
Programming Quantum Computers
Using Design Automation

(Executive Session Paper)

Mathias Soeken1 Thomas Haener2 Martin Roetteler3
1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

2Institute for Theoretical Physics, ETH Zurich, Switzerland
3Station Q, QuArC, Microsoft Research, Redmond, WA, USA

Abstract—Recent developments in quantum hardware indicate
that systems featuring more than 50 physical qubits are within
reach. At this scale, classical simulation will no longer be
feasible and there is a possibility that such quantum devices may
outperform even classical supercomputers at certain tasks. With
the rapid growth of qubit numbers and coherence times comes the
increasingly difficult challenge of quantum program compilation.
This entails the translation of a high-level description of a
quantum algorithm to hardware-specific low-level operations
which can be carried out by the quantum device. Some parts
of the calculation may still be performed manually due to the
lack of efficient methods. This, in turn, may lead to a design gap,
which will prevent the programming of a quantum computer. In
this paper, we discuss the challenges in fully-automatic quantum
compilation. We motivate directions for future research to tackle
these challenges. Yet, with the algorithms and approaches that
exist today, we demonstrate how to automatically perform the
quantum programming flow from algorithm to a physical quan-
tum computer for a simple algorithmic benchmark, namely the
hidden shift problem. We present and use two tool flows which
invoke RevKit. One which is based on ProjectQ and which targets
the IBM Quantum Experience or a local simulator, and one which
is based on Microsoft’s quantum programming language Q#.

I. INTRODUCTION

With the rapid development of quantum hardware, quantum
computers will soon reach sizes—measured in the numbers
of qubits on which they operate—which allow them to solve
problems that are out of reach for any of the best classical
supercomputers. Quantum computers get this computational
advantage over classical computers from the principles of
superposition of states and interference of computational
paths. Arguably the most simple case in which superposition
manifests itself is a single qubit which can be in any (nor-
malized) linear combination of two basis states. In contrast, a
bit in conventional computers is always in a single state. By
linearly increasing the number of qubits, superposition allows
quantum computers to exponentially increase their computa-
tional space, while still being able to execute operations on
this exponentially large space at low cost (in concrete terms
this means that, everything else being equal, e.g., a 17-qubit
quantum computer is twice as powerful as a 16-qubit quan-
tum computer). While classical probabilistic computation also
allows to access an exponentially large space with only linear
resources, a quantum computer can leverage the principle of
interference which allows to amplify or reduce the probability
of computational paths. When designed properly, a quantum
algorithm can combine the power to explore exponentially

many computational paths at low cost with the ability to
cancel out useless paths in such a way that a measurement
of the remaining paths reveals the answer to an interesting
computational problem.

Several quantum algorithms that are computationally supe-
rior to their classical counterparts have already been found.
The most prominent one arguably is Shor’s algorithm [1]
that allows to factorize integers in polynomial time, whereas
for classical computing nothing better than a sub-exponential
upper bound is known [2]. Consequently, Shor’s algorithm
can break public-key cryptography which is based on the
assumption that integer factorization is a hard task. Recently,
precise cost estimates to implement Shor’s algorithm for
factoring [3] and elliptic curve dlog [4] were obtained, based
on implementing and testing large-scale Toffoli networks.

In addition to Shor’s algorithm, there are other quantum
algorithms which play a role in scientific applications of
interest. Examples include:
• Grover’s search algorithm [5], which enables quadrati-

cally faster search in unstructured databases if the correct
element can be recognized efficiently by a predicate (e.g.,
NP-complete problems). This has implications for the
choice of security parameters in a post-quantum crypto-
graphic world. Perhaps surprisingly, it turns out that the
overhead due to implementing the defining predicate in
a reversible way can be quite substantial [6].

• The HHL algorithm [7], which offers an exponential
speedup for solving linear equations. Finding practical
use cases of the HHL algorithm remains a challenge and
the few real-world applications that have been identified
so far [8], [9] require large overheads due to implementa-
tion of the classical subroutines that define the problem.

• Quantum simulation [10] (see, e.g., [11], [12] for
overviews and pointers to the literature) to model atomic-
scale interactions efficiently [13], [14] allowing to ap-
proximate behavior in drugs, organics, and materials
science [15], [16], and has applications for simulating
quantum field theories [17].

In order to execute a quantum algorithm on a physical
quantum computer, the algorithm must be expressed in terms
of elementary quantum operations that can be understood
by a quantum computer—very much like classical computer
programs need to be expressed in terms of low-level machine
instructions to run on a classical computer. Quantum compilers

are software programs that take a high-level description of
a quantum algorithm and map them into so-called quantum
circuits. Quantum circuits are not a physical entity, but an
abstraction of the physical operations that can be performed
to qubits of the physical system [18]. They are represented in
terms of sequences of low-level quantum operations. Quantum
circuits can be considered the “assembly code” of a quantum
computer, in which qubits play the role of registers. The goal
of quantum compilers is to find a quantum circuit that meets
the number of available qubits and minimizes the number
of quantum operations. A challenge for quatum compilers is
to map combinational non-quantum operations into quantum
circuits, while not exceeding the resource constraints due to
the limited number of qubits. This is a difficult problem, and
no satisfiable and sufficient solution is provided by today’s
state-of-the-art quantum compilers.

Quantum computing has made a big leap this year, as
research on physical devices is moving from the academic
environment into several companies [19]. Microsoft, Google,
IBM, Intel, Alibaba, as well as the rapidly growing startup
companies IonQ and Rigetti, are investing into building the
first scalable quantum computer. As of today, the largest
publicly available fully-programmable quantum computers1

are by IBM which features 17 qubits [20] and by Rigetti
which features 19 qubits [21]. Recently, Intel announced a
quantum computer with 17 qubits [22] and IBM quantum
computers with up to 50 qubits [23]. These sizes are not yet
practical, since it has been shown that supercomputers are able
to simulate low-depth quantum circuits with up to 56 qubits
classically [24], and full state vector simulation is possible for
up to 45 qubits [25]. The rapid progress in quantum computing
and quantum simulation underlines the importance of having
reliable and robust quantum programming toolchains.

