
Integrated ESOP Refactoring for Industrial Designs
Winston Haaswijk∗, Luca G. Amarù†, Patrick Vuillod†, Jiong Luo†, Mathias Soeken∗, Giovanni De Micheli∗

∗Integrated Systems Laboratory, EPFL, Switzerland †Synopsys Inc., CA, USA

Abstract—We present a multi-level logic refactoring algorithm
based on exclusive sum-of-product (ESOP) expressions. ESOP ex-
pressions are two-level logic representation forms, similar to sum-
of-product (SOP) expressions. However, ESOPs use EXOR instead
of OR operators. It has been shown that this allows ESOPs to be
exponentially more compact than SOP expressions for important
classes of functions. Our algorithm is based on a combination of
ESOP collapsing, minimization, and refactoring. In EXOR-heavy
logic, such as arithmetic units, it unlocks optimizations that may
be outside the reach of SOP based methods. We show that our
method is able to significantly improve upon logic optimization
results, as compared to a similar SOP based flow. On a set of
EXOR-heavy benchmarks, we reduce logic levels by up to 83.3%
in the best case, and by 44.6% on average. Further, we are able
to reduce logic network size by 21.4% on average. We have
integrated our method into a commercial synthesis flow. On a
set of 46 industrial benchmarks, the optimizations introduced by
our algorithm improve design results after physical synthesis.

I. INTRODUCTION
The two-level sum-of-products (SOP) representation is

perhaps the most widely used way to represent Boolean
functions. However, it is not necessarily the most efficient
one. The main object of interest in this paper is the exclusive-
sum-of-products (ESOP) representation. ESOPs differ from the
SOPs in that they use the EXOR instead of the OR operator.
Both SOP and ESOP expressions can be used to represent
any Boolean function. However, ESOPs have the theoretical
advantage of being more compact for important classes of
functions [1]. For example, the parity function of 4 variables
can be written as the ESOP expression a⊕ b⊕ c⊕ d, whereas
the smallest possible SOP expression requires 8 product terms
and 32 literals:

abcd̄ + abc̄d + ab̄cd + ābcd + ab̄c̄d̄ + ābc̄d̄ + āb̄cd̄ + āb̄c̄d

ESOP minimization refers to the process of finding a
minimal ESOP representation for a given function. There is
no known efficient algorithm for finding the exact minimum
ESOP expression for arbitrary functions. Currently, finding
such minima can only be done for arbitrary functions up
to 6 variables, or up 10 variables for specific classes of
functions [2], [3], [4]. Therefore, various types of heuristic
ESOP minimization have been developed. Most recent attempts
at heuristic minimization algorithms are based upon the iterative
application of cube transformations [5], [6], [7], [8], [1],
[9], [10]. The ExorLink operation, introduced by Song and
Perkowski in [8], generalized various other cube transformations
(e.g. the xlinking and unlinking operations) and integrated
them into a single transformation [5], [6], [7]. Finally, ESOP
minimization is harder than SOP minimization [1], due to the
fact that ESOP minimization is a binate covering problem,
whereas SOP minimization is a unate covering problem [11,
pp. 268][12, pp. 278].

There is also a noteable literature on EXOR based logic
minimization using sum-of-pseudoproduct (SPP) expressions
[13], [14]. SPPs are three-level logic expressions in which
the two-level concept of cubes is generalized to pseudocubes,
which are products of EXOR factors. A k-SPP is an SPP
that has EXORs with k-bounded fanin [15]. Three-level forms

such as SPPs and k-SPPs have the advantage that they can
represent functions more compactly than two-level forms such
as (E)SOPs. Exact and heuristic algorithms to minimize such
expressions have been developed, we refer the interested reader
to [13], [15], [14].

Besides theoretical and academic motivations, a key driving
factor in the progress of ESOP minimization has been the
construction of programmable logic arrays (PLAs), which rely
on EXOR rather than OR arrays. EPLAs are easier to test
and require less hardware [1]. Further, for multi-level logic
networks, the use of EXOR gates can lead to the synthesis of
circuits with less area and delay [16].

