn|r12 r13 r23 r14 r24 r34 . . . r(n−1)n|
r123 r124 r134 r234 . . . r(n−2)(n−1)n| . . . |r12...n]t (13)

and similarly for S.
As can be seen, the coefficients are ordered with the 0-

order coefficient first, followed by the first-order, second-order,
third–order coefficients and so on where the order means the
number of indices with 0 denoting the empty set. Note that
within each group the coefficients are arranged by increasing
values of their indices.

C. Spectral Translations

Five translations of Boolean function spectra are of interest
in this work. Given a Boolean function f(x1, x2, . . . , xn) with
RM spectrum R and RW spectrum S, the translations are
defined as shown in Table I. The RW translations shown
have been well documented [6]–[8]. Below, we detail the RM
translations.

Type 1: Interchanging two variables essentially repositions
them in the spectrum. The resulting operation on the spectral
coefficients is the same in the RM domain as it is in the RW
domain.

Type 2: The negation of xi can be expressed as 1⊕xi. Hence
any term xiP , where P is a product of variables excluding xi
is replaced by xiP ⊕ P . In terms of the RM coefficients, let
α denote the variables indices for P , then if riα = 1, rα is
inverted i.e. the corresponding term is either added, or removed
from the function if it was already present. This follows from
the fact x⊕ x = 0 for any expression x.

Type 3: It is clear from (6) that inverting r0 complements
the function.

Type 4: The operation xi ← xi ⊕ xj is quite similar to
variable negation. The difference is that riβ = 1, the generated
term corresponds to rjβ and again that term is added/removed
depending on whether it was not/was already present.

Type 5: The operation f(X) ← f(X) ⊕ xi clearly inverts
ri since if the term xi was not present it is added and if it
was present it is removed since xi ⊕ xi = 0.

Applying the above translations leads to the following
definition of Boolean function equivalence.

Definition 4: Two Boolean functions f(x1, x2, . . . , xn) and
g(x1, x2, . . . , xn) are equivalent with respect to the 5 spectral

2

TABLE I
SPECTRAL TRANSLATIONS

Type Functional Operation RM Domain RW Domain
1 Interchange xi and xj riα ↔ rjα∀α siα ↔ sjα∀α
2 Negation of the input variables xi invert rβ∀riβ = 1 negate all riβ∀β
3 Negation of f(X) invert r0 negate all RW coefficients
4 Replacement of xi by xi ⊕ xj invert all rjβ∀riβ = 1 siα ↔ sijα∀α
5 Replacement of f(X) by f(X)⊕ xi invert ri siα ↔ sα∀α

α denotes any set of variable indices excluding i and j including the empty set
β denotes any set of variable indices excluding i including the empty set; β may include j

translations if f can be transformed into g by the application of
some sequence of those translations. Note that the translations
are all self-inverse, so the reverse sequence of translations
will transform g to f . Also as shown in the definitions of the
translations they can be directly carried out in either spectral
domain, i.e. it is straightforward to transform between the
spectra of f and g.

It is clear from the above that the 5 translations partition
the set of Boolean functions into equivalence classes. The
following definitions apply.

Definition 5: Given two Boolean functions
f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) with spectra Sf
and Sg respectively, we say f precedes g, denoted f ≺ g if
for the first coefficient position (in index order) for which the
coefficients from Sf and Sg differ, the coefficient from Sf
has larger magnitude, or if the two coefficients have the same
magnitude, the coefficient from Sf is positive. Note that for
convenience we will also write Sf ≺ Sg .

Definition 6: Clearly, a function equivalence class must
contain a function fR that precedes every other function in the
class. We term fR the representative function for the class.

In some applications the cost of a sequence of translations
will be important. A straightforward cost model is:

• Translation 1 interchanges 2 variables and requires a swap
gate which can be implemented using 3 XOR gates. We
thus assume a cost of 3.

• Translations 2 and 3 each require a single NOT gate to
implement an inversion and we use a cost of 1.

• Translations 4 and 5 each require a single XOR gate and
again we use a cost of 1.

Note that alternative cost models including a model where
the cost of a translation varies by context can be used. For
reversible or quantum circuits the XOR gates mentioned above
are implemented as controlled-NOT (CNOT) gates [15].

III. TRANSFORMING A BOOLEAN FUNCTION TO THE
REPRESENTATIVE FUNCTION

In this section, we present the new hybrid spectral algorithm
to map a Boolean function f to the representative function
fR for the equivalence class that contains f . In doing so, the
algorithm identifies a sequence of translations to map f into
fR.