II. QUANTUM PROGRAMMING LANGUAGES

Several quantum programming languages were proposed in
recent years, ranging from imperative to functional and low-
level to high-level [26]. Languages such as Quipper [27], Scaf-
fCC/Scaffold [28], [29], LIQUi|〉 [30], QWire [31], Quil [32],
Q# [33] and ProjectQ [34] enable programming of quantum
computers. Quipper is a strongly-typed, functional quantum
programming language embedded in Haskell; Scaffold is a
stand-alone C-like programming language and its compiler
ScaffCC leverages the LLVM framework; QWire is embedded
in the proof system Coq; LIQUi|〉 is embedded in F#; Q# is
a stand-alone F#-like language, and ProjectQ and Quil are
embedded in Python.

All mentioned languages offer extensible frameworks for
quantum circuit description and manipulation, and some of
them offer gate decomposition and circuit optimization meth-
ods, some classical control flow, and exporting of quantum
circuits for rendering or resource costing purposes.

Theoretically, it would be sufficient if a programming
language for quantum computing supported the gate set of
the target hardware. The similarity between such an approach

1in contrast to special-purpose quantum computers such as the D-Wave
quantum annealer

and classical assembly language brought into existence quan-
tum assembly languages such as QASM [35] and OPEN-
QASM [36]. While sufficient for today’s quantum hardware
which is able to perform a few gate operations on less than
20 qubits, programming in such a language is neither scalable
nor particularly user-friendly. Rather, a quantum programming
language should provide high-level abstractions in order to
shorten development times and to enable portability across a
wide range of quantum hardware backends, similar to today’s
compilers for classical high-level languages such as C++.

In addition to purely classical and purely quantum sub-
routines, typical quantum algorithms also require classical
functions to be evaluated on a superposition of inputs, e.g., the
modular exponentiation in Shor’s algorithm for factoring [1].
Therefore, such “mixed” constructs must also be supported
by the language and the compiler must be able to translate
these constructs to instructions which can be executed by the
quantum hardware.

III. QUANTUM COMPUTING BASICS

This section introduces the necessary background on quan-
tum algorithms and quantum circuits. This introduction is kept
brief on purpose and focuses on the most important notations
and definitions that are necessary in the course of this paper.
For a more detailed overview on the matter, we refer the reader
to the standard literature [37].

A quantum algorithm is implemented in terms of a quan-
tum program, which is a sequence of high-level quantum
operations that are performed on a set of qubits. A qubit
state is modeled as a column vector |ϕ〉 = (α0

α1
) with two

complex-valued elements α0 and α1, called amplitudes, such
that |α0|2 + |α1|2 = 1. The values |α0|2 and |α1|2 are the
probabilities of whether the qubit state will be 0 or 1 after
measuring it, respectively. The classical states for a logic 0
and logic 1 are |0〉 = (1

0) and |1〉 = (0
1), respectively. Hence,

we may also write the state of a qubit as |ϕ〉 = α0|0〉+α1|1〉.
The notation |·〉 is called Dirac or bra-ket notation and
typical for denoting quantum states. A state in which the
measurement outcome has an equal probability of being 0 or
1 is for example 1√

2
(1
1), which is abbreviated as |+〉, since it

occurs very frequently in the design of quantum algorithms.
A different state with the same measurement probabilities is
|−〉 = 1√

2

(
1
−1
)
. Although the measurement probability is the

same, the quantum state is not, which is one reason that makes
quantum computing significantly different from probabilistic
computing.

Qubit registers refer to quantum states involving multiple
qubits. As an example, a 2-qubit register is represented by

the state
(
α00
α01
α10
α11

)
= α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉,

which has four amplitudes, one for each classical state |00〉,
|01〉, |10〉, and |11〉. In general, an n-qubit register is a column
vector |ϕ〉 =

∑
b∈Bn αb|b〉 with 2n amplitudes. This reflects

the exponential power of qubits.
Quantum operations are modeled in terms of unitary matri-

ces, called quantum gates. A matrix U is unitary if UU† =
U†U = I , where U† refers to the conjugate transpose of U
(also referred to as the Hermitian or adjoint of U), and I

|0〉
|0〉

H |Ψ〉

(a)

|ϕ1〉
|ϕ2〉
|ϕ3〉
|ϕ4〉

R1

R2 U1

R3

R4

U2

(b)

Fig. 1: Some basic examples for quantum circuits. Circuits are
read from left to right. Shown in (a) is a simple quantum circuit
that entangles two qubits. The circuit consists of a Hadamard
gate H and a controlled NOT gate and which creates upon
input |0〉|0〉 the resulting output state |Ψ〉 = 1√

2
(|00〉+ |11〉).

Shown in (b) is an example for a larger quantum circuit
consisting of local rotations R1, . . . , R4 acting on single
qubits, larger unitary gates U1, U2 acting on several qubits,
and two measurement operations applied to the top two qubits.

is the identity matrix. A unitary matrix is length-preserving
and therefore maps one qubit state into another qubit state.
A quantum operation that acts on a single qubit is a 2 × 2
unitary matrix, and a quantum operation that acts on an n-
qubit register is a 2n × 2n unitary matrix. An example for a
single qubit operation is the so-called Hadamard operation
H = 1√

2

(
1 1
1 −1

)
. This operation can be used to create

a superposition of the two basis states |0〉 and |1〉, since
H|0〉 = 1√

2
(|0〉 + |1〉). The CNOT operation is a 2-qubit

quantum operation that maps |ϕ1〉|ϕ2〉 7→ |ϕ1〉|ϕ1 ⊕ ϕ2〉,
where ‘⊕’ is the exclusive-OR operation. The CNOT operation
inverts the target qubit |ϕ2〉 if the control qubit |ϕ1〉 is 1.

It can be represented as the unitary matrix
(

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
. The

unitary matrix of the CNOT operation is a permutation matrix.
A quantum operation whose unitary matrix is a permutation
matrix is called a classical operation. This also means that all
classical operations must be reversible, since otherwise they
cannot be represented in terms of a permutation matrix.

