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ABSTRACT
In this paper, we present a structural rewriting method for a re-

cently proposed XOR-Majority graph (XMG), which has exclusive-

OR (XOR), majority-of-three (MAJ), and inverters as primitives.

XMGs are an extension ofMajority-Inverter Graphs (MIGs). Previous

work presented an axiomatic system, Ω, and its derived transfor-

mation rules for manipulation of MIGs. By additionally introducing

XOR primitive, the identities of MAJ-XOR operations should be

exploited to enable powerful logic rewriting in XMGs. We first

proposed two MAJ-XOR identities and exploit its potential opti-

mization opportunities during structural rewriting. Then, we dis-

cuss the rewriting rules that can be used for different operations.

Finally, we also address structural XOR detection problem in MIG.

The experimental results on EPFL benchmark suites show that the

proposed method can optimize the size/depth product of XMGs

and its mapped look-up tables (LUTs), which in turn benefits the

quantum circuit synthesis that using XMG as the underlying logic

representations.

CCS CONCEPTS
• Hardware → Combinational synthesis; Circuit optimiza-
tion;
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1 INTRODUCTION
Multi-level logic synthesis plays an important role in automated

design flow [7, 13]. It aims at finding a multi-level logic network

of Boolean function in terms of better quality while considering

different cost functions. Typical cost functions are the number

of logic gates, logic depth, and switching activity, which in turn

corresponded to better area, performance, and energy. To this end,

efficient representation and optimization of Boolean functions are

key features [1].
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With the continuous increase in logic design complexity, the

logic representations have shifted from complex heterogenous one

to simpler homogeneous networks, such as And-Inverter Graphs
(AIGs) [14] and Majority-Inverter Graphs (MIGs) [1, 3]. These ho-

mogenous representations are simple and easy tomanipulate, which

enable more efficient optimization, requiring less memory and al-

lowing better run times [10]. Logic rewriting is carried out to opti-

mize logic representations, which is the most scalable optimization

strategy and can be applied to very large functions. In terms of

MIG rewriting, it can be either functional, e.g., by replacing small

subnetworks up to four inputs with their optimum counterpart

exploiting the results from exact synthesis [15], or structural, e.g.,
by applying the five transformation rules in an axiomatic system,

Ω, and its derived three transformation rules, Ψ [1].

To obtain a more compact logic representations, it is reported

that the introduction of exclusive-OR (XOR) operation can be signif-

icantly more advantageous over homogenous logic representations.

Therefore, the extensions of AIG and MIG to XOR-AIG (XAIG) [11]

and XOR-MIG (XMG) [10] are presented, respectively. XMGs have

been applied in exact synthesis aware rewriting, pre-optimization

for 6-LUT mapping [10], and synthesis of quantum networks. Es-

pecially, in commonly used cost models for quantum computing,

majority-of-three (MAJ) can be implemented as the same cost of

AND/OR and the cost of an XOR can be neglected [16]. Hence,

XMGs are advantageous for quantum circuit synthesis. In order to

support the natural manipulation of MIGs, a new Boolean algebra

consisting of Ω and Ψ is proposed based exclusively on MAJ and

inverter operations. However, a thorough consideration of MAJ-

XOR logic expressions and their implementation in XMGs are not

addressed in the literature.

The current XMG generation method in the literature is based on

functional rewriting (FR) of AIGs [10], which is further improved by

functional decomposition usingMAJ [9]. Given an input networkN ,

the approach proposed in [10] first maps the network into k-LUTs,
e.g., in a size- or depth-oriented manner. Each k-LUT represents a

k-variable Boolean function which is then used as input for exact

synthesis. The results of exact synthesis are saved. Then the locally

optimum networks are merged together to construct an optimized,

functionally equivalent network N ′.
In this paper, we aim to exploit structural rewriting (SR) method

based onΩ and several MAJ-XOR identities that favor optimizations

of size, depth, or inverters configuration in XMGs. Our contribu-

tions are as follows:

(1) We propose twoMAJ-XOR identities and exploit its potential

optimization opportunities during SR. Also, we discuss the

rewriting rules that can be used for different operations in

XMG. (Section 3).