In [12], two of the current authors presented an RW spec-
trum based algorithm for this mapping problem. The work
here uses procedures TRANSFORM and CLOSER from that
work. The main contribution of this paper is to show how
by first considering the RM spectrum of a function, we can

significantly improve upon the efficiency of the approach
described in [12].

The following definition which applies to RM spectra is a
key concept in the hybrid algorithm.

Definition 7: An RM spectrum is termed disjoint if the index
sets for all coefficients equal to 1 are disjoint, i.e. each variable
index appears in at most one coefficient with value 1. An RM
spectrum with 0 or 1 nonzero coefficient is clearly disjoint.

The new hybrid algorithm is shown below as Algorithm 1.
The basic idea of the RM component of the algorithm is to
remove coefficients with value 1 using a type 3 translation for
r0, a type 5 translation for first order coefficients and type 2
or 4 translations for other coefficients. The ordering prefers
type 2 to type 4 translations.

The functions RMtrans1 to RMtrans5 perform the appro-
priate spectral translation in the RM domain. The sort in line
26 of the hybrid algorithm is a simple selection sort of the
variables x1, x2, . . . , xn so that the sorted spectrum S is such
that for each i < j, there is no α such that |sα,i| < |sα,j |
or, |sα,i| = |sα,j | and sα,i < 0. In other words, there is no
reordering of the variables that will map S to a spectrum that
precedes S. The sort applies type 1 translations when two
variables have to be reordered.

IV. FINDING SPECTRAL EQUIVALENCE CLASSES

Given an algorithm such as the one above to transform f to
fR, it is possible to find the equivalence classes for n variables,
at least for small n, by applying it to all 22

n

functions and
keeping track of the unique fR encountered. However, that
approach becomes prohibitive even for n = 5. Here we use an
alternate approach based on Algorithm 4.2.1 from J. E. Fuller’s
PhD thesis [11]. We will show this approach is quite efficient.
Its limitation is that it does not directly yield information on
the size of each equivalence class.

Fuller’s algorithm is a search based on the concept of the
1-neighbourhood of a Boolean function defined as follows:

Definition 8: A function g is in the 1-neighbourhood of
function f , if g differs from f for precisely one input assign-
ment.

Our implementation of Fuller’s method is given in Algo-
rithm 2. The result of executing this procedure is the set of
representative functions in list.

V. EXPERIMENTAL RESULTS

Our program is written in C and was compiled using gcc
with full execution speed optimization (-O3). Our experiments
were run on a computer with an Intel i5 650 processor @
3.2GHz and 3 GB of memory.

3

Algorithm 1:
1: procedure HYBRID(R,n)
2: for each rγ = 1 ∈ {r12, r13, . . . , r12...n} do
3: find the lowest i such that rγi = 1
4: if such an i exists then
5: apply RMtrans2(R,n, i)
6: else
7: find the first rδ == 1 following rγ
8: in index order such that |γ ∩ δ| = 1
9: if such an rδ exists then

10: set i = γ − γ ∩ δ
11: set j to the lowest value in δ − γ ∩ δ
12: RMtrans4(R,n, i, j)
13: end if
14: end if
15: end for
16: if r0 = 1 then
17: RMtrans3(R,n)
18: end if
19: for i = 1, 2, . . . , n do
20: if ri = 1 then
21: RMtrans5(R,n, i)
22: end if
23: end for
24: determine an RW spectrum S from R
25: if R is disjoint then
26: sort(S, n)
27: else
28: transform(S, n, 0)
29: end if
30: convert S back to an RM spectrum R
31: end procedure

Algorithm 2:
1: procedure FULLER_SEARCH(n)
2: f ← constant 0 function of n variables
3: list← hybrid(f)
4: p← 0
5: while p < length(list) do
6: for each g in the 1-neighbourhood of list[p] do
7: h← hybrid(g)
8: if h not in list then
9: add h to the end of list

10: end if
11: end for
12: p← p+ 1
13: end while
14: end procedure

For our first experiment we used the new hybrid algorithm
and a Fuller search to find spectral equivalence classes. The
representative functions determined for n = 1, 2, 3, 4 are
shown in Table III and for n = 5 are shown in Table V.
Each representative functions fR is coded as a decimal number
in the conventional way where the least significant bit of
the equivalent binary number is the function value when all
variables are assigned 0.