A quantum algorithm describes the interaction of quantum
operations with qubits. Researchers use quantum circuits as
an abstraction to illustrate these interactions. Fig. 1(a) shows
an abstract representation of such a quantum circuit. The
horizontal lines represent qubits, the boxes represent quantum
operations that interact with the qubits, and time moves from
left to right. Consequently, the vertical direction corresponds
to space (i.e., number of qubits) and the horizontal direction
to time (i.e., number of quantum operations). There are three
types of operations: (i) quantum operations (R1, . . . , R4 in the
figure), (ii) classical operations (U1 and U2 in the figure), and
(iii) measurements which are illustrated by a meter. Classical
operations perform classical computations, such as arithmetic
operations—but acting on qubits rather than bits. A quantum
circuit can be seen as a way to represent a large unitary
matrix composed of smaller ones. The absence of a gate in
a circuit corresponds to the identity matrix. Fig. 1(b) shows
a simple quantum algorithm consisting of a Hadamard gate
followed by a CNOT operation. The CNOT operation has a

Quantum algorithm

Quantum programming language
(e.g., Q#, ProjectQ)

Quantum compilation
(e.g., RevKit, libraries, optimization)

Target platform
(e.g., quantum computer, quantum simulator)

implement in

translate using

map into

Fig. 2: The high-level design flow for mapping quantum
algorithms to quantum computers.

special notation with a solid circle for the control qubit and
an ‘⊕’ symbol for the target qubit. This quantum algorithm
takes as input two qubits initialized in state |0〉 and creates
the 2-qubit state 1√

2
(|00〉+ |11〉). This state is entangled,

i.e., by measuring one qubit the outcome of the second is
immediately determined. This also means that the explicit
state of one of the qubits cannot be described individually.
Sequential composition of two gates in a quantum circuit
corresponds to matrix multiplication and parallel composition
of gates corresponds to taking the Kronecker product, denoted
‘⊗’. The unitary matrix represented by the quantum circuit in
Fig. 1(b) is CNOT(H ⊗ I).

Note that today’s quantum algorithms rely on a variety of
different combinational calculations. Factoring needs constant
modular arithmetic [1], computing elliptic curve discrete log-
arithms using a quantum algorithm requires generic modular
arithmetic [4], the HHL algorithm needs reciprocals and New-
ton type methods [7], amplitude amplification algorithms need
implementations for search and collision [5], and quantum
simulation algorithms need addressing and indexing functions
for sparse matrices as well as computing Hamiltonian terms
on the fly [11].

IV. QUANTUM DESIGN AUTOMATION: GENERAL FLOW

Fig. 2 abstractly illustrates the overall programming flow for
quantum computers. The capabilities of the targeted quantum
computer are taken into account when developing the quantum
algorithm. A quantum algorithm consists of quantum parts and
classical combinational operations. The quantum algorithm
must be translated into a quantum circuit. While automatic
and satisfactory solutions exist for translating the quantum
parts, no sufficient solution exists for automatically translating
the combinational operations. In fact, the current quantum
programming flow depends on predefined library components
for which manually derived quantum circuits exist. Such a
manual flow is time-consuming, not flexible, and not scalable.

Rather, one would like to express the quantum program at a
high level of abstraction and have a compiler which is able to
automatically translate the entire circuit, even if no manually

optimized libraries are available. It is thus crucial that the
quantum programming language used to express the quantum
program supports such a design flow.

V. COMPILING BOOLEAN FUNCTIONS

The translation of classical combinational operations into
quantum circuits involves reversible logic synthesis [39]. Due
to the physical properties of quantum states, all operations
need to be performed in a reversible manner. State-of-the-
art approaches first create a reversible logic circuit with
reversible gates, which are Boolean abstractions of classical
reversible operations. Other methods translate reversible gates
into quantum circuits [40], [41], [42]. Many approaches for
reversible logic synthesis have been proposed in the last 15
years (e.g., [43], [44], [45], [46]).

It is customary to distinguish reversible synthesis algorithms
based on whether the Boolean function that is input to the
algorithm is already a reversible function or not. For a re-
versible Boolean function f : Bn → Bn, reversible synthesis
algorithms find an n qubit quantum circuit that realizes the
unitary

U : |x〉 7→ |f(x)〉. (1)

Several algorithms have been proposed for this task. They
differ depending on f ’s representation. Most of the early
algorithms expect f to be represented as a truth table (see,
e.g., [43], [47], [48], [49], [50]). The explicit truth table
representation limits the application to large functions, i.e.,
n > 20. Alternative implementations have been proposed
that work on symbolic representations of f , e.g., as binary
decision diagrams (BDDs) [46], [51] or Boolean satisfiability
problems [52]. These approaches are able to find quatum
circuits also for some Boolean functions that are much larger.
However, the symbolic function representation does not always
guarantee a compact function representation. Nonetheless, the
main drawback of such reversible functions algorithms is that
they require a reversible input function, which is rarely the
case in most algorithms of interest.

The second class of reversible synthesis algorithms con-
siders irreversible functions f : Bn → Bm as input. Since
a quantum circuit can not represent irreversible functions, f
must be embedded into a reversible function. This may be
done either explicitly or implicitly. In the explicit case one
finds a reversible function g : Br → Br such that

g(x1, . . . , xn, 0, . . . , 0) = (y1, . . . , ym, ym+1, . . . , yr), (2)

if f(x1, . . . , xn) = (y1, . . . , ym). Finding g such that r is
minimum is coNP-hard [53] and does therefore not scale
to larger functions, although symbolic methods can help to
slightly increase the range of applicable functions [53], [54].
An embedding as in (2) is referred to as in-place embedding,
since the input values are not restored after the application of
g. As an example, explicit embedding with symbolic reversible
logic synthesis was applied to find in-place reversible circuits
for the reciprocal function 1/x up to n = m = 16 digits in x
and r = 31 (see [55]).

One can easily show that there exists a reversible function
g with r = m+ n, by chosing

g(x, y) = (x, y ⊕ f(x)) (3)

where x = x1, . . . , xn, y = y1, . . . , ym, and ‘⊕’ refers to
the bitwise application of the XOR operation in this case.
Such an embedding is also referred to as Bennett embedding.
So-called ESOP (exclusive sum-of-products) based reversible
synthesis approaches [56], [57], [58] find reversible circuits
that realize (3). In order to apply ESOP-based synthesis
one must find 2-level ESOP expressions for each of the m
outputs in f (see, e.g., [59], [60]). This approach can be time
consuming and limits the application to large functions. In [55]
ESOP-based synthesis was successfully applied up to n = 25
for the reciprocal function.