(2) In contrast with FR method, we propose XOR structural

detection method in MIG to build an XMG. (Section 4)

(3) Based on MAJ-XOR identities and XOR structural detection,

we present an XMG size optimization algorithm. (Section 5)
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Given an XMG obtained by FR as a starting point, experimental

results on EPFL benchmarks reveal that the proposed SR method

achieves with an average 32% reduction on XMG size/depth product,

while 5% reduction on look-up tables (LUT) size/depth product.

Also, considering the implementation cost of a T gate is extremely

expensive in quantum circuit realization, the results on quantum

synthesis show that the proposed method can optimizeT gate count

by 6% while using 5% more quantum bits (also called qubits or lines).

2 MAJORITY-INVERTER GRAPHS
Majority is a powerful generalization of AND/ORs, the MAJ func-

tion evaluates to true if and only if at least two variables are true.

It can be expressed in disjunctive, conjunctive normal form, and

exclusive-sum-of-products (ESOP) form as

⟨xyz⟩ =xy ∨ xz ∨ yz = (x ∨ y) (x ∨ z) (y ∨ z)

=xy ⊕ xz ⊕ yz
(1)

where ‘⊕’ is the XOR operation as

x ⊕ y = xȳ ∨ x̄y = (x ∨ y) (x̄ ∨ ȳ) (2)

By setting one of its arguments to 0 or 1, the Boolean operation

AND and OR can be obtained from MAJ, respectively.

⟨0xy⟩ = x ∧ y and ⟨1xy⟩ = x ∨ y (3)

As a homogenous logic representation, MIGs use MAJ together

with negation (inverter) as the only logic operations. Hence, the

general AND/OR/Inverter Graphs (AOIGs) or AIGs are a special case
of MIGs. MIG-based representations are extremely effective at logic

rewriting. The axiomatic system for the MIG Boolean algebra, re-

ferred to as Ω (Eqn. (4)), is defined by five primitive transformation

rules: commutativity (Ω.C), majority (Ω.M), associativity (Ω.A),
distributivity (Ω.D), and inverter propagation (Ω.I ).

Ω =




Commutativity − Ω.C

⟨xyz⟩ = ⟨yxz⟩ = ⟨zyx⟩

Majority − Ω.M



⟨xyz⟩ = x = y i f x = y

⟨xyz⟩ = z i f x = ȳ

Associativity − Ω.A

⟨xu⟨yuz⟩⟩ = ⟨⟨xuy⟩uz⟩

Distributivity − Ω.D

⟨xy⟨uvz⟩⟩ = ⟨⟨xyu⟩⟨xyv⟩z⟩

Inverter Propagation − Ω.I

⟨xyz⟩ = ⟨x̄ȳz̄⟩

(4)

A strong property of MIGs and their algebraic framework is

reachability. It has been proven that, by using a sequence of trans-

formations drawn from the primitive five rules, it is possible to

traverse the entire MIG representation space [1]. Rewriting strate-

gies have been developed based on these rules which allow size

reduction and significant depth reduction. The rewriting algorithm

can be implemented more efficiently and more effectively when

taking derived transformation rules into consideration. It turns out

that the following three, referred to as Ψ (Eqn. (5)), are particularly

helpful.
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hi
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Figure 1: MIG and XMG representations of logic function
f =< 0,x1,x2 ⊕ x3 >, where the lines with solid points indi-
cate complemented edges that require additional inverters.

Ψ =




Relevance − Ψ.R

⟨xyz⟩ = ⟨xyzx/ȳ ⟩

Complementary Associativity − Ψ.C

⟨xu⟨yuz̄⟩⟩ = ⟨xu⟨yxz⟩⟩

Substitution − Ψ.S

⟨xyz⟩ = ⟨v⟨v̄⟨xyz⟩v/uu⟩⟨v̄⟨xyz⟩v/ūū⟩⟩

(5)

where fx/y is the expression that is obtained when replacing all

occurrences of x with y in f .

3 XOR-MAJORITY GRAPHS
In this section, we first present XMGs and then exploit their associ-

ated Boolean algebra. Notable properties of XMGs are discussed.