For circuit designs that contain EXOR-heavy logic, con-
ventional methods based on SOP expressions may miss some
optimizations, as they cannot find compact EXOR representa-
tions. Motivated by the theoretical compactness advantage of
ESOPs, our goal in this paper is to develop an ESOP analogue
to conventional SOP based collapsing. Such an optimization
flow consists of SOP collapsing, minimization, and refactoring.
We present an analogous multi-stage ESOP refactoring method,
and show that the theoretical advantage of ESOP indeed
carries over into significantly improved logic optimization
results. Our method is also designed to be integrated into an
existing commercial optimization framework that uses window
enumeration and truth table computation. Such integration
imposes stringent design requirements, leading to the efficient
optimization method presented in this paper.

We compare our ESOP optimization method to a similar
flow based on SOPs. The comparison reveals significant
improvements, reducing logic levels by up to 83.3% and by
44.6% on average. Further, our method reduces average logic
network size by 21.4%. Finally, we integrate our method into a
commercial synthesis flow. On a set of 46 industrial benchmarks
we show average improvement, after placement and routing, of
1.08% in area, 0.93% in leakage power, and 0.15% in worst
negative slack.

II. PRELIMINARIES
Given a Boolean function f : Bn → B, we write the cofactor

of f with respect to variable xi as fx̄i
for xi = 0 and fxi

for
xi = 1. We can then define the following expansions of the
function:

f = x̄ifx̄i ⊕ xifxi Boole’s expansion
f = fx̄i

⊕ xi(fx̄i
⊕ fxi

) positive Davio expansion
f = fxi

⊕ x̄i(fx̄i
⊕ fxi

) negative Davio expansion

A literal is typically defined as a Boolean variable xi in
either positive or negative polarity. For example, the variable
xi may be written in negative polarity as x̄i. In the context
of ESOP minimization, it is useful to extend this definition to
work with multiple-valued literals. Let Pi = {0, . . . , pi−1} be
a set of i permissible values. Then, for any subset Si ⊆ Pi, we
can define a literal xSi

i as:

xSi
i =

{
1, if xi ∈ Si

0, otherwise

For example, with this extended definition we can write x
{0}
i

to indicate x̄i. It also allows us to write don’t care literals as
x
{0,1}
i .

A cube is a product of of literals, and is 1 if and only if
all its literals are 1. Cubes are sometimes called products or
product terms. An EXOR of two cubes evaluates to 1 if and
only of the two cubes have different values. An ESOP is the
exclusive-or (EXOR) of a set of cubes.

It is desirable to be able to use ESOP expressions to
represent multiple-output functions. In order to do this, we
can use our multiple-valued literal definitions to view cubes
as having an input part and an output part. The input part
of a cube is the conjunction of the literals in the cube. The
output part of a cube is an additional multiple-valued literal
which has as many permissible values as there are outputs. This
allows us to share cubes between outputs, which enables the
minimization of a single ESOP for multiple outputs, without
having to minimize separate ESOPs for each output.

For example, we could write a 3-input 2-output function in
the following way:

x
{0}
1 x

{0}
2 x

{1}
3 y{0} ⊕ x

{0}
1 x

{1}
2 x

{0}
3 y{0}⊕

x
{1}
1 x

{0}
2 x

{1}
3 y{0,1} ⊕ x

{1}
1 x

{0,1}
2 x

{1}
3 y{0,1}

Here, the xi variables determine the input- and the y variable
the output-part of the cubes. In this example, the first two
cubes only affect the first output. The last two cubes affect
both outputs. Note that variable x2 is a don’t care in the last
cube.

We say that cubes CS and CR coincide in a variable xi

if xSi
i ∈ CS , xRi

i ∈ CR and Si = Ri . The distance between
two cubes is defined to be the number of variables in which
the cubes do not coincide. For example, the distance between
cubes x

{1}
1 x

{0}
2 x

{1}
3 y{0,1} and x

{1}
1 x

{0,1}
2 x

{1}
3 y{0,1} is 1.

Over the years, different cube operations have been de-
veloped in the context of ESOP minimization. The ExorLink
operation is a generalization of several different such trans-
formations [9]. It replaces a pair of cubes by a set of new
cubes such that the ESOP function remains unchanged. The
formal definition of the ExorLink of two cubes CS and CR is
as follows [9]:

CS ⊗ SR =
⊕
{xS1

1 · · ·x
Si⊕Ri
i · · ·xRn

n | ∀i : Si 6= Ri}

The number of cubes that replaces the pair is equal to the
distance between the cubes. For example, if we apply ExorLink
on two distance-0 cubes, this is equivalent to removing them
from the expression.