Scalable reversible synthesis algorithms require additional
helper qubits, called ancillae. Given an irreversible Boolean
function f : Bn → Bm, they find an (n + m + k) qubit
quantum circuit that realizes the unitary

U : |x〉|y〉|0k〉 7→ |x〉|y ⊕ f(x)〉|0k〉. (4)

If k = 0, the synthesis problem corresponds to ESOP-based
synthesis, but for k > 0, the synthesis algorithm can use
the k additional qubits to store intermediate computations.
The most effective methods use multi-level logic network
representations such as BDDs [45], [61], [62], And-inverter
graphs [63], [64], XOR-majority graphs [55], or LUT net-
works [65]. These methods are referred to as hierarchical
reversible logic synthesis. Intermediate results represented
by internal nodes in the corresponding logic networks are
mapped on the additional qubits. If the network has many
internal nodes, many ancillae are required, however, pebbling
strategies [66] may be employed to trade off the number
of qubits for quantum operations [67]. One of the biggest
problems in hierarchical reversible logic synthesis is the fact
that k is a result of the synthesis algorithm, i.e., it is determined
by the algorithm’s requirements for temporary storage. One
of the largest challenges in reversible logic synthesis is to
find reversible synthesis algorithms that take k as an input
parameter and guarantee to return a quantum circuit that
satisfies the space requirements.

VI. ILLUSTRATIVE EXAMPLE

In this and the following sections, we use the example of
the hidden shift problem for Boolean functions to illustrate
the complete flow of programming a quantum computer.
For this purpose, we leverage the quantum programming
languages ProjectQ [34] and Q# [33] interfaced with the
quantum compilation framework RevKit [68]. ProjectQ and
Q# allow for a high-level description of the algorithm using
several meta-constructs, and enables interfacing a physical
quantum computer. RevKit is used to automatically translate
the combinational parts in the quantum algorithm for the
hidden shift problem into quantum gates.

ProjectQ is an open source software framework for quantum
computing with a modular compiler design which allows
domain experts to easily extend its functionality. Further-
more, this modularity enables portability of quantum algorithm

implementations. Specifically, once an algorithm has been
implemented, it can be run using various types of backends,
be it software (simulator, emulator, resource counter, etc.) or
hardware (classical and/or quantum).

Q# [33] is a scalable, multi-paradigm, domain-specific pro-
gramming language for quantum computing by Microsoft. The
Q# framework allows describe how instructions are executed
on quantum machines. The machines that can be targeted
include many different levels of abstraction, ranging from
various simulators to actual quantum hardware. Q# is multi-
paradigm in that it supports functional and imperative pro-
gramming styles. Q# is scalable in that it allows to write pro-
grams to target machines of various sizes, ranging from small
machines with only a few hundred qubits to large machines
with millions of qubits. Finally, being a bona-fide stand-alone
language, Q# allows a programmer to code complex quantum
algorithms, offers rich and informative error reporting, and
allows to perform various tasks such as debugging, profiling,
resource estimation, and certain special-purpose simulations.

RevKit is an open source C++ framework and library that
implements a large set of reversible synthesis, optimization,
and mapping algorithms. By default, RevKit is executed as
a command-based shell application, which allows to perform
synthesis scripts by combining a variety of different com-
mands. As an example, the command sequence

revgen --hwb 4; tbs; revsimp; rptm; tpar; ps -c (5)

generates a reversible function describing the 4-input re-
versible hidden-weighted bit function, synthesizes it into a
reversible circuit using transformation-based synthesis [43],
performs simplification of the resulting circuit, maps it into
Clifford+T gates using the mapping described in [42], opti-
mizes the T count using the T-par algorithm presented in [69],
and finally prints statistics about the final quantum circuit. All
RevKit commands provided by the shell can also be accessed
via a Python interface, e.g., ‘revkit.revgen(hwb = 4)’
for the first command in (5). Using the Python interface,
RevKit can be executed from within ProjectQ using the
projectq.libs.revkit module.

A. Quantum algorithm: the Boolean hidden shift problem
For the illustrative example, we review the hidden shift

problem for Boolean functions [70]. In general, the hidden
shift problem is a quite natural source of problems for which
a quantum computer might have an advantage over a classical
computer as it exploits the property that fast convolutions can
be performed by computing Fourier transforms and pointwise
multiplication. See [71] for general background on hidden
shifts and related problems and [70] for the case of hidden
shifts over Boolean functions. Recently, the hidden shift
problem for bent functions was also studied in [72] from the
point of view of classical simulation of the resulting quantum
circuits. The problem of computing hidden shifts for Boolean
functions is the following:

Definition 1 (Hidden shift problem): Let n ≥ 1 and let f, g :
Bn → B be two Boolean functions such that the following
conditions hold: (i) f , and g are bent functions, and (ii) there
exist s ∈ Bn such that g(x) = f(x + s) for all x ∈ Bn.

|0〉⊗n

1

H⊗n

2

Ug

3

H⊗n

4

Uf̃
5

H⊗n

6

|s〉

Fig. 3: Quantum algorithm for the hidden shift problem for a
bent functions f . The quantum circuit assumes access to the
shifted function g(x) = f(x + s) which is implemented by
the diagonal unitary operator Ug =

∑
x(−1)g(x)|x〉〈x|. Also,

the algorithm needs access to the dual bent function f̃ , which
again is computed into the phase via a diagonal unitary.

Moreover, let oracle access for g and the dual bent function
f̃ be given. The task is then to find the hidden shift s.

Bent functions are Boolean functions which have a perfectly
flat Fourier (i.e., Hadamard) spectrum, which in a sense makes
them resemble random noise. It is easy to see that bent
functions can only exist if the number of variables n is
even. What makes the hidden shift problem for bent functions
attractive is that it can be shown that classical algorithms
cannot find the shift efficiently, whereas quantum algorithms
can find the shift with only 1 query to g and 1 query to f̃ .
Moreover, the quantum algorithm to find hidden shifts is very
simple as shown in Fig. 3: the gates needed are Hadamard
gates, diagonal unitaries to implement the shifted function and
the dual bent function, and measurements in the computational
basis. An attractive feature of the algorithm is that—assuming
perfect gates—the answer is deterministic, i.e., the measured
bit pattern directly corresponds to the hidden shift. We assign
each operation in the quantum algorithm an index from 1 to
6, written below each gate.