3.1 XMG Logic Representation
The main motivation to extend MIG into XMG is the complexity of

expressing then-input parity function using MIG. The optimal MIG-

based representation of 4-input parity function f = x1⊕x2⊕x3⊕x4,

obtained by exact synthesis, requires nine MAJ operations as

f =⟨x̄1⟨1x1⟨x̄3⟨x̄2x3x4⟩⟨x2x3x̄4⟩⟩⟩

⟨0x1⟨x3⟨x2x̄3x̄4⟩⟨x̄2x̄3x4⟩⟩⟩⟩
(6)

The complexity grows quickly when we add even more inputs.

Efficient logic realization of arithmetic components heavily depend

on 3-input parity functions. Hence, XMG that contain both MAJ

and XOR can be significantly more advantageous over MIG, as

shown in Fig. 1, in which each node corresponds to either MAJ

(3-input) or XOR (2-input) operator and the connections between

nodes can be inverted.

3.2 XMG Boolean Algebra
XOR operation has several useful properties. The basic identities

are as

∆ =




x ⊕ y = 0 i f x = y

x ⊕ y = 1 i f x = ȳ

x ⊕ 0 = x

x ⊕ 1 = x̄

(7)

We refer to XOR Boolean algebra as Φ. XOR operations are associa-

tive (Φ.A) and commutative (Φ.C). Although it is not self-dual, it

also allows to propagate inverters (Φ.I ),
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Figure 2: XMG demonstration of Theorem 1.

Φ =




Commutativity − Φ.C

x ⊕ y = y ⊕ x

Associativity − Φ.A

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

Inverter Propagation − Φ.I

x ⊕ y = x̄ ⊕ y = x ⊕ ȳ

x ⊕ y = x̄ ⊕ ȳ

(8)

Further, the XOR does not distribute over any other binary opera-

tion, but logic conjunction (and) does distribute over XOR.

x (y ⊕ z) = xy ⊕ xz (9)

Combined MAJ and XOR operations, denoted as MAJ-XOR,
next we exploit the Boolean algebra of MAJ-XOR operations by

providing a list of identities.

Theorem 1. XOR operation distribute over MAJ function.

⟨xyz⟩ ⊕ u = ⟨(x ⊕ u) (y ⊕ u) (z ⊕ u)⟩ (10)

Proof. We expand the right hand side (RHS) expression by ma-

jority function definition in ESOP form, that is

((x ⊕ u) (y ⊕ u))

⊕ ((x ⊕ u) (z ⊕ u)) ⊕ ((y ⊕ u) (z ⊕ u))

Eqn .(9)
= xy ⊕ xu ⊕ yu ⊕ u

⊕ xz ⊕ xu ⊕ zu ⊕ u ⊕ yz ⊕ yu ⊕ zu ⊕ u

Eqn .(7)
= xy ⊕ xz ⊕ yz ⊕ u = ⟨xyz⟩ ⊕ u

With this simplification, we conclude the proof. □

By applying Eqn. (10) from RHS to LHS (left hand side), the size

(node number used in XMG) is reduced from 4 to 2, while the shared

input is pushed up one level, as shown in Fig. 2. Consequently, it is

possible to rewrite a MAJ node for size and depth optimization, if

(i) all children are the same nodes type XOR, and (ii) there is one

shared input to these XOR nodes.

The constraints to apply Eqn. (10) is tight, but there are several

special cases in Eqn. (10), which may be helpful as a relaxation of

constraints. We list the identities in the following item, due to the

symmetry, we only list the special cases of the variable x .
(1) The shared input u equals to one of the other three inputs

x ,y, z. Since the XOR operation over the same variable would

result in constants, it provides a special way to deal with

MAJ nodes with constant inputs.

u = x ⇒ ⟨0(y ⊕ u) (z ⊕ u)⟩ = u ⊕ ⟨uyz⟩

u = x̄ ⇒ ⟨1(y ⊕ u) (z ⊕ u)⟩ = u ⊕ ⟨ūyz⟩
(11)
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Figure 3: XMG demonstration of Theorem 2.
(2) One of the other three inputs x ,y, z equals constant 1 or

0. That provides a way to deal with MAJ nodes with two

XOR-type children and one direct shared input in arbitrary

polarity.

x = 0⇒ ⟨u (y ⊕ u) (z ⊕ u)⟩ = u ⊕ ⟨0yz⟩

x = 1⇒ ⟨ū (y ⊕ u) (z ⊕ u)⟩ = u ⊕ ⟨1yz⟩
(12)

