
SAT-based {CNOT, T} quantum circuit synthesis

Giulia Meuli, Mathias Soeken, and Giovanni De Micheli

École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract. The prospective of practical quantum computers has lead
researchers to investigate automatic tools to program them. A quantum
program is modeled as a Cli�ord+T quantum circuit that needs to be
optimized in order to comply with quantum technology constraints. Most
of the optimization algorithms aim at reducing the number of T gates.
Nevertheless, a secondary optimization objective should be to minimize
the number of two-qubit operations (the CNOT gates) as they show lower
�delity and higher error rate when compared to single-qubit operations.
We have developed an exact SAT-based algorithm for quantum circuit
rewriting that aims at reducing CNOT gates without increasing the
number of T gates. Our algorithm �nds the minimum {CNOT, T}
circuit for a given phase polynomial description of a unitary
transformation. Experiments con�rm a reduction of CNOT in
T -optimized quantum circuits. We synthesize quantum circuits for all
single-target gates whose control functions are one of the
representatives of the 48 spectral equivalence classes of all 5-input
Boolean functions. Our experiments show an average CNOT reduction
of 26.84%.

Keywords: Quantum computing; Cli�ord+T circuits; SAT-based
rewriting algorithm.

1 Introduction

There is a worldwide e�ort in building the �rst practical quantum computer
and many companies are betting on di�erent technologies, as in this �eld
research on physical devices is moving from academia to companies [5].
Microsoft, Google [13], IBM [11, 14], Intel [12], as well as the rapidly growing
startup companies IonQ and Rigetti, are investing signi�cant e�ort into
building the �rst scalable quantum computer. They all seek quantum
supremacy: solving for the �rst time a problem that cannot be solved
classically [4, 9]. Superposition and entanglement are the unique physical
properties that provide quantum computers with such potential ability.

� Superposition: Qubits do not only have the two classical states |0〉, |1〉 but
can be in any superposition of these states |φ〉 = α|0〉+β|1〉, where α, β ∈ C
with |α|2 + |β|2 = 1. Measurements destroy the superposition forcing the
state to collapse into one of the classical states, according to the relative
probabilities |α|2 and |β|2. This property leads to a high parallelism that
can be exploited for computation.

2 G. Meuli et al.

� Entanglement: Given two qubits, entanglement is a global property
di�erent from the product of their two states and that cannot be accounted
classically [10]. Due to this property two qubits in superposition can be
correlated with one another, this means that the state of one depends on
the state of the other even when placed at large distances.

In addition, accounting for the computational power of quantum systems there
is the ability of representing an exponentially larger number of states compared
to classical computers, i.e., an n-bit classical computer can represent one out
of 2n classical states while n qubits can represent 2n of these classical states at
the same time. Adding one qubit to the system doubles its performances and its
computing capabilities.

Universal libraries of instructions are used to program quantum computers.
Instructions that are performed on qubits are also referred to as quantum gates,
with a qubit state as the gate's input and output. In this analogy a quantum
circuit can be interpreted as a program of quantum instructions.

In this work we target the Cli�ord+T universal quantum library, composed
of the set of Cli�ord gates (Hadamard, S, and CNOT gates) and of the
non-Cli�ord T gate. In this library the T gate has proven to be the most
expensive to implement in fault tolerant circuits [2]. This is the reason why
research often focuses on minimizing the number of T gates [1, 18, 23]. On the
other hand, the CNOT gate, also included in the library, is the hardest to
perform on the physical level because it requires to establish an interaction
between two qubits [19]. It has been shown how an increasing number of
CNOT gates reduces the probability of getting a distinguishable result [16].
While there are some methods to e�ciently synthesize CNOT circuits [20, 21]
we propose a SAT-based algorithm to synthesize {CNOT, T} circuits from a
phase polynomial representation with the minimum number of CNOT gates
and without increasing the T -count, i.e., the number of T gates in the quantum
circuit. We show how this synthesis method can be used to rewrite
T -optimized [1] Cli�ord+T circuits achieving an average reduction of 26.84%
in the number of CNOT.

2 Preliminaries

2.1 Boolean functions

We call a function f : Bn → B a Boolean function over n variables where
B = {0, 1} is the two-element �nite �eld with addition corresponding to
Boolean exclusive-OR and multiplication corresponding to Boolean AND. A
Boolean function can be represented by its truth table which is a bitstring
b2n−1b2n−2 . . . b0 of size 2n where

bx = f(x1, . . . , xn) when x = (x1x2 . . . xn)2.