B. Maiorana-McFarland bent functions

Arguably, the most simple example for a bent function is
the inner product f(x, y) = xyt =

∑n
i=1 xiyi of two bit-

vectors x = x1, . . . , xn and y = y1, . . . , yn. Note that this is
a Boolean function f : B2n → B on an even number 2n of
variables. The function can be generalized to

f(x, y) = xπ(y)t + h(y) (6)

for an arbitrary permutation π ∈ S2n on all 2n boolean
bitvectors of length n and an arbitrary Boolean function
h : Bn → B. This leads to the class of so-called
Maiorana-McFarland bent functions2. The dual bent function
is f̃(x, y) = π−1(x)yt + h(π−1(x)) [70]. Asymptotically,
the size of this class scales as O(2cn2

n

) which is doubly
exponential in n, however, which is just an exponentially small
fraction of the set of all Boolean functions on 2n variables.
A simple counting argument shows that most permutation π
do not have an efficient circuit, however, there exist natural
families of Maiorana-McFarland bent function for which the
permutation π as well as the Boolean function h can be
implemented efficiently.

The same basic circuit as shown in Fig. 3 can be used
to solve the hidden shift problem for Maiorana-McFarland

2Named after mathematicians James A. Maiorana (1946–2014) and Robert
L. McFarland who were the first to study these functions about 50 years ago.

1 from projectq.cengines import MainEngine
2 from projectq.ops import All, H, X, Measure
3 from projectq.meta import Compute, Uncompute
4 from projectq.libs.revkit import PhaseOracle
5

6 # phase function
7 def f(a, b, c, d):
8 return (a and b) ^ (c and d)
9

10 eng = MainEngine()
11 x1, x2, x3, x4 = qubits =

eng.allocate_qureg(4)
12

13 # circuit
14 with Compute(eng):
15 All(H) | qubits
16 X | x1
17 PhaseOracle(f) | qubits
18 Uncompute(eng)
19

20 PhaseOracle(f) | qubits
21 All(H) | qubits
22 Measure | qubits
23

24 eng.flush()
25

26 # measurement result
27 print("Shift is {}".format(8 * int(x4) + 4 *

int(x3) + 2 * int(x2) + int(x1)))

Fig. 4: ProjectQ python code for an instance of the hidden shift
problem where f(x) = x1x2 ⊕ x3x4 and g(x) = f(x+ 1).

bent functions. Note however, that in contrast to the case of
the inner product function for which f̃ = f holds, for the
more general case where π is not the identity permutation, the
diagonal unitary Uf =

∑
x(−1)f(x)|x〉〈x| implementing the

bent function f and the shift g is different from the diagonal
unitary Uf̃ =

∑
x(−1)f̃(x)|x〉〈x| implementing the dual bent

function. For the Maiorana-McFarland family specifically, the
difference in implementing f and f̃ is to use the inverse
permutation π−1 instead of π and to apply it to the x-variables
instead of the y variables and similarly the role of x and y
has to be changed in the evaluation of h.

VII. INTEROP WITH PROJECTQ AND SIMULATOR / IBM
BACKEND

In this section, we show how to program a concrete instance
of the hidden shift problem using ProjectQ and RevKit. We
choose f(x) = x1x2 ⊕ x3x4 as a Boolean function on 4
variables, and g(x) = f(x + 1), i.e., s = 1. It can be shown
that f = f̃ .

Fig. 4 shows the ProjectQ Python code for this example.
The corresponding quantum circuit that is generated by the
code is shown in Fig. 5. Lines 10–11 initialize a ProjectQ
engine with 4 qubits, named x1, x2, x3, and x4, and
stored in a list qubits. Line 15 performs step 1 of the
quantum algorithm described in Fig. 3. Line 16 describes
the shift by s = 1, implemented using an X operation on
the least-significant qubit x1. Together with the phase circuit
computed for f in line 17, it computes step 2 in the quantum
algorithm. As input to the PhaseOracle statement we can
provide a predicate f implemented as Python function. The
PhaseOracle statement converts the Python code in f into a

|x1〉
|x2〉
|x3〉
|x4〉

15

H

H

H

1

H

16

X

17

X H

H

H

3

H

20

4

21

H

H

H

5

H

22

6

|1〉
|0〉
|0〉
|0〉

2

18

Fig. 5: Quantum circuit that is implemented by the Python
code in Fig. 4; indexes below the gates correspond to the steps
in Fig. 3, indexes above the gates correspond to the lines in
Fig. 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

Pr
ob

ab
ili

ty

Measurement outcome

IBM QE chip

Fig. 6: Histogram depicting the average and standard deviation
of the outcome probabilities of three runs of the code in Fig. 4.
Each run consists of 1024 executions of the circuit on the IBM
Quantum Experience chip. The correct shift s = 1 was found
with average probability p ≈ 0.63.

Boolean expression. This expression is then passed to RevKit,
which automatically compiles the expression into a circuit
computing the function described by f into the global phase of
the circuit. The Uncompute statement in line 18 uncomputes
all operations that were specified in the Compute block in
lines 14–16, by applying all operations in inverse order. This
will also add step 3 of the algorithm to the quantum circuit.
Since f̃ = f , we again compute the phase circuit for f
in line 20, apply Hadamard gates to each qubit for step 5
of the algorithm, and finally measure all qubits in line 22.
The resulting state of the qubits, computed using simulation,
corresponds to the shift s = 1. The program outputs ‘Shift
is 1.’ By changing two lines of code in 4, the backend can
be changed to the IBM Quantum Experience chip. Doing so
and running three times 1024 shots of the circuit yielded the
results depicted in Fig. 6.

Fig. 7 shows a Python code that implements an instance
of the hidden shift problem for a Maiorana-McFarland bent
function where n = 3, π = [0, 2, 3, 5, 7, 1, 4, 6], and h = 0.
Fig. 8 shows the corresponding circuit. The program is similar

1 from projectq.cengines import MainEngine
2 from projectq.ops import All, H, X, Measure
3 from projectq.meta import Compute, Uncompute,

Dagger
4 from projectq.libs.revkit import PhaseOracle,

PermutationOracle
5 import revkit
6

7 # phase function
8 def f(a, b, c, d, e, f):
9 return (a and b) ^ (c and d) ^ (e and f)

10

11 # permutation
12 pi = [0, 2, 3, 5, 7, 1, 4, 6]
13

14 eng = MainEngine()
15 qubits = eng.allocate_qureg(6)
16 x = qubits[::2] # qubits on odd lines
17 y = qubits[1::2] # qubits on even lines
18

19 # circuit
20 with Compute(eng):
21 All(H) | qubits
22 All(X) | [x[0], x[1]]
23 PermutationOracle(pi) | y
24 PhaseOracle(f) | qubits
25 Uncompute(eng)
26

27 with Compute(eng):
28 with Dagger(eng):
29 PermutationOracle(pi, synth=revkit.dbs) | x
30 PhaseOracle(f) | qubits
31 Uncompute(eng)
32