Table II shows statistics for these tests including CPU
utilization which was determined using the clock function
from the library time.h. The results clearly show the advantage
of the new hybrid RM-RW approach as applying the program
with the RM techniques excluded, i.e. just using TRANS-
FORM from [12], requires 0.10147 CPU sec. for n = 4
and 110.25 CPU sec. for the n = 5 case. The speedups are
approximately 20 and 19 for n = 4 and 5, respectively. Note
that the timings for n < 4 are too short for a meaningful
comparison due to the resolution of the clock function.

TABLE II
SPECTRAL EQUIVALENCE CLASS EXPERIMENT

n Functions Number of CPU
Considered Classes sec.

1 3 1 0.000
2 9 2 0.001
3 25 3 0.003
4 129 8 0.005
5 1537 48 5.413

We next consider n = 6. It is known that there are 150,357
spectral equivalence classes. A Fuller search would require
consideration of 150, 357× 26 + 1 = 9, 622, 849 functions. If
a function could on average be handled in about 0.025 CPU
sec., this would take on the order of 2.8 CPU days, and as the
results below show 0.025 is an overly optimistic figure.

By way of evaluating the hybrid algorithm for n = 6 we
have applied it to 150,357 functions, one per equivalence
class, extracted from the data base available at [14]. Note
that these functions are not the representative functions for
the classes as used in this work. Except for 3 cases the hybrid
algorithm correctly maps each of these functions to a unique
representative function. Those 3 cases timed out at 2 CPU
hours per case.

Definition 9: [16] A Boolean function is bent if it is as
distant as possible from all affine functions. As a result, the
Rademacher-Walsh spectral coefficients of an n-variable bent
function all have the same magnitude of 2n/2. Note that a
Boolean bent function must have an even number of variables.

The three cases noted above that timed out are bent func-
tions and thus have flat spectra which is the worst possible sit-
uation as TRANSFORM undertakes a fully exhaustive search.

Five further functions were found to require more than 10
CPU minutes. In 4 of these cases, the RW spectrum sent to
TRANSFORM has 2 coefficient magnitudes and in the fifth it
has 3. Again, these situations require extensive searching by
the TRANSFORM procedure. The 8 very difficult cases are
enumerated in Table IV.

A further 58 functions were found to each take more than
2 CPU minutes. Of the remaining 150,291, only 9 functions
required more than 1 CPU minute. For the remaining 150,282
functions that require less than 1 minute of CPU time, the
average CPU use is 0.026 seconds.

VI. CONCLUSION

A novel hybrid Reed-Muller and Rademacher-Walsh
spectra-based algorithm hat maps a Boolean function to a

4

TABLE III
SPECTRAL EQUIVALENCE CLASSES n = 1, 2, 3, 4

class fR spectrum
n = 1 0 1

1 0 2 0

n = 2 0 1 2 12

1 0 4 0 0 0
2 8 2 2 2 -2

n = 3 0 1 2 3 12 13 23 123

1 0 8 0 0 0 0 0 0 0
2 128 6 2 2 2 -2 -2 -2 2
3 136 4 4 4 0 -4 0 0 0

n = 4 0 1 2 3 4 12 13 23 14 24 34 123 124 134 234 1234

1 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 27328 4 4 4 4 4 4 4 -4 -4 4 4 -4 -4 -4 -4 4
3 32768 14 2 2 2 2 -2 -2 -2 -2 -2 -2 2 2 2 2 -2
4 32896 12 4 4 4 0 -4 -4 -4 0 0 0 4 0 0 0 0
5 34944 10 6 6 2 2 -6 -2 -2 -2 -2 2 2 2 -2 -2 2
6 34952 8 8 8 0 0 -8 0 0 0 0 0 0 0 0 0 0
7 43136 8 8 4 4 4 -4 -4 0 -4 0 0 0 0 0 -4 4
8 59520 6 6 6 6 6 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 6

TABLE IV
VERY DIFFICULT FUNCTIONS FOR n = 6

Function Representative CPU
from [14] Function sec.

4ed236aae4789c00 timed out
16e6da2abc4c7080 timed out
b2e42e78ca9c5600 timed out
10092a00853640c0 544ac820c2800220 1774.3
ced236aae4789c00 1eee72287448e880 1421.4
96e6da2abc4c7080 166e7aa87cc8e000 1414.3
16665aaa3cccf000 566a6aa9fcc0c002 1412.9
32e42e78ca9c5600 3e6ef20854c868a0 1409.6

The time out was set at 7200 CPU sec. (2 hours).

representative function for the spectral translation equivalence
class containing the original function has been presented.
Experimental results show the efficiency of the algorithm for
generating the representative functions for n ≤ 5 and, in
particular, that it is much more efficient than using the RW
spectrum alone. For n = 6, our results show the effectiveness
of the approach except for a relatively small number of cases.
Our ongoing work will analyze those cases to see if they have
particular properties in the functional, RM or RW domains
that will make it possible to handle them more efficiently.