For large functions it is convenient to use a hexadecimal encoding of the bitstring.

SAT-based {CNOT, T} quantum circuit synthesis 3

Example 1. The truth table of the majority-of-three function 〈x1x2x3〉 is
1110 1000 or 0xe8 in hexadecimal encoding.

De�nition 1. A Boolean function f : Bn → Bm is reversible if and only if
f is a bijection, i.e., n = m and it performs a permutation of the set of input
patterns.

De�nition 2. A Boolean function f : Bn → B is linear if and only if:

f(x1 ⊕ x2) = f(x1)⊕ f(x2).

Any linear Boolean function can be written as

f(x1, . . . , xn) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn (1)

for constants a1, . . . , an ∈ B. Given this notation we can write any linear function
f as a row vector of the n constant Boolean coe�cients: (a1 . . . an).

Example 2. Given the linear Boolean function f(x1, x2, x3) = x2 ⊕ x3 it
corresponds to the row vector: (0 1 1).

De�nition 3. A multi-output Boolean function f : Bn → Bm is linear if and
only if each component function fi is linear, for i = 1, . . . ,m.

A multi-output linear Boolean function f : Bn → Bm can be represented using
an m × n matrix, in which each row is the row vector representing a
component linear function fi. If the multi-output function is linear and
reversible the representative matrix is a non-singular matrix n× n.
Example 3. The controlled-NOT gate (see Fig. 1(a)), implementing the function

CNOT : |x1〉|x2〉 7→ |x1〉|x1 ⊕ x2〉,

is both linear and reversible, while the To�oli gate implements a function (see
Fig. 1(b)) that is reversible but not linear:

Tof : |x1〉|x2〉|x3〉 7→ |x1〉|x2〉|x3 ⊕ (x1 ∧ x2)〉.

By only using CNOT gates it is possible to build a linear reversible circuit
with n inputs, implementing a multi-output reversible linear function f : Bn →
Bn, with n linear reversible Boolean functions as components fi.

Example 4. The linear reversible circuit shown in Fig. 2 computes four di�erent
linear functions fi : B4 → B:

f1 = x2 ⊕ x3, f2 = x1 ⊕ x2 ⊕ x3, f3 = x3, f4 = x3 ⊕ x4.

If we represent them using row vectors (see Ex. 2) of their Boolean coe�cients
and group such vectors in an n × n matrix, we obtain a matrix G representing
a multi-output linear reversible Boolean function:

G =


0 1 1 0
1 1 1 0
0 0 1 0
0 0 1 1

 .

We will use this representation in the encoding of our SAT problem.

4 G. Meuli et al.

x1

x2

x1

x1 ⊕ x2

(a) CNOT.

x1

x2

x3

x1

x2

x3 ⊕ (x1 ∧ x2)

(b) To�oli.

Fig. 1. Examples of two gates implementing reversible functions.

x1

x2

x3

x4

x2 ⊕ x3

x1 ⊕ x2 ⊕ x3

x3

x3 ⊕ x4

Fig. 2. Example of a linear reversible CNOT circuit.

2.2 Cli�ord+T universal quantum library

Quantum circuits are described in terms of a small library of gates that interact
with one or two qubits. The most frequently considered universal library is the
so-called Cli�ord+T gate library that consists of two single-qubit operations (the
Hadamard gate, abbreviated H, and the T gate) and one two-qubit operation
(the reversible CNOT gate).

All single-qubit operations can be represented using a 2 × 2 matrix U . The
only condition for such matrix to be a valid quantum operation is to be unitary,
that means U†U = UU† = I where U† is the complex conjugate transpose of U .
This condition guarantees that the quantum state resulting from the operation
will have |α|2 + |β|2 = 1.

� X gate: The X gate is the quantum equivalent to the classical NOT gate,
that complements the state of a classical bit. Given as input |φ〉 = α|0〉+β|1〉,
it swaps the amplitudes and returns |φ〉 = β|0〉+ α|1〉.

� H gate: The Hadamard gate is often used to create superposition. It
transforms a |0〉 into a (|0〉 + |1〉)/

√
2 and a |1〉 into a (|0〉 − |1〉)/

√
2. The

resulting state is halfway between |0〉 and |1〉 and collapses into one of
these classical states with 50% probability. For example, given n qubits
initialized to |0〉, if a H gate is applied to each of them we have:

1
n
√

2
(|00 . . . 0〉+ |00 . . . 1〉+ · · ·+ |01 . . . 1〉+ |11 . . . 1〉)

This means that the system is receiving all the possible input combinations
at the same time, with the same probability 1/22/n.