A logic network can be viewed as a directed acyclic
graph with some additional structure. Where we would
write G = (V,E) to represent a DAG, we write G =
(VG, EG, P IG, POG, FG) for a logic network. Here, PIG ⊆
VG corresponds to the primary inputs to the network, and
POG ⊆ VG corresponds to the primary outputs. All other nodes
n ∈ V − (PIG ∪ POG) correspond to logic gates. Through
the logic gates, a logic network computes a multiple-output
Boolean function FG : B|PIG| → B|POG|, from the primary
inputs to the primary outputs. An and-inverter graph (AIG) is a
specific type of logic network in which each node corresponds
to an AND gate. AIGs may have complemented edges which
removes the need for explicit inverter gates.

Given a logic network G and a node n ∈ VG, a cut
C = (n, I, f) of G consists of a set of nodes I such that
every path from a primary input to n passes through a node in

I . The node n is called the root or output of the cut and the
nodes in I are called the leaves of the cut. Each cut corresponds
to a cut function f : B|I| → B, which is a Boolean function
defined on the leaves of the cut. Intuitively, one may think of
a cut as inducing a subgraph of the logic network that consists
of the nodes between the leaves I and the output n. Therefore,
cuts can be used to partition a logic network into a set of
sub-networks. A window W = (N, I, F) is a generalized cut
with multiple outputs N . There is no real distinction between
logic networks and windows, other than the fact that windows
are explicitly subnetworks of some larger network. But we may
view a window as a logic network: W = (VW , EW , I,N, F),
where VW and EW are the nodes and edges in the subgraph
between the window’s leaves and outputs.

III. ALGORITHM CONTEXT
A key requirement of this work was the integration of

our algorithm within a larger existing optimization framework.
The details of this framework are outside of the scope of this
paper, but we give a brief overview to explain the context in
which our optimization algorithm takes place. Given a logic
network, the framework generates windows of the network.
Next, the framework generates truth tables for all nodes
within the window. This is done using a fast truth table
package that efficiently scales up to 16 variables. Finally, the
framework invokes our algorithm on the and replaces it with
an optimized one. In other words, given a logic network G, the
framework generates a sequence of windows (G1, G2, . . . , Gn)
upon which our algorithm acts. Note that this process is
completely transparent to our algorithm. It just views these
subsequent windows as independent logic networks. Hence, in
the remainder we will simply discuss the optimization of logic
networks, without referring explicitly to windows.

IV. ESOP COLLAPSING
The goal of ESOP collapsing is to flatten a multi-level logic

network to an ESOP expression. This requires us to generate
ESOP expressions for all outputs of the network. Since our
algorithm operates within a larger framework, the necessary
truth tables “for free”. Our algorithm uses exploits this by
collapsing the truth tables corresponding to output nodes into
so-called Pseudo-Kronecker Forms (PKRMs). PKRMs are a
specific subset of ESOP expressions that can be generated
using only positive/negative Davio expansion and Boole’s
expansion[17]. They are considered to be a good starting point
for ESOP minimization [10]. PKRMs are commonly generated
from Binary Decision Diagrams (BDDs). However, as our
algorithm already has access to truth tables, we prefer not
to build additional BDDs for this purpose. Instead, we adapt
conventional algorithms and generate PKRMs by using the fast
truth table package. We emulate BDDs by using an efficient
hash table implementation on top of the truth table package. Our
collapsing algorithm then proceeds much like the algorithms
presented in [17], [10].

V. ESOP MINIMIZATION
After generating the initial seed ESOPs for the network,

our goal is now to minimize these expressions. We do so in
a manner inspired by the Exorcism family of algorithms [8],
[9], [10]. Our minimization algorithm takes as input an initial
ESOP cover, from which distance 0/1 cubes have already been
eliminated. It then operates on this cover by iteratively applying
the distance 2 to 4 ExorLink operation to suitable cube pairs.
It iteratively reshapes the cover, accepting ExorLink operations

between pairs of cubes if the result of ExorLinking would
reduce the number of cubes or literals.