We note that the autocorrelation coefficients [5] are the same
for all three cases, so do not provide any insight. Also, the
number of positive and negative RW coefficients is the same
in each case, 38 and 28 respectively, and each has 16 nonzero
RM coefficients. So simple counting arguments that most often
distinguish one spectral class from another do not work in this
case. It is the distribution of the values that must be considered.

In terms of applications, we plan to consider incorporating
the hybrid algorithm into the rewriting system in [17].

Our experiments finding representative functions for the
equivalence classes were designed to help verify the validity of
the hybrid approach. We used Fuller’s neighbourhood search
and demonstrated the hybrid approach introduced here is quite
efficient for n ≤ 5. Since that search does not examine all
functions of n variables, it does not determine the size of
the equivalence classes. That is not a concern in our ongoing
work as we are primarily concerned with function equivalence

applied in problems such as synthesis where the main question
is whether two functions are equivalent and mapping of a given
function to a standard implementation for its equivalence class.

The work here has concentrated on spectral translation
equivalence using all 5 translations. As shown in [12], it is
possible to consider NPN, linear or affine function classifica-
tion by restricting the translations considered.

REFERENCES

[1] M. A. Harrison, Introduction to Switching and Automata Theory. New
York, USA: McGraw Hill, 1963.

[2] M. A. Thornton, R. Drechsler, and D. M. Miller, Spectral Techniques
in VLSI CAD. Boston, USA: Kluwer Academic Publishers, 2001.

[3] H. Rademacher, “Einige Sätze über Reihen von allgemeinen Orthogo-
nalfunktionen,” Math. Annen, vol. 87, pp. 112–138, 1922.

[4] J. L. Walsh, “A closed set of orthogonal functions,” Am. J. Math, vol. 45,
pp. 5–24, 1923.

[5] M. G. Karpovsky, Finite Orthogonal Series in the Design of Digital
Devices. New York, USA: John Wiley & Sons, 1976.

[6] S. L. Hurst, The Logical Processing of Digital Signals. London, UK:
Arnold, 1978.

[7] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic. London, UK: Academic Press, 1985.

[8] C. R. Edwards, “The application of the Rademacher-Walsh transform
to Boolean function classification and threshold logic synthesis,” IEEE
Trans. on Computers, vol. 24, no. 1, pp. 48–62, 1975. [Online].
Available: http://dx.doi.org/10.1109/T-C.1975.224082

[9] R. J. Lechner, “Harmonic analysis of switching functions,” in Recent
Development in Switching Theory, A. Mukhopadhyay, Ed. Academic
Press, 1971.

[10] D. H. Green, Modern Logic Design. Addison Wesley, 1986.
[11] J. E. Fuller, “Analysis of affine equivalent Boolean functions for cryptog-

raphy,” Ph.D. dissertation, Queensland University of Technology, 2003.
[12] D. M. Miller and M. Soeken, “An algorithm for linear, affine and spectral

classification of Boolean functions,” in Advanced Boolean Techniques,
R. Drechsler and M. Soeken, Eds. Springer, 2019.

[13] J. A. Maiorana, “A classification of the cosets of the Reed-Muller code
r(1, 6),” Mathematics of Computation, vol. 57(195), pp. 403–414, 1991.

[14] “https://github.com/usnistgov/circuits/,” 2018.
[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
[16] O. Rothaus, “On “bent” functions,” J. of Combinatorial THeory(A),

vol. 20, pp. 300–305, 1976.
[17] E. Testa, M. Soeken, L. Amaru, and G. De Micheli, “Reducing the mul-

tiplicative complexity in logic networks for cryptography and security
applications,” in DAC, 2019.