� T gate: This gate does not belong to the Cli�ord library and it is necessary
to achieve universality, that means adding this gate to the Cli�ord ones
makes it possible to approximate any unitary matrix arbitrarily precise. The

SAT-based {CNOT, T} quantum circuit synthesis 5

T gate is su�ciently expensive in most approaches to fault tolerant quantum
computing [2].

The corresponding unitary matrices for these gates are:

X =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 eiπ/4

)
.

The controlled-NOT (or CNOT) operation is the only two qubits operation in
the library and for this reason is the most complex to implement on the physical
level. It complements the state of one qubit called target accordingly to the state
of the other qubit called control. We can write |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→
|11〉, |11〉 7→ |10〉, the corresponding matrix is:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

2.3 Phase polynomial representation

A {CNOT, T} n-qubit quantum circuit, i.e., a circuit composed only of CNOT
and T gates, implements a unitary matrix U that can be expressed using a
linear reversible function g and a polynomial p(x1, . . . , xn) de�ning a diagonal
phase transformation. This circuit description is called phase polynomial
representation [2] and more than one {CNOT, T} circuit can share the same
representation.

Lemma 1. The action of a {CNOT, T} circuit on the initial states |x1, . . . , xn〉
has the form:

|x1, . . . , xn〉 7→ e
π
4 ip(x1,...,xn)|g(x1, . . . , xn)〉,

with p(x1, . . . , xn) =

l∑
i=1

(ci mod 8)fi(x1, . . . , xn), (2)

where g : Bn → Bn is a linear reversible function, p is a linear combination of
linear Boolean functions fi : Bn → B with the coe�cients reduced modulo 8.
The coe�cients ci ∈ Z measure the number of rotations of π/4 that are applied
to the corresponding fi, e.g., each T gate gives a π/4 rotation (ci = 1), an S
gate gives a π/2 rotation (ci = 2), a T † gate gives a 7π/4 rotation (ci = 7). The
phase polynomial notation is uniquely speci�ed by:

g, fi, ci for i = 1, . . . , l

where l is the number of phase gates.

6 G. Meuli et al.

x1

x2

x3

T

T †

x1

x1 ⊕ x2

x1 ⊕ x2 ⊕ x3

Fig. 3. Example of a {CNOT, T} circuit.

Example 5. The circuit in Fig. 3 implements a transformation on the input qubit
states x1, x2, x3 characterized by the linear reversible function

g : |x1〉|x2〉|x3〉 7→ |x1〉|x1 ⊕ x2〉|x1 ⊕ x2 ⊕ x3〉

and by a phase polynomial

p(x1, x2, x3) = 1(x1 ⊕ x2) + 7(x1 ⊕ x2 ⊕ x3)

with c1 = 1, c2 = 7, f1 = x1 ⊕ x2, f2 = x1 ⊕ x2 ⊕ x3.

Where the T gate gives a phase of π/4 while its conjugate complex T † gives a
phase of 7π/4.

Given a {CNOT, T} circuit, we can extract its phase polynomial
representation. Our proposed algorithm, taking this representation as input,
�nds the corresponding {CNOT, T} quantum circuit with the minimum
number of CNOT, solving iteratively a satis�ability problem.

2.4 Boolean satis�ability

Given a Boolean function f(x1, . . . , xn), the Boolean satis�ability problem (or
SAT problem) consists of determining an assignment V to the variables
x1, . . . , xn such that f is satis�ed (evaluates to true). If such an assignment
exists we call it a satisfying assignment, otherwise the problem is unsatis�able.

SAT solvers [3,15] are software programs in which f is speci�ed as conjunctive
normal form (CNF) consisting of a conjunction of clauses where each clause
is a disjunction of literals. We de�ne a literal as instance of a variable or its
complement. SAT can be summarized as follows: given a list of clauses, determine
if there exists a variable assignment that satis�es all of them.

3 SAT-based algorithm for CNOT reduction

Problem 1. Given a phase polynomial description of a unitary transformation (g,
fi, ci,) and an integer K, determine if there exists a {CNOT, T} quantum circuit
implementing it with K CNOT gates. We denote an instance of this problem
HasCNOT(g, fi, ci, K).