VI. EXOR REFACTORING
After ESOP collapsing and minimization, we have a logic

network G = (VG, EG, P IG, POG, FG), and a corresponding
minimized multiple-output ESOP expression E. Our goal now
is to factor this expression in such a way as to find a new
multi-level representation for FG that is more efficient than G
(e.g. in terms of logic levels and nodes). Further, we want this
representation to be in terms of primitive gates. Primitive gates
are simple logic gates that might be found in a standard cell
library. They typically have a low fanin count and compute a
simple logic function. Examples are the AND-2 and EXOR-2
gates which compute the 2-input AND, and 2-input EXOR
functions, respectively.

At this point it becomes useful to establish some additional
notation. Suppose that ESOP expression E contains m cubes.
We say that cubes(E) =

⋃m
i=1{Ci} is the set of cubes

contained in E. Let cubes(E, i) ⊆ cubes(E) be the subset
of cubes that affect output i.

Our refactoring approach separates optimization of the
ESOP’s EXOR logic from that of it’s AND/INV logic, and then
merges the two optimized parts back together. As such, our
method method consists of two main stages: (i) cube separation
and (ii) EXOR-tree construction.

A. Cube Separation
In this stage we extract the cubes from the EXOR operators

and optimize them separately. Recall that cubes are products
of literals. Given this, is natural to convert cubes to AIGs. We
can then use AIG optimization methods to optimize them to
take advantage of logic sharing between cubes.

Suppose that our ESOP expression E contains m cubes. Dur-
ing cube separation we create a new intermediate logic network
G′ = (VG′ , EG′ , IG′ , OG′ , FG′). As the ESOP expression has
m cubes, G′ has m outputs. Therefore, it computes a function
f : B|I| → Bm. The function computed by output i is specified
by the corresponding cube Ci. In other words, we now have a
established a one-to-one mapping C : cubes(E)→ POG′ .

After construction of G′, we decompose it into an AIG
network. We then use AIG rewriting techniques to further
optimize it. Note that, at this point we have captured the
AND/INV logic of E in terms of an optimized, multi-level
representation in primitive AND-2 gates. A more detailed
description is given in Algorithm 1.

B. EXOR-tree Construction
After finding an efficient representation of the AND/INV

portion of the ESOP expression we still need to incorporate the
EXOR logic. We do this by building, for each output of E, an
balanced EXOR-2 tree on top of the outputs of G′. Note that
we can do this because each output of G′ corresponds to one
of E’s cubes. Therefore, every output of original logic network
G can be computed simply by applying EXOR operators to
the outputs of G′.

By construction, we have | cubes(E)| = |POG′ |. In this
second stage we build, for each window output oi ∈ POG,
an auxiliary network Gi = (VGi

, EGi
, P IGi

, POGi
, Fi), such

that PIGi
= C(cubes(E, i)) ⊆ POG′ . Recall that C maps

cubes to their corresponding outputs in G′. In other words, the
inputs to EXOR tree Gi are exactly those outputs of G′ that
correspond to the cubes used to compute the i-th output of G.
Note that Fi is the the i-th projection of F .

Input : Logic network G and minimized ESOP expression
E

Output : Refactored logic network G′

Function refactor(G,E)
set nout← num po(G);
set outlists← new lists(nout);
set ncubes← num cubes(E);
set G′ ← new net();
foreach i ∈ {1, . . . , ncubes} do

set Ci ← get cube(E, i);
set POG′

i
← net add output(G′, Ci, i);

foreach j ∈ {1, . . . , nout} do
if (is output affected(Ci, j) then
list add(outlists[j], POG′

i
) ;

end
end
aig decompose(G′) ;
aig optimize(G′) ;
foreach i ∈ {1, . . . , nout} do

set Gi ← balanced exor decomp(outlists[i]);
net add output(G′, Gi, ncubes + i)

end
foreach i ∈ {1, . . . , ncubes} do

net del output(G′, i)
end

return G′;

Algorithm 1: Our multi-stage refactoring algorithm

In order to build these EXOR trees, we keep track of
which cubes of E belong to which outputs. This allows us to
incrementally build up the sets cubes(E, i) for each output.
As these cubes correspond to outputs of G′, we can build a
balanced EXOR tree by treating the outputs POG′ of G′ as the
leaves of the tree Gi. Such a tree can be computed recursively,
starting from the initial set cubes(E, i). By removing the cube
outputs from G′ and adding to it the EXOR tree outputs POGi

,
we obtain a network whose functionality is by construction
equivalent to that of G. This merged network has only primitive
AND/INV gates at the bottom and primitive EXOR gates at
the top. Implementation details can be found in Algorithm 1.