5

TABLE V
SPECTRAL EQUIVALENCE CLASSES n = 5

class fR spectrum
0 1 2 3 4 5 12 13 23 14 24 34 15 25 35 45 123 124 134 234 125 135 235 145 245 345 1234 1235 1245 1345 2345 12345

1 0 32 0
2 680042496 20 12 4 4 4 4 -4 -4 4 -4 4 -4 -4 -4 4 4 -4 -4 4 -4 4 -4 -4 -4 -4 -4 4 4 4 4 4 -4
3 1790995136 8 8 8 8 8 0 8 8 -8 -8 8 8 0 0 0 0 -8 -8 -8 -8 0 0 0 0 0 0 8 0 0 0 0 0
4 1791549440 12 8 8 8 8 8 4 4 -4 -4 4 -4 -4 -4 4 4 -8 -8 0 0 0 -8 0 0 -8 -8 4 4 4 4 4 0
5 1791550016 8 8 8 8 8 4 8 8 -8 -8 8 0 -4 -4 4 4 -8 -8 0 0 4 -4 -4 -4 -4 -4 0 4 4 4 4 -4
6 2022213768 12 12 12 4 4 4 -12 4 4 4 4 -4 4 4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 4 4 4 4 4 4 -4
7 2147483648 30 2 2 2 2 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 2 2 2 2 2 2 -2 -2 -2 -2 -2 2
8 2147516416 28 4 4 4 4 0 -4 -4 -4 -4 -4 -4 0 0 0 0 4 4 4 4 0 0 0 0 0 0 -4 0 0 0 0 0
9 2155905024 26 6 6 6 2 2 -6 -6 -6 -2 -2 -2 -2 -2 -2 2 6 2 2 2 2 2 2 -2 -2 -2 -2 -2 2 2 2 -2