We represent the linear reversible function g using a n×n matrix G with entries
Gi,j . At the same time we de�ne Fi as the row vector representation of fi with
entries Fi,j .

SAT-based {CNOT, T} quantum circuit synthesis 7

x1

x2

x3

x1

x1 ⊕ x2

x3

x1

x1 ⊕ x2

x1 ⊕ x2 ⊕ x3

I = A0 =

(
1 0 0
0 1 0
0 0 1

)
A1 =

(
1 0 0
1 1 0
0 0 1

)
G = A2 =

(
1 0 0
1 1 0
1 1 1

)

q1 = (1 0 0)

t1 = (0 1 0)

q2 = (0 1 0)

t2 = (0 0 1)

F2 = (1 1 1)

F1 = (1 1 0)

Fig. 4. Illustration of SAT encoding for sample circuit in Fig. 3.

Example 6. The phase polynomial representation shown in Ex. 5 is represented
by:

G =

1 0 0
1 1 0
1 1 1

 , {c1 = 1, F1 = (1 1 0)}, {c2 = 7, F2 = (1 1 1)}

3.1 Encoding

Example 7. In Fig. 4 we show an example of how the problem of synthesizing a
circuit for the phase polynomial representation in Ex. 5 with two CNOT gates
is encoded.

If the speci�ed transformation is performed using K CNOT gates, there must
be K gate transformations that map Ak−1 → Ak, for 1 ≤ k ≤ K, where A0 is
the identity matrix satisfying:

AK = G and ∀j∃Aki .(Aki = Fj) (3)

The latter means that at least one row Aki is equal to the speci�ed linear Boolean
functions.

Example 8. In the case of our example:

A0 =

1 0 0
0 1 0
0 0 1

 , A1 =

1 0 0
1 1 0
0 0 1

 , A2 =

1 0 0
1 1 0
1 1 1

 = G, and

A1
1 = A2

1 = (1 1 0) = F1, A
2
2 = (1 1 1) = F2

Each CNOT gate is represented by two vectors: qk = (qk1 . . . q
k
n) describing

the gate control and tk = (tk1 . . . t
k
n) for the target, where qki (tki) = 1 only if the

ith variable is a control (target) of the gate (see Fig. 4).

8 G. Meuli et al.

First we need to ensure that those variables are describing valid CNOT gates,
characterized by one control and one target variable. We de�ne the following
one-hot clauses:

∀1≤k≤K [(qk1 ∨ · · · ∨ qkn) ∧
∧

1≤i<j≤n

(q̄ki ∨ q̄kj)] (4)

and
∀1≤k≤K [(tk1 ∨ · · · ∨ tkn) ∧

∧
1≤i<j≤n

(t̄ki ∨ t̄kj)] (5)

In addition, the control and target of each gate need to be acting on di�erent
variables to represent a valid CNOT:

∀1≤k≤K
n∧
i=1

(qki 6= tki) (6)

After we have de�ned the matrices A0, . . . , AK (3) and given conditions over
the gate vectors qk and tk describing the mapping Ak−1 7→ Ak (4),(5),(6), we
need to encode the functionality of this mapping. In order to do so we de�ne some
intermediate expressions hkj for each row of a matrix Ak−1, de�ning whether it

intersects with the control vector qk

∀1≤k≤K ,∀nj=1h
k
j =

n⊕
i=1

Ak−1ij ∧ qki

By means of such variables we de�ne in which cases the application of a CNOT
gate causes elements of the matrix A to switch.

∀1≤k≤K ,∀ni=1,∀nj=1A
k
i,j = Ak−1i,j ⊕ (tki ∧ hkj) (7)

Example 9. Consider the �rst CNOT gate in Fig 4, it can be represented by the
vectors:

q1 = (1 0 0) and t1 = (0 1 0)

verifying conditions (4),(5),(6). We can compute the intermediate variables h1j
checking whether one or more elements in the matrix A0 should switch.

h11 = A0
1,1 ∧ q11 ⊕A0

2,1 ∧ q12 ⊕A0
3,1 ∧ q13 = 1

h12 = A0
1,2 ∧ q11 ⊕A0

2,2 ∧ q12 ⊕A0
3,2 ∧ q13 = 0

h13 = A0
1,3 ∧ q11 ⊕A0

2,3 ∧ q12 ⊕A0
3,3 ∧ q13 = 0

Then the only element in the matrix A that switches is A1
2,1 = A0

2,1 ⊕ (t12 ∧ h11)
and:

A0 =

1 0 0
0 1 0
0 0 1

 7→ A1 =

1 0 0
1 1 0
0 0 1



SAT-based {CNOT, T} quantum circuit synthesis 9

3.2 SAT problem: Summary

The speci�cations are given to our problem as: a matrix G representing a linear
reversible Boolean function g, the set of coe�cients ci and the linear Boolean
functions fi.