VII. EXPERIMENTS
Our first experiment attempts to validate the hypothesis

that ESOP minimization can unlock optimizations that are
inaccessible to SOP based refactoring. In our second experiment,
we integrate our algorithm into a commercial synthesis tool,
and evaluate its added value after physical synthesis.

A. SOP vs. ESOP Refactoring
In this experiment we contrast our ESOP optimization

algorithm with an analogous SOP optimization algorithm.
The SOP algorithm first performs SOP collapsing, then SOP
minimization, and finally refactors the network by decomposing
the SOPs into primitive AND-2/OR-2 gates.

Table I shows the a comparison between the two algorithms,
on a set of EXOR-heavy benchmarks. Looking at gate count
and logic levels, the results confirm our hypothesis. For EXOR-
heavy logic, our ESOP optimization method is able to discover
EXOR gates and effectively use them to refactor networks
more efficiently. This is especially in terms of logic levels. For
all benchmarks, our refactoring method reduces the number of
logic levels, as compared to the SOP based one. The reduction
is significant and ranges up to 83.3% for the parity benchmark
and 51.7% for the alu4 benchmark. On average, we reduce the
number of levels by 44.6%.

TABLE I. A COMPARISON OF SOP REFACTORING AND ESOP REFACTORING ON A SET OF EXOR-HEAVY BENCHMARKS.

SOP ESOP
Benchmark I/O Gates Terms Literals Levels Runtime (s) Gates Terms Literals Levels Runtime (s)

rd53 5/3 48 48 93 9 0.0 32 47 94 7 0.0
rd73 7/3 120 120 237 14 0.0 122 172 344 9 0.0
rd84 8/4 116 116 229 11 0.1 205 271 542 10 0.1
parity 16/1 46 46 91 31 6.0 15 30 60 5 0.0
9sym 9/1 194 194 387 14 0.0 222 271 542 11 0.1
sym10 10/1 308 308 615 22 0.1 395 436 872 12 0.1
misex3 14/14 3850 3850 7688 26 1.0 2854 4039 8078 14 25.1
alu4 14/8 1983 1983 3961 29 1.3 1386 1745 3490 14 3.4
f51m 8/8 116 116 225 12 0.0 99 145 289 8 0.0
b12 15/9 75 75 146 9 0.0 95 124 147 8 0.0

Average 685.6 685.6 1367.2 17.7 0.85 538.9 728 1445.8 9.8 2.88

TABLE II. POST PLACE&ROUTE RESULTS ON 46 INDUSTRIAL DESIGNS

Flow Area Leakage WNS TNS Runtime

Baseline 1 1 1 1 1
Proposed flow -1.08% -0.92% -0.15% +0.86% +3.93%

For 5 out of 10 benchmarks, our method is also to reduce the
number of gates. Again, this reduction can be quite significant,
ranging up to 67.4% for the parity benchmark, and 25.9% for
the misex3 benchmark. On average, our method reduces the
number of gates by 21.4%.

Finally, Table I shows that in terms of runtime our ESOP
based method is competitive with the SOP based one. The
only exception to this rule is the misex3 benchmark. Runtime
in this benchmark is dominated by the ESOP minimization
phase of our algorithm. Our ESOP minimization finds many
beneficial ExorLink operations. Hence, it performs many
iterations. Although it is easy to adapt our algorithm to trade-
off runtime for quality-of-results (e.g. by limiting the number
of iterations), in this experiment we are interested examining
the best results achievable by our method.

B. Integration & Industrial Benchmarks
For our second experiment test the added value of our

algorithm on set of 46 industrial benchmarks. We add our
algorithm as an optimization script to a commercial tool,
augmenting its existing set of deep logic optimization scripts.
We then use the commercial tool to perform its full synthesis
flow, which encompasses RTL optimization, logic synthesis,
and physical synthesis, including placement and routing. We
compare our results to a baseline run of the tool and find that
our method unlocks optimizations that are out of the tool’s
baseline optimizations. Table II sums up the results. It shows
that the logic optimizations found by our method carry over
in the optimization pipeline after place&route. Our method
improves area by 1.08%, leakage power by 0.98%, and worst
negative slack by 0.15%, at some runtime cost.