(3) Both above two cases happened, suppose u equals x with

arbitrary polarity and y is constant, we obtained

u = x , y = 0⇒ ⟨0u (z ⊕ u)⟩ = u ⊕ ⟨0uz⟩

u = x , y = 1⇒ ⟨0ū (z ⊕ u)⟩ = u ⊕ ⟨1uz⟩

u = x̄ , y = 0⇒ ⟨1u (z ⊕ u)⟩ = u ⊕ ⟨0ūz⟩

u = x̄ , y = 1⇒ ⟨1ū (z ⊕ u)⟩ = u ⊕ ⟨1ūz⟩

(13)

Theorem 2. Complementary associativity rule exists in MAJ-XOR
operations.

⟨xy (ȳ ⊕ z)⟩ = ⟨xy (x ⊕ z)⟩ (14)

Proof. We expand the LHS and RHS of Eqn. (14) in ESOP form,

respectively, that is

LHS =(x (ȳ ⊕ z)) ⊕ (y (ȳ ⊕ z)) ⊕ xy

Eqn .(9)
= xȳ ⊕ xz ⊕ yȳ ⊕ yz ⊕ xy

Eqn .(7)
= xȳ ⊕ xy ⊕ xz ⊕ yz

Eqns .(9), (7)
= x ⊕ xz ⊕ yz

RHS =(x (x ⊕ z)) ⊕ (y (x ⊕ z)) ⊕ xy

Eqn .(9)
= x ⊕ xz ⊕ xy ⊕ yz ⊕ xy

Eqn .(7)
= x ⊕ xz ⊕ yz

Therefore, LHS = RHS, which concludes the proof. □

Theorem 2 is used to deal with reconvergent variables appearing

both polarities. As shown in Fig. 3, the reconvergent variable y are

pushed up one level, and the inverter is also removed. Therefore,

it provides optimization opportunities in depth and number of

inverters. In terms of size, if we consider special case that variable

x is constant 0 and 1, we can obtain the already know identities,

that are

x = 0 ⇒ y (ȳ ⊕ z) = yz

x = 1 ⇒ y ∨ (ȳ ⊕ z) = y ∨ z̄
(15)

in which the size can be also optimized.
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Figure 4: The MIG representation of Eqn. (16).
3.3 Rewriting Rules in XMG
Based on the rewriting rules used in MIG, and the derived Boolean

algebra shown in Theorems 1 and 2, we can obtain the rewriting

rules that can be used in XMGs. In terms of the MAJ nodes, the

axiomatic system Ω and its derived rules Ψ are capable of utilization

in XMG SR. However, compared with Ω and derived Ψ.C which

deal with MAJ nodes appeared at two logic levels, e.g., an MAJ

parent node with one child MAJ node, the rules Ψ.R and Ψ.S using

replacement operation to handle multi-level logic network. These

operations pose additional structural constraints to require the

replaced nodes and its transitive fanout nodes are not used by any

other logic functions. Moreover, as the XMG is a heterogenous

logic network that incorporates both MAJ and XOR operations, the

implementation of replacement operation is much more complex

than the counterpart in MIG. Consequently, we only consider Ω
plus derived Ψ.C for MAJ nodes rewriting. With regard to XOR

nodes, Φ can be used, while Theorems 1 and 2 could be used to all

MAJ-XOR nodes.

4 DETECTING XOR OPERATIONS IN MIG
Initial XMGs can be transformed from AIGs using the FR method

proposed in [10] or functional decomposition method [9]. Due to

the computation complexity of exact method and the dependency

of technology mapping result, it is necessary to develop a structural

detection method to find XOR operations in MIG in a separated

way.

From [1], we know the depth-optimal MIG representation of

3-input parity function.

⟨x⟨x̄yz⟩⟨x̄ȳz̄⟩⟩ = x ⊕ y ⊕ z (16)

By exploiting the MIG representation in Fig. 4, there are several

rules in MIG to detect XOR operations. Both MAJ nodes b and c
have the same logic levels, while the MAJ node a has one level

larger than nodes b and c .
• x feeds the nodes b and c with the same polarity, while has

the complemented polarity to fed the node a.
• y and z feed the nodes b and c with complemented polarities.