33 All(H) | qubits
34 Measure | qubits
35

36 eng.flush()
37

38 # measurement result
39 print("Shift is {}".format(sum(int(q) << i for

i, q in enumerate(qubits))))

Fig. 7: ProjectQ python code for an instance of the hidden shift
problem where f(x, y) = xπ(y)t, π = [0, 2, 3, 5, 7, 1, 4, 6],
and s = 5.

to the program in Fig. 4. We create 6 qubits and partition
them into three qubits x for x1, x2, x3 and three qubits
y for y1, y2, y3. The inner product is realized by the bent
function specified by the Python function f. We use the
function PermutationOracle to create a quantum circuit
from a permutation, which is then applied to the qubits in
x. The function PermutationOracle calls RevKit using
transformation-based synthesis [43] followed by a mapping
of Toffoli gates into Clifford+T gates using the algorithm
presented in [42]. For the second part of the circuit, we need
a quantum circuit for the inverse permutation π−1. Instead of
inverting π, we compute another quantum circuit for π and
invert the circuit using the Dagger statement. Note that for
this compilation we chose decomposition-based synthesis [47]
for finding a Toffoli network for the permutation. Since each
permutation is uncomputed after the phase circuit for the inner
product, the final circuit consists of four subcircuits realizing
either π or its inverse. These are emphasized using dashed
boxes in Fig. 8.

VIII. INTEROP WITH Q# AND SIMULATOR BACKEND

In the following we describe a programming flow that
implements the same high-level algorithm, i.e., an instance of
the hidden shift problem for Maiorana-McFarland functions,
but implements it in Q#. While at a high level, the interop
between RevKit and Q# happens as described in Fig. 2, the
actual invocation of RevKit in the design flow is slightly
different from the RevKit/ProjectQ interop in that RevKit is
used as a pre-processor to produce the code for the permutation
oracle as Q# native code. Subsequently, the Q# compiler is
then invoked to compile the algorithm and to target a simulator
backend that is part of the Microsoft Quantum Development
Kit (QDK).

The code for the hidden shift problem shown in Fig. 9 is
structurally quite similar to familiar languages such as C# and
Java in its use of semicolons to end statements, curly brackets
to group statements, and double-slash to introduce comments.
Q# also uses namespaces to group definitions together, and
allows references to elements from other namespaces.

The Q# code begins with a namespace statement (line 1)
which declares the symbols and makes then available for other
projects. The mechanism to include other namespaces is via
the open keyword. This is used here in line 3 to include the
basic gates such as the Hadamard gate H and in line 5 to
include the “canon” which is a large library of useful oper-
ations, functions, and combinators. For the current example
we use operations ApplyToEach and MResetZ from the
canon. The implementation of the permutation oracle itself is
provided in another namespace which is included in line 7.
The basic unit in Q# to model side effects on quantum data is
an operation such as the operation HiddenShift declared in
line 9. Besides operations, Q# also supports functions which
allow to modify state that is purely classical. Note that the
definition of an operation or a function must begin with a
declaration of the type signature of the function, including its
input and output types. This is done in lines 10–14 of the
present example.

Operations and functions are first-class citizens in Q#, i.e.,
they can be passed as arguments. In the present case, Ustar
is an operation that implements the diagonal operator Uf̃ as
defined earlier. If an operation changes the state of a quantum
register (modeled here as Qubit[] array), then its type is
Qubit[] => (), where () denotes the unit type. Opera-
tions are the only way the state of an abstract quantum machine
model can be manipulated. Q# can be used to target many
abstract quantum machine models, including future physical
implementations of scalable quantum computers. Currently,
the main target of Q# is a state-of-the-art simulator that can
easily handle up to 30 qubits on a standard computer and
over 40 qubits on a distributed computer using an MPI-based
implementation.

The body element on line 15 specifies the implementation
of the operation. Q# operations may also specify implemen-
tations for variants, or derived operations, that are common in
quantum computing. These variants indicated by adjoint
(inverse), a controlled and controlled adjoint. If
the key-word auto is provided, then the compiler auto-

|x1〉
|y1〉
|x2〉
|y2〉
|x3〉
|y3〉

H

H

H

H

H

H

X

X

T

H

T

T

T †

T

T †

T †

H H

T †

T

T † T †

T

T

T

H

X

X

H

H

H

H

H

H

X

H

T †

T

T † T †

T

T

T

H

X

H

X

T

T

T

T †

T

T †

T †

H

X

H

H

H

H

H

H

|1〉
|0〉
|1〉
|0〉
|0〉
|0〉

Fig. 8: Quantum circuit that is implemented by the Python code in Fig. 7. The dashed boxes emphasize the subcircuits which
correspond to realizations of π and its inverse.

1 namespace Microsoft.Quantum.HiddenShift{
2 // basic operations: Hadamard, CNOT, etc
3 open Microsoft.Quantum.Primitive;
4 // useful lib functions and combinators
5 open Microsoft.Quantum.Canon;
6 // permutation defining the instance
7 open Microsoft.Quantum.PermOracle;
8

9 operation HiddenShift
10 // signature of input types
11 (Ufstar : (Qubit[] => ()),
12 Ug : (Qubit[] => ()), n : Int) :
13 // signature of output type
14 Result[] {
15 body {
16 mutable resultArray = new Result[n];
17 // allocate n clean qubits
18 using(qubits=Qubit[n]) {
19 ApplyToEach(H, qubits);
20 Ug(qubits);
21 ApplyToEach(H, qubits);
22 Ufstar(qubits);
23 ApplyToEach(H, qubits);
24 // measure and reset qubits
25 for (idx in 0..(n-1)) {
26 set resultArray[idx] =

MResetZ(qubits[idx]);
27 }
28 }
29 Message($"result: {resultArray}");
30 return resultArray;
31 }
32 }}

Fig. 9: Implementation of the correlation algorithm for the
Boolean hidden shift problem in Q#. This code is shipped as
an algorithm sample with the Microsoft QDK [33].

matically calculates the inverse or controlled version of the
operation based on the body, but in general it can make
sense to provide these implementations separately as more
efficient circuits might be known. While variants do not
occur in the implementation of the HiddenShift opera-
tion, they do occur in the implementation of the operation
PermutationOracle further below.