Note that, for an industrial logic optimization algorithm,
a 1% reduction in area after physical synthesis is generally
considered significant [18]. It shows that the gains achieved in
the logic optimization phase carry over, and that they are not
absorbed by existing logic- or physical optimization algorithms.

VIII. CONCLUSIONS
We present a logic refactoring algorithm based on the

two-level ESOP representation. Theoretical results predict the
compactness of ESOPs as compared to SOPs, for important
classes of functions. Our algorithm shows that we can use
this compactness to our advantage. For EXOR-heavy logic,
our algorithm unlocks optimization opportunities that are not
reached by similar approaches based on SOP refactoring. Our

algorithm dominates SOP collapsing in terms of logic levels
for each network in the tested benchmarks. It also significantly
decreases the average number of gates. We have integrated
our algorithm in a commercial synthesis tool. By testing the
augmented tool on a set of industrial benchmarks, we find that
the inclusion of our algorithm enables additional optimizations
in area, power, and slack, after physical synthesis.

REFERENCES
[1] T. Sasao, “EXMIN2: A Simplification Algorithm for Exclusive-OR-Sum-

of Products Expressions for Multiple-Valued-Input Two-Valued-Output
Functions,” IEEE TCAD, vol. 12, no. 5, pp. 621–632, 1993.

[2] M. A. Perkowski and M. Chrzanowska-Jeske, “An Exact Algorithm to
Minimize Mixed-Radix Exclusive Sums of Products for Incompletely
Specified Boolean Functions,” in Proc. ISCAS, 1990, pp. 1652–1655.

[3] T. Sasao, “An Exact Minimization of AND-EXOR Expressions Using
Reduced Covering Functions,” in Proc. SSMII, 1993, pp. 374–383.

[4] A. Gaidukov, “Algorithm to derive minimum ESOP for 6-variable
function,” in 5th IWBP, 2006.

[5] M. Helliwell and M. A. Perkowski, “A Fast Algorithm to Minimize
Multi-Output Mixed-Polarity Generalized Reed-Muller Forms,” in Proc.
IEEE ISCS, pp. 17–20.

[6] M. A. Perkowski, M. Helliwell, and P. Wu, “Minimization of Multiple-
valued Input Multi-Output Mixed- Radix Exclusive Sums of Products
for Incompletely Specified Boolean Functions,” in Proc. ISMVL, May
1989, pp. 256–263.

[7] T. Sasao, “Exmin: A simplification algorithm for exclusive-or-sum-
of-products expressions for multiple-valued input two-valued output
functions,” in Proc. ISMVL, 1990, pp. 128–135.

[8] N. Song and M. A. Perkowski, “EXORCISM-MV-2 : Minimization
of Exclusive Sum of Products Expressions for Multiple-valued Input
incompletely Specified Functions,” in Proc. ISMVL, 1993, pp. 132–137.

[9] ——, “Minimization of Exclusive Sum of Products Expressions for
Multiple-Valued Input,” IEEE TCAD, vol. 15, no. 4, pp. 385–395, 1996.

[10] A. Mishchenko and M. A. Perkowski, “Fast heuristic minimization of
exclusive-sums-of-products,” in Proc. RM Workshop, 2001, pp. 242–250.

[11] T. Sasao, Logic Synthesis and Optimization, 1st ed. Kluwer Academic
Publishers, 1993.

[12] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[13] F. Luccio and L. Pagli, “On a New Boolean Function with Applications,”
IEEE Transactions on Computers, vol. 48, no. 3, pp. 296–310, 1999.

[14] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa, “Logic Minimiza-
tion and Testability of 2SPP Networks,” IEEE TCAD, vol. 27, no. 7, pp.
1190–1202, 2008.

[15] V. Ciriani, “Synthesis of SPP Three-Level Logic Networks Using Affine
Spaces,” vol. 22, no. 10, pp. 1310–1323, 2003.

[16] B. Steinbach and C. Posthoff, “Compact XOR Bi-Decomposition for
Generalized Lattices of Boolean Functions,” in Proc. RMW, 2017.

[17] R. Drechsler, “Pseudo-Kronecker Expressions for Symmetric Functions,”
IEEE TCAD, vol. 48, no. 9, pp. 987–990, 1999.

[18] L. Amarù, P. Vuillod, J. Luo, and J. Olson, “Logic Optimization and
Synthesis: Trends and Directions in Industry,” in DATE, 2017.