To specify one of variables from {x ,y, z} to constant input, we can

obtain 2-input XOR operation. However, there is still one special

case to discuss, that is variables do not appear as complemented

polarities, but as a combination of one variable with the other one

as constant input. For example, we replace one of variables {x̄ , ȳ, z̄}
in Eqn. (16) as constant input 1 or 0, we obtain following identities.

⟨x⟨1yz⟩⟨1ȳz̄⟩⟩ = ⟨1x (y ⊕ z)⟩ ⟨x⟨0yz⟩⟨0ȳz̄⟩⟩ = ⟨0x (y ⊕ z)⟩

⟨x⟨x̄yz⟩⟨x̄1z̄⟩⟩ = ⟨1y (x ⊕ z)⟩ ⟨x⟨x̄yz⟩⟨x̄0z̄⟩⟩ = ⟨0y (x ⊕ z)⟩

⟨x⟨x̄yz⟩⟨x̄ȳ1⟩⟩ = ⟨1z (x ⊕ y)⟩ ⟨x⟨x̄yz⟩⟨x̄ȳ0⟩⟩ = ⟨0z (x ⊕ y)⟩

Input :An XMG α
Output :An optimized XMG α ′

1 if enable_xor_detection then
2 xor_detection(α ); // Section 4

3 end

4 for i = 0; i < e f f ort ; i++ do
5 elimination(α );

6 reshaping(α );

7 elimination(α );

8 end

9 function elimination(α )
10 Ω.ML→R (α ); Ω.DR→L (α );// MAJ nodes

11 ∆;// XOR nodes

12 Eqn. (10)R→L (α );// MAJ-XOR nodes

13 function reshaping(α )
14 Ψ.C (α );// MAJ nodes

15 Φ.A;// XOR nodes

16 Eqn. (14)L→R (α );// MAJ-XOR nodes

Algorithm 1: XMG size optimization

5 XMG SIZE OPTIMIZATION
The optimization on graph-based logic networks ultimately consists

of its transformation from one into a different another one, with

better figures of merit of size, depth, or switching activity. In the

rest of this section, we present heuristic algorithms to optimize the

size of an XMG using rewriting rules described above.

In MIG size optimization, the proposed method in [3] applying

the majority rule (Ω.M) from left to right (L→R), and distributivity

rule (Ω.D) from right to left (R→L) to reduce the number of MIG

nodes. The size optimization procedure is a loop algorithm, which

would be repeated until no improvement exists. It generally con-

tains two sub-procedures, that is elimination and reshaping. While

elimination is straightforward, the reshaping is indispensable to

reconstruct the MIG to provide more opportunities for the next

loop, which is like permutation of solutions used in evolutionary

algorithms to escape local minima.

In terms of XMG size optimization, we can also use Ω.ML→R
and Ω.DR→L for MAJ nodes elimination. For XOR nodes, from the

identities presented in ∆, if the two inputs of XOR are the same

with arbitrary polarities, then the number of XOR nodes can be

reduced. The above strategies are used separately for MAJ and XOR

nodes, respectively. With the target of MAJ-XOR nodes, the node

elimination opportunity arises from the identity shown in Eqn. (10),

evaluated from right to left.

To reshape the XMG, as we discussed in Section III.3.3, only Ω.A
and Ψ.C can be applied for MAJ nodes. Besides, the push-up axioms

proposed in [3] are also used for MIG depth optimization. The Φ.A
can be applied to XOR nodes, and the identity shown in Eqn. (14)

can be used for MAJ-XOR nodes. The elimination and reshaping

procedure can be iterated over a user-defined number of cycles,

called effort. The XOR detection method can be adopted during the

iteration or implemented at the beginning but just once. However,

the experimental results show the former case may consume too

much CPU time. In contrast, the latter case is more reasonable. If the

XOR detection operation is enabled, then we perform the method

at the beginning of the algorithm. The XMG size optimization

algorithm is summarized in Algorithm 1.
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Table 1: Using Structural Rewriting for XMG-Size Optimization