SAT variables. For each gate we de�ne: (i) control variables qki , de�ning which
variable i is the control of gate k, (ii) target variables tki , de�ning which variable
i is the target of gate k.

In order to evaluate the evolution of the implemented function gate by gate,
we de�ne matrices representing intermediate synthesized linear transformations:
Ak for 1 ≤ k ≤ K. We also de�ne some auxiliary variables hkj that are used to

de�ne the mapping Ak−1 7→ Ak

SAT clauses. The following clauses de�ne our SAT problem:

� Initial clauses: A0 = I where I is the identity matrix.
� Final clauses: AK = G and ∀j∃Aki .(Aki = Fj). The �nal linear
transformation implements the desired G and all the functions fi are
present at some position in the circuit so that ci π/4 phase shifts can be
applied.

� Validity clauses: only one variable qki (tki) is equal to one for each gate k
and qk 6= tk. We consent only one control and one target de�ned on di�erent
variables.

� Dependency clauses: Aki,j = Ak−1i,j ⊕ (tki ∧ hkj) de�ning the relation between

the gate variables qki , t
k
i with respect to the intermediate matrix variables.

This clause de�nes the mapping Ak−1 7→ Ak. If we consider all the K gates,
we will have I = A0 7→ A1 7→ · · · 7→ AK−1 7→ AK = G.

3.3 SAT-based rewriting algorithm

Our synthesis algorithm aims at minimizing the number of CNOT gates
without increasing the number of T gates. For this reason the starting point is
a Cli�ord+T circuit with an optimized number of T gates, obtained using the
optimization algorithm T-par [1]. The overall procedure is described by Alg. 1.

The �rst step of the algorithm is to extract from the input circuit, built
on the whole range of Cli�ord+T gates, some {CNOT, T} subcircuits. This
partition is required because we aim at minimizing all possible quantum circuits,
hence de�ned over the Cli�ord+T library, using an exact method for reducing
{CNOT, T} circuits. The extraction method ct_extract is performed in such a
way that after the synthesis performed by the SAT-solver, the sub-circuits can
be recombined to restore the initial functionality.

The next step is to re-synthesize each subcircuit. In order to input a
subcircuit in our SAT problem we �rst need to extract the phase polynomial
representation (g, fi, ci), this is performed by the procedure phase. The SAT

10 G. Meuli et al.

Algorithm 1 SAT-based rewriting algorithm

1: c← T-optimized quantum circuit
2: ct_extract(c) (extract {CNOT, T} sub-circuits)
3: for each sub-circuit c′ do
4: (g, fi, ci)←phase(c′) (set the phase polynomial representation from c′)
5: K ← 0 (number of gates)
6: repeat

7: Solve(HasCNOT(g, fi, ci,K))
8: if SAT then

9: c′′ ←Extract {CNOT, T} circuit
10: Replace c′ by c′′ in c
11: else UNSAT
12: K ← K + 1

13: until a solution is found

solver is used iteratively to solve our encoded problem HasCNOT. It tries to
�nd a satisfying solution with K gates and adds an additional gate if the
problem is unsatis�able. This procedure is repeated until a valid solution is
found. This solution will describe a circuit with the minimum number of
CNOT gates, given the polynomial representation.

4 Results

We have implemented Algorithm 1 in C++ on top of RevKit [22] and have
used the Z3 prover [6] to encode and solve the SAT problem. As benchmarks
we have used Cli�ord+T circuits for 48 single-target gates. A single-target gate
is a generalized To�oli gate, which instead of 2 control lines allows any set of k
control lines and a k-input Boolean control function. A single-target gate
inverts its target line if and only if the control function evaluates to true on the
current control line assignment. RevKit contains a database of optimized
Cli�ord+T circuits [17] for single-target gates where the control function is a
representative of one of the 48 spectral equivalent classes for 5-input Boolean
functions [8]. Several reversible logic synthesis algorithms such as Young
subgroup based synthesis [7] and LUT-based hierarchical reversible logic
synthesis [24] use single-target gates as intermediate representation, which can
be directly mapped to their pre-computed optimized Cli�ord+T
implementation, if it does not have more than 6 control lines. Consequently,
improving on these implementations has a large positive impact on the results
of these synthesis methods.