Q# allows the introduction of mutable variable as in line 16
which is returned to a driver program (which can be written in
a .NET language such as C# or F#) in line 30. Further notable
elements used in this code snippet are the allocation of clean
qubits (which by definition are initialized in the |0〉 state) in
line 18 by using the using keyword. Q# offers classical flow
and control constructs like in line 25 where the code iterates
through a range of integers using for. Finally, we remark
that Q# supports mutable and immutable types. The syntax
for declaring a new mutable variable is shown in line 16

1 namespace Microsoft.Quantum.PermOracle{
2 open Microsoft.Quantum.Primitive;
3

4 operation PermutationOracle
5 // signature of input types
6 (qubits : Qubit[]) :
7 // signature of output type
8 () {
9 body {

10 CNOT(qubits[2], qubits[1]);
11 H(qubits[0]);
12 T(qubits[2]);
13 T(qubits[1]);
14 T(qubits[0]);
15 CNOT(qubits[1], qubits[2]);
16 CNOT(qubits[0], qubits[1]);
17 CNOT(qubits[2], qubits[0]);
18 (Adjoint T)(qubits[1]);
19 CNOT(qubits[2], qubits[1]);
20 (Adjoint T)(qubits[2]);
21 (Adjoint T)(qubits[1]);
22 T(qubits[0]);
23 CNOT(qubits[0], qubits[1]);
24 CNOT(qubits[2], qubits[0]);
25 CNOT(qubits[1], qubits[2]);
26 H(qubits[0]);
27 CNOT(qubits[0], qubits[1]);
28 CNOT(qubits[1], qubits[2]);
29 }
30 adjoint auto
31 controlled auto
32 controlled adjoint auto
33 }
34

35 operation BentFunctionImpl
36 (n : Int, qs : Qubit[]) : () {
37 body {
38 let xs = qs[0..(n-1)];
39 let ys = qs[u..(2*n-1)];
40 (Adjoint PermutationOracle)(ys);
41 for (idx in 0..(n-1)) {
42 (Controlled Z)([xs[idx]], ys[idx]);
43 }
44 PermutationOracle(ys);
45 }
46 }
47

48 function BentFunction
49 (n : Int) : (Qubit[] => ()) {
50 return BentFunctionImpl(n, _);
51 }}

Fig. 10: Q# code for an instance of the hidden shift problem
where f(x, y) = xπ(y)t, π = [0, 2, 3, 5, 7, 1, 4, 6].

of an array that will hold the final result of the computation.
Assignment of mutable variables is done using set statements
as in line 26.

The definition of the instance Ug and Uf̃ of the hidden
shift problem itself is done by calling RevKit first during

a pre-processing state. The input for this is a description
of the permutation π to be implemented. The output of
this stage is another Q# program which is shown as the
PermutationOracle operation in Fig. 10. Note that this
operation makes use of primitive gates that are built-into the
Q# language and that are native to the underlying abstract
quantum machine model, such as H , T , and CNOT. Also
note that the Adjoint functor is used in lines 18, 20, and
21 which computes the inverse of the invoked operation.

The instance of the bent function is defined in the block
starting at line 48 and returns a function with signature
Qubit[] => (). The implementation of this function,
which depends on the number of variables (here denoted
by integer n using the Int primitive type) invokes another
operation from which the function is constructed using partial
application, which is the basic mechanism in which e.g.
currying can be implemented in Q#.

For space reasons, not all subroutines used in the imple-
mentation of the shifted bent functions and the test harness
are shown as snippets, however, these can be inspected as
sample Q# code that was shipped with the QDK [33]. The
test subroutine consists of a C# part that invokes the above
Q# program and targets the built-in simulator.

IX. CHALLENGES AND CONCLUSIONS

In this paper, we illustrated and discussed the high-level
design flow for mapping a quantum algorithm to quantum
computers using quantum programming languages. Expressive
syntactical constructs and a rich API in combination with
effective automatic compilation algorithms allow us to express
quantum algorithms at a high level without being burdened
with specifying each single quantum operation. This ultimately
leads to implement (i) more scalable algorithms, since te-
dious manual compilation of combinational components is
performed automatically, and (ii) more complex algorithms by
combining abstract high-level syntactic constructs offered by
the programming language. Therefore, programming quantum
computers is catching up with its classical counterpart in which
a variety of high-level programming languages and significant
effort in the development of compilers render manual assembly
descriptions unnecessary.

Several challenges remain and are awaiting satisfactory
solutions. In this paper, we only considered simple reversible
synthesis methods which do not require additional ancilla
qubits for the realization of the quantum circuit. This limits
their application to small functions with up to about 25
variables. In order to automatically compile larger functions,
reversible logic synthesis methods require additional qubits.
These are typically determined during the execution of the
algorithm, and cannot be bounded ahead of time. Synthesis
methods that find a solution without exceeding a given number
of ancillae are rare and the state of available solutions is still
in its infancy [65], [67].

Another issue is the verification of the synthesized circuits.
Simulating the quantum circuit may require to represent the
complete quantum state, which is exponentially large in the
number of qubits. Verified compilers that are “correct-by-
construction” address this issue [73]. However, when applying

post-optimization, one needs to verify that the optimized
circuit did not change the functionality, requiring to simulate
complete quantum states in the worst-case.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[2] C. Pomerance, “A tale of two sieves,” Notices of the AMS, vol. 43,
no. 12, pp. 1473–1485, 1996.

[3] T. Häner, M. Roetteler, and K. M. Svore, “Factoring using 2n+2 qubits
with Toffoli based modular multiplication,” Quantum Information and
Computation, vol. 18, no. 7&8, pp. 673–684, 2017.

[4] M. Roetteler, M. Naehrig, K. Svore, and K. Lauter, “Quantum resource
estimates for computing elliptic curve discrete logarithms,” in Proceed-
ings of the 23rd Annual International Conference on the Theory and
Applications of Cryptology and Information Security (ASIACRYPT’17),
Hong King, China, ser. Lecture Notes in Computer Science, vol. 10625.
Springer, 2017, pp. 241–270.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Symposium on Theory and Computing, 1996, pp. 212–219.

[6] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying
Grover’s algorithm to AES: quantum resource estimates,” in Proceedings
of the 7th International Conference on Post-Quantum Cryptography
(PQCrypto’16), Fukuoka, Japan, ser. Lecture Notes in Computer Sci-
ence, vol. 9606. Springer, 2016, pp. 29–43.

[7] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical Review Letters, vol. 103, no. 15,
p. 150502, 2009.