Benchmarks
Previous method [10] Our Method

XMG size XMG depth LUT size LUT depth Time (s) XMG size % XMG depth % LUT size LUT depth

adder 383 129 192 64 0.03 383 – 128 0.78 192 64

div 41,462 4,381 13,862 1,069 7.32 39,234 5.37 2,573 41.27 12,462 1,080

log2 21,624 210 7,672 87 3.21 21,579 0.21 227 – 7,439 85

max 2,109 273 809 72 0.16 2,103 0.28 273 – 846 79

multiplier 15,816 134 5,373 64 8.54 15,785 0.20 135 – 5,365 64

sin 3,842 152 1,423 48 0.48 3,826 0.42 156 – 1,441 45
sqrt 17,357 6,046 5,644 1,082 2.50 17,289 0.39 5,121 15.30 5,990 1,051
square 12,277 155 3,815 61 1.30 12,232 0.37 157 – 3,815 61

arbiter 12,159 89 3,819 20 0.92 10,621 12.65 76 14.61 3,752 19
cavlc 715 17 139 4 0.10 706 1.26 21 – 139 4

ctrl 118 8 29 2 0.01 116 1.69 7 12.50 29 2

i2c 1,287 18 379 5 0.16 1,264 1.79 19 – 372 5

int2float 247 15 56 4 0.02 245 0.81 17 – 56 4

mem_ctrl 42,580 125 12,727 35 12.64 42,019 1.32 135 – 12,736 38

priority 753 245 238 31 0.13 750 0.40 244 0.41 233 31

router 211 46 91 11 0.02 212 – 46 – 97 8
voter 6,838 60 2,429 16 1.38 6,737 1.48 70 – 2,163 15
Avg. 10,575 712 3,453 157 2.29 10,300 553 3,360 156
Im. 1 1 1 1 0.97 0.78 0.97 0.99
Avg. size · depth 17,847,471 1,345,881 12,167,283 1,276,777
Im. 1 1 0.68 0.95

Avg. : Average, Im. : Improvement (new/old), –: no improvement

LUT size and depth generated by 6-LUT technology mapping using ABC command if -K 6

6 EXPERIMENTAL RESULTS
We evaluate the proposed XMG SRmethod in the following sections.

All experiments have been carried out on an Intel i7-4870HQ CPU

at 2.50 GHz with 16 GB of main memory.

6.1 Methodology
We implemented our approach in C++ as a command called ‘xmgre’
on top of the logic synthesis framework CirKit.

1
The benchmarks

considered are general combinational circuits from ISCAS [8] and

EPFL benchmark suites [2]. Our SR results are verified by ‘cec’
command in ABC [6] to ensure functional correctness.

6.2 Results
Evaluation on EPFL Benchmarks. The experimental results are

shown in Table 1. The “Benchmarks” column lists the benchmark

name. Given the results produced by ‘xmglut -k 4’ in CirKit [10],

our SR algorithm is applied to further optimize XMG, which is a

post optimization strategy. The EPFL benchmark suites contain 20

benchmarks. We list 17 of them while the remaining 3 got exactly

the same results.

In terms of XMG size, the number of nodes can be reduced by

3% on average, while the XMG depth is reduced by 22%, compared

to [10]. The improvement of the results are highlighted in the ta-

ble. Among 17 benchmarks, 16 of them can be optimized in size

and 6 in depth. Generally, the XMG size can be reduced with an

overhead of XMG depth. The exceptions are benchmarks div, sqrt,
arbiter, ctrl, and priority, which achieves both size and depth

improvement. For instance, arbiter achieves up to 12.65% size

improvement, from 12159 to 10621 nodes, and 14.61% depth im-

provement, from 89 to 76 levels. The depth improvement mainly

contributed by div and arbiter. They former one reduced the

depth from 4381 to 2573 levels, which is equal 41.27% reduction.

The latter one also got a 14.61% depth reduction.

1
github.com/msoeken/cirkit

We set the rewriting algorithm terminated when the nodes can

not be improved after at least two efforts. Therefore, the rewriting

cycles are distinct for benchmarks. The CPU time listed in the table

indicates our SR method averagely consumes 2.29 seconds.

We also compares the results after 6-LUT mapping. Generally,

XMG size optimization advantage also carries over into LUT map-

ping improvements in a vast majority cases. However, optimization

of the size and depth of a logic network may not essentially result

in reduced LUT size and depth [12]. For example, benchmarks max
and mem_ctrl can be optimized in terms of XMG size, whereas

results in an increasement of LUT size. On average, our method

achieves 3% reduction of LUT size and 1% reduction of LUT depth.