While in [17] the database circuits are optimal only in the number of T gates,
our proposed optimization algorithm can reduce the number of CNOT gates by
keeping the T -count unchanged. Results are shown in Table 4, we report for each
equivalent class: (i) the hexadecimal encoding of the representative function, (ii)
the number of T gates in the initial circuit, (iii) the number of CNOT in the initial
circuit, (iv) the reduced number of CNOT in the circuit synthesized using our

SAT-based {CNOT, T} quantum circuit synthesis 11

method, (v) the percentage reduction and (vi) the runtime in seconds. We also
report the average percentage reduction and the maximum measured reduction,
26.84% and 45.45%, respectively. The method used to decompose the initial
Cli�ord+T circuit into {CNOT, T} subcircuit, namely ct_extract impacts the
�nal optimized results and the runtime. As it was expected, the presence of larger
subcircuits leaves larger space for optimization, but slows down the operation of
the SAT solver.

5 Conclusion

In this work we propose a SAT-based synthesis method to build {CNOT, T}
circuits with the minimum number of CNOT gates for a given phase
polynomial representation. Most optimized synthesis methods in the literature
aim at reducing the number of T gates, which are expensive in fault tolerant
circuits. Nevertheless, since CNOT gates are di�cult to implement from the
physical point of view, relying on a delicate interaction between two qubits, we
believe that methods for CNOT reduction should also be investigated. While
there exist algorithms dealing with linear reversible CNOT circuits, our
method is the �rst to our knowledge being capable of optimizing the number of
CNOT gates in Cli�ord+T circuits, without changing the circuit functionality.
We have validated our method showing an average 26.84% CNOT reduction
synthesizing all the 48 functions representative of the 5-input equivalent
classes. In future works we plan to extend our algorithm to support the
optimization of the more general class of circuits that are composed of X gates,
CNOT gates and phase gates with continuous rotation angles [19].

References

1. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T -depth optimization of
Cli�ord+T circuits via matroid partitioning. IEEE Trans. on CAD of Integrated
Circuits and Systems 33(10), 1476�1489 (2014)

2. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD of
Integrated Circuits and Systems 32(6), 818�830 (2013)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satis�ability.
IOS Press (2009)

4. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z.,
Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy
in near-term devices. arXiv preprint arXiv:1608.00263v3 (2017)

5. Castelvecchi, D.: Quantum computers ready to leap out of the lab in 2017. Nature
News 541(7635), 9 (2017)

6. De Moura, L., Bjørner, N.: Z3: An e�cient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337�
340. Springer (2008)

7. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers.
Advances in Mathematics of Communications 2(2), 183�200 (2008)