10 2155905152 24 8 8 8 0 0 -8 -8 -8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 2290122752 24 8 8 4 4 4 -8 -4 -4 -4 -4 0 -4 -4 0 0 4 4 0 0 4 0 0 0 0 -4 0 0 0 4 4 -4
12 2290122880 22 10 10 6 2 2 -10 -6 -6 -2 -2 2 -2 -2 2 -2 6 2 -2 -2 2 -2 -2 2 2 -2 2 2 -2 2 2 -2
13 2290124928 20 12 12 4 4 0 -12 -4 -4 -4 -4 4 0 0 0 0 4 4 -4 -4 0 0 0 0 0 0 4 0 0 0 0 0
14 2290649216 18 14 14 2 2 2 -14 -2 -2 -2 -2 2 -2 -2 2 2 2 2 -2 -2 2 -2 -2 -2 -2 2 2 2 2 -2 -2 2
15 2290649224 16 16 16 0 0 0 -16 0
16 2826993664 22 10 6 6 6 6 -6 -6 -2 -6 -2 -2 -6 -2 -2 -2 2 2 2 -2 2 2 -2 2 -2 -2 2 2 2 2 6 -6
17 2826993792 20 12 8 8 4 4 -8 -8 -4 -4 0 0 -4 0 0 -4 4 0 0 -4 0 0 -4 4 0 0 4 4 0 0 4 -4
18 2826995840 18 14 10 6 6 2 -10 -6 -2 -6 -2 2 -2 2 -2 -2 2 2 -2 -6 -2 2 -2 2 -2 2 6 2 2 -2 2 -2
19 2827004032 16 16 8 8 8 0 -8 -8 0 -8 0 0 0 0 0 0 0 0 0 -8 0 0 0 0 0 0 8 0 0 0 0 0
20 2827520128 16 16 12 4 4 4 -12 -4 0 -4 0 0 -4 0 0 0 0 0 0 -4 0 0 -4 0 -4 4 4 4 4 -4 0 0
21 2827526272 16 16 8 8 4 4 -8 -8 0 -4 4 -4 -4 -4 4 0 0 -4 4 -4 4 -4 -4 0 0 0 4 4 0 0 0 0
22 2833303552 14 10 10 10 6 6 -2 -2 -2 -6 -6 2 -6 2 -6 6 -6 6 -2 -2 -2 6 -2 2 -6 -6 2 2 -2 -2 6 2
23 2860548224 18 14 6 6 6 6 -6 -6 -6 -6 2 2 -6 2 2 -6 6 -2 -2 -2 -2 -2 -2 6 -2 -2 2 2 2 2 2 -2
24 3095701632 12 12 8 8 8 4 -8 -8 4 -8 4 -4 4 0 0 0 4 4 -4 -8 0 0 -4 0 -4 4 8 -4 -4 4 0 0
25 3163070592 12 12 8 8 8 8 -8 -8 4 0 4 -4 0 -4 4 -4 4 -4 4 -8 4 -4 -8 -4 0 0 0 0 0 0 4 4
26 3769157760 12 12 12 12 4 4 -4 -4 -4 4 -4 -4 -4 4 -4 4 -4 -4 -4 4 -4 4 -4 -4 -4 4 4 4 4 -4 -4 4
27 3783297152 16 8 8 8 8 4 -8 -8 -8 0 0 0 4 4 -4 -4 0 0 0 0 -4 4 4 -4 -4 4 8 4 4 -4 -4 -4
28 3900735488 20 8 8 8 8 8 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 -8
29 3900735490 18 10 6 6 6 6 -2 -2 -6 -2 -6 -6 -2 -6 -6 -6 2 2 2 -2 2 2 -2 2 -2 -2 6 6 6 6 2 -6
30 3900735616 18 10 10 10 6 6 -6 -6 -6 -2 -2 -2 -2 -2 -2 -6 2 -2 -2 -2 -2 -2 -2 2 2 2 6 6 2 2 2 -6
31 3900737664 16 12 12 8 8 4 -8 -4 -4 -4 -4 0 0 0 -4 -4 0 0 -4 -4 -4 0 0 0 0 4 8 4 4 0 0 -4
32 3900745856 14 14 10 10 10 2 -6 -6 -2 -6 -2 -2 2 -2 -2 -2 -2 -2 -2 -6 -2 -2 2 -2 2 2 10 2 2 2 -2 -2
33 3900762240 12 12 12 12 12 0 -4 -4 -4 -4 -4 -4 0 0 0 0 -4 -4 -4 -4 0 0 0 0 0 0 12 0 0 0 0 0
34 3900803200 14 10 10 6 6 6 -10 -6 -6 -6 -6 -2 2 2 -2 -2 -2 -2 -6 -6 -2 2 2 2 2 6 6 6 6 2 2 -2
35 3900827776 10 10 10 10 10 2 -6 -6 -6 -6 -6 -6 2 2 2 2 -6 -6 -6 -6 2 2 2 2 2 2 10 2 2 2 2 2
36 3901261952 14 14 14 6 6 6 -10 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 6 6 6 6 -2 -2 -2
37 3902834816 14 14 10 10 6 6 -6 -6 -2 -2 -6 2 -2 2 -6 -2 -2 2 -6 -2 -6 2 -2 -2 2 2 6 6 2 2 -2 -2
38 3904940160 12 12 12 12 8 4 -4 -4 -4 -8 0 0 4 -4 -4 0 -4 0 0 -8 -4 -4 4 0 0 0 8 4 0 0 0 0
39 3917512832 16 8 8 8 8 8 -8 -8 -8 0 0 0 0 0 0 -8 0 0 0 0 0 0 0 0 0 0 8 8 0 0 0 -8
40 3919626376 10 10 10 10 6 6 -6 -6 -6 6 -2 -2 -2 6 -2 -6 -6 -2 -2 6 -2 6 -2 2 2 -6 6 6 -6 2 2 -6
41 3921717376 10 10 10 10 10 6 -6 -6 -6 -6 2 2 6 -2 -2 -2 -6 2 2 -6 -2 -2 6 -2 -2 -2 10 6 -2 -2 -2 -2
42 3934290048 16 12 8 8 8 8 -4 -4 -8 -4 0 0 -4 0 0 -8 4 -4 -4 0 -4 -4 0 4 0 0 4 4 4 4 0 -4
43 3939000896 8 8 8 8 8 8 8 8 -8 -8 8 0 -8 -8 0 0 -8 -8 0 0 8 0 0 0 0 0 0 0 0 0 0 0
44 3969943680 12 12 12 8 8 8 -4 -8 0 0 -8 4 0 0 -4 -4 0 0 -4 -4 -8 4 -4 -4 4 0 4 4 4 0 0 0
45 4001669216 8 8 8 8 8 8 8 -8 0 -8 0 0 0 -8 8 -8 0 0 0 0 0 0 0 0 0 0 0 -8 8 8 0 -8
46 4169173120 14 10 10 10 10 6 -10 -2 -2 -2 -2 -2 2 2 -6 -6 2 2 -6 -6 -2 -2 -2 -2 -2 6 6 2 2 2 2 -2
47 4169697408 12 12 12 8 8 8 -12 0 0 0 0 -4 0 0 -4 -4 0 0 -4 -4 0 -4 -4 -4 -4 8 4 4 4 0 0 0
48 4238379136 10 10 10 10 10 10 -6 -6 2 2 -6 2 2 2 -6 -6 2 2 -6 -6 -6 2 -6 -6 2 2 2 2 2 2 2 2

6