By evaluating the size/depth product metric, our method achieves

32% reduction of XMG, while 5% reduction of LUT after technology

mapping.

Evaluation on ISCAS Benchmarks. Since XOR detection method

is proposed, we can also proceed SR directly on AIGs, which can

be transposed into MIGs by adding constant inputs. To compare

the proposed rewriting method for size optimization, we compare

several rewriting method using the same ISCAS benchmarks. The

results are shown in Fig. 5, where the MIG rewriting method are

used as baseline. The detail commands used in Cirkit to implement

these methods are shown below, while the start point is reading a

circuit file in AIGER format [4].

MIG SR [3] mig_rewrite --metric 1

XMG SR aig > mig; xmgre

XMG FR [10] xmglut -k 4

XMG FR + SR xmglut -k 4; xmgre

As can be seen in Fig. 5, since we add XOR detection strategy,

our SR method can achieve better results than pure MIG rewriting.

While the XMG FR method generally performs better then the

structural method, by adding our proposed algorithm as a post

optimization step, the size of some benchmarks can be further

improved.

We have witnessed some circuits optimized by FR got worse

XMG size results than the original AIGs. In contrast, our SR method
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Figure 5: Comparison of different methods for XMG size op-
timization.
can avoid this case. This is mainly because our method do not

depend on the technology mapping results. Through efficient XOR

detection, we can even achieve better results than FR method. For

example, the XMG size of benchmark c1908 is 227 by FR, while 226
by SR.

Despite these circuits where FR performed less well than the

original ones, FR method generally produce better results than

our SR method. The main reason is technology mapping used FR

already adopts intelligence of area- and depth-oriented optimization.

Therefore, it makes sense to exploit “FR + SR” simultaneously to

guarantee eventually better results.

6.3 Evaluation on Quantum Circuit Synthesis
XMGs have been applied in quantum circuit synthesis [16]. The

basic principle is to map each gate in an XMG into a quantum net-

work and then compose these networks [9]. As quantum computers

can only implement reversible computations, auxiliary qubits are

used to store intermediate results. Besides, the number of T gate is

measured as the cost of a quantum network. Given the results pro-

duced in [9] over the integer reciprocal design INTDIV(n) for n =
16, 32, 64, and 128, we use the proposed SR to optimize XMG. The

results shown in Table 2 indicate our method can further optimize

the T gate count by 6% with additional 5% qubits. Since the T gate

count accounts for the far most complex execution in a quantum

computer [5], the optimization of T gate count has a significant

impact on quantum circuit realization.

6.4 Discussions
Although the SR method can optimize XMG size, due to the de-

rived transformation rules can only be implemented in two logic

levels, the optimization results have space for further improvement.

There are more optimization obstacles of heterogenous logic rep-

resentation than the homogenous ones. As next steps, we aim to

integrate both FR and SR to exploit more robust XMG size optimiza-

tion method. Moreover, as ABC technology mapper if is based on

AIGs instead of MIGs or XMGs, both FR and SR results may be

improved if an MIG-based technology mapper is developed. The re-

sults demonstrated show the XMG quality improvements diminish

after technology mapping, the mapping-aware structural rewriting

is also of high interest.

Table 2: Experimental Results on Quantum Circuit Realiza-
tion of Reciprocal Operation (INTDIV(n))

Before rewriting [9] After XMG rewriting

n qubits T-count qubits T-count CPU time (s)

16 429 14140 452 13258 0.26

32 1705 59066 1786 56028 0.46

64 6810 238182 7169 223426 2.05

128 26688 921368 28105 864276 31.52

Avg. 1 1 1.05 0.94

7 CONCLUSIONS
In this paper, we proposed a structural rewriting method for

XOR-Majority Graphs. By exploiting XOR and majority Boolean

logic identities, we found the optimization opportunities during

XMG structural rewriting. By evaluating EPFL and ISCAS bench-

marks, the experimental results showwe can further optimize XMG

size/depth product by 32% and LUT size/depth product by 5% by

giving an functional rewriting XMG as a starting point. The pro-

posed method is also applied for quantum circuit synthesis, which

reduce the T gate count by 6%.
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