12 G. Meuli et al.

Table 1. Results

Class T-count CNOT initial CNOT �nal %CNOT Runtime

0 0x00000000 0 0 0 0.00 0.00
1 0x80000000 31 61 55 9.84 137.24
2 0x80008000 24 45 38 15.56 8.68
3 0x00808080 51 112 97 13.39 24.93
4 0x80808080 16 47 30 36.17 7.82
5 0x88800800 48 94 79 15.96 13.81
6 0x88088020 75 175 143 18.29 574.99
7 0x88808080 47 100 79 21.00 133.77
8 0x2a808080 32 89 54 39.33 202.16
9 0x70080088 56 127 96 24.41 814.43
10 0xf3c0dd00 48 118 79 33.05 257.79
11 0xc0c8c0c8 29 65 54 16.92 9.46
12 0x734470c8 111 221 176 20.36 2148.00
13 0xe0a0c000 63 156 111 28.85 135.59
14 0xe8080808 71 178 128 28.09 293.18
15 0x8808a808 63 136 102 25.00 17.44
16 0x08888888 36 82 73 10.98 445.86
17 0x88888888 7 11 6 45.45 0.92
18 0xd5808080 32 89 58 34.83 215.22
19 0x70807080 15 40 23 42.50 3.08
20 0xe1808880 88 194 130 32.99 16.48
21 0xea808080 56 140 84 40.00 10.14
22 0xcc808880 55 117 88 24.79 10.53
23 0xe4404440 55 118 83 29.66 5.71
24 0x7f008000 23 39 32 17.95 4.22
25 0xe0a8c800 91 219 161 26.48 821.58
26 0xe8818880 115 291 210 27.84 832.18
27 0xe8a08880 80 195 168 13.85 368.34
28 0xf8808880 80 182 143 21.43 57.50
29 0xe2222220 56 123 85 30.89 1771.19
30 0xa0c8a088 63 192 149 22.40 385.03
31 0xe6804c80 39 96 58 39.58 5.94
32 0x7f808080 19 60 44 26.67 388.19
33 0x0231da51 79 192 138 28.12 8.77
34 0xa008bc88 95 204 151 25.98 50.76
35 0xd8887888 43 112 70 37.50 360.20
36 0xeca08088 80 180 118 34.44 10.77
37 0xf0888888 56 144 97 32.64 860.57
38 0x8a80cac0 47 108 82 24.07 523.50
39 0x78807880 36 74 56 24.32 1668.62
40 0xbca08488 79 208 154 25.96 863.73
41 0xfca08880 96 225 153 32.00 53.71
42 0xdac08a80 76 190 157 17.37 356.73
43 0xf8887888 43 107 91 14.95 363.48
44 0x78887888 12 24 15 37.50 869.91
45 0xa6cc60a0 47 126 83 34.13 17.35
46 0x62c8ea40 35 95 63 33.68 25.30
47 0x6ac8e240 48 107 81 24.30 11.43

Average achieved CNOT minimization: 26.84%
Max achieved CNOT minimization: 45.45%

SAT-based {CNOT, T} quantum circuit synthesis 13

8. Edwards, C.R.: The application of the Rademacher-Walsh transform to Boolean
function classi�cation and threshold logic synthesis. IEEE Trans. on Computers
24(1), 48�62 (1975)

9. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature
549(7671), 203�209 (2017)

10. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Physical Review
Letters 78(26), 5022 (1997)

11. IBM: IBM builds its most powerful universal quantum computing processors
(2017), press release by IBM, posted online May 17, 2017

12. Intel: Intel delivers 17-qubit superconducting chip with advanced packaging to
QuTech (2017), press release by Intel, posted online October 10, 2017

13. Kelly, J.: A preview of Bristlecone, Google's new quantum processor. Google
Research Blog (2018)

14. Knight, W.: IBM rasises the bar with a 50-qubit quantum computer. Sighted
at MIT Review Technology: https://www. technologyreview. com/s/609451/ibm-
raises-the-bar-with-a-50-qubit-quantum-computer (2017)

15. Knuth, D.E.: The Art of Computer Programming, Volume 3, Second Edition.
Addison-Wesley (1998)

16. Linke, N.M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K.A.,
Wright, K.E., Monroe, C.: Experimental comparison of two quantum computing
architectures. Proceedings of the National Academy of Sciences 114(13), 3305�
3310 (2017)

17. Meuli, G., Soeken, M., Roetteler, M., Miller, D.M., Amy, M., Wiebe, N.,
De Micheli, G.: Estimating single-target gate T-count using spectral classi�cation.
Int'l Workshop on Logic and Synthesis (2018)

18. Meuli, G., Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: A best-�t
mapping algorithm to facilitate ESOP-decomposition in Cli�ord+T quantum
network synthesis. In: Proceedings of the 23rd Asia and South Paci�c Design
Automation Conference. pp. 664�669. IEEE Press (2018)

19. Nam, Y.S., Ross, N.J., Su, Y., Childs, A.M., Maslov, D.: Automated
optimization of large quantum circuits with continuous parameters. arXiv preprint
arXiv:1710.07345 (2017)

20. Patel, K.N., Markov, I.L., Hayes, J.P.: E�cient synthesis of linear reversible
circuits. arXiv preprint quant-ph/0302002 (2003)

21. Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-
not-based circuits. Physical Review A 69(6), 062321 (2004)

22. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: A toolkit for reversible
circuit design. Multiple-Valued Logic and Soft Computing 18(1), 55�65 (2012)

23. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and
design space exploration for quantum computers. In: Design, Automation and Test
in Europe. pp. 470�475 (2017)

24. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Hierarchical reversible logic
synthesis using LUTs. In: Design Automation Conference. pp. 78:1�78:6 (2017)