[8] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, “Preconditioned quantum
linear system algorithm,” Physical Review Letters, vol. 110, no. 25, p.
250504, 2013.

[9] A. Scherer, B. Valiron, S. Mau, D. S. Alexander, E. van den Berg,
and T. E. Chapuran, “Concrete resource analysis of the quantum linear-
system algorithm used to compute the electromagnetic scattering cross
section of a 2D target,” Quantum Information Processing, vol. 16, no. 3,
p. 60, 2017.

[10] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, pp. 467–488, 1982.

[11] T. H. Johnson, S. R. Clark, and D. Jaksch, “What is a quantum
simulator?” EPJ Quantum Technology, vol. 1, no. 10, pp. 1–12, 2014.

[12] D. W. Berry, A. M. Childs, and R. Kothari, “Hamiltonian simulation
with nearly optimal dependence on all parameters,” in IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, 2015, pp.
792–809.

[13] A. Aspuru-Guzik, A. D. Dutoi, and M. Love, Peter J.and Head-Gordon,
“Simulated quantum computation of molecular energies,” Science, vol.
309, pp. 1704–1707, 2005.

[14] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and
M. Troyer, “Solving strongly correlated electron models on a quantum
computer,” Physical Review A, vol. 92, p. 062318, 2015.

[15] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Sim-
ulating physical phenomena by quantum networks,” Physical Review A,
vol. 65, p. 04323, 2002.

[16] B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M. Troyer,
“Hybrid quantum-classical approach to correlated materials,” Physical
Review X, vol. 6, p. 031045, 2016.

[17] S. P. Jordan, K. S. M. Lee, and J. Preskill, “Quantum algorithms for
quantum field theories,” Science, vol. 336, pp. 1130–1133, 2012.

[18] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages
and compiler design for realistic quantum hardware,” Nature, vol. 549,
no. 7671, pp. 180–187, 2017.

[19] D. Castelvecchi, “Quantum computers ready to leap out of the lab in
2017,” Nature, vol. 541, no. 7635, pp. 9–10, 2017.

[20] IBM, “IBM builds its most powerful universal quantum computing
processors,” 2017, press release by IBM, posted online May 17, 2017.

[21] Rigetti, “Unsupervised machine learning on Rigetti 19Q with Forest1.2,”
2017, press release by Rigetti, Inc., posted online December 18, 2017.

[22] Intel, “Intel delivers 17-qubit superconducting chip with advanced pack-
aging to QuTech,” 2017, press release by Intel, posted online October
10, 2017.

[23] IBM, “IBM announces advances to IBM quantum systems & ecosys-
tem,” 2017, press release by IBM, posted online Nov 10, 2017.

[24] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein,
E. Solomonik, and R. Wisnieff, “Breaking the 49-qubit barrier in the
simulation of quantum circuits,” arXiv preprint arXiv:1710.05867, 2017.

[25] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit
quantum circuit,” in Int’l Conf. on High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 33:1–33:10.

[26] J. Miszczak, “Models of quantum computation and quantum program-
ming languages,” Bull. Pol. Acad. Sci.-Tech. Sci., vol. 59, no. 3, pp.
305–324, 2011.

[27] A. Green, P. L. Lumsdaine, N. Ross, P. Selinger, and B. Valiron, “Quip-
per: A scalable quantum programming language,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, 2013, pp. 333–342.

[28] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “Scaffcc: Scalable compilation and analysis of
quantum programs,” Parallel Computing, vol. 45, pp. 2–17, 2015.

[29] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R.
Brown, D. Franklin, F. T. Chong, and M. Martonosi, “Compiler manage-
ment of communication and parallelism for quantum computation,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’15, Istanbul, Turkey, March 14-18, 2015. ACM, 2015, pp. 445–456.

[30] D. Wecker and K. M. Svore, “LIQUi|>: A software design architecture
and domain-specific language for quantum computing,” 2014.

[31] J. Paykin, R. Rand, and S. Zdancewic, “QWIRE: a core language
for quantum circuits,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017, 2017, pp. 846–858.

[32] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum
instruction set architecture,” 2016, arXiv: 1608.03355.

[33] “Microsoft Quantum Development Kit,” 2017,
https://github.com/microsoft/quantum.

[34] D. S. Steiger, T. Haener, and M. Troyer, “ProjectQ: An open
source software framework for quantum computing,” arXiv preprint
arXiv:1612.08091, 2016.

[35] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov,
“A layered software architecture for quantum computing design tools,”
IEEE Computer, vol. 39, no. 1, pp. 74–83, 2006.

[36] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.

[37] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[38] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter, “Quantum
resource estimates for computing elliptic curve discrete logarithms,” Int’l
Conf. on the Theory and Applications of Cryptology and Information
Security, 2017.

[39] M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible
circuits - a survey,” ACM Computing Surveys, vol. 45, no. 2, pp. 21:1–
21:34, 2013.

[40] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical Review A, vol. 52, no. 5, p. 3457,
1995.

[41] N. Abdessaied, M. Amy, M. Soeken, and R. Drechsler, “Technology
mapping of reversible circuits to Clifford+T quantum circuits,” in Int’l
Symp. on Multiple-Valued Logic, 2016, pp. 150–155.

[42] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Physical Review
A, vol. 93, p. 022311, 2016.

[43] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Confer-
ence, 2003, pp. 318–323.

[44] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 22, no. 6, pp. 710–722, 2003.

[45] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conference, 2009, pp. 270–275.

[46] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,” in
Asia and South Pacific Design Automation Conference, 2012, pp. 85–92.

[47] A. De Vos and Y. Van Rentergem, “Young subgroups for reversible
computers,” Advances in Mathematics of Communications, vol. 2, no. 2,
pp. 183–200, 2008.

[48] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian, “Reversible cir-
cuit synthesis using a cycle-based approach,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 6, no. 4, p. 13, 2010.

[49] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact synthesis
of elementary quantum gate circuits,” Multiple-Valued Logic and Soft
Computing, vol. 15, no. 4, pp. 283–300, 2009.

[50] D. Maslov, G. W. Dueck, and D. M. Miller, “Techniques for the synthesis
of reversible Toffoli networks,” ACM Trans. Design Autom. Electr. Syst.,
vol. 12, no. 4, p. 42, 2007.

[51] M. Soeken, L. Tague, G. W. Dueck, and R. Drechsler, “Ancilla-free
synthesis of large reversible functions using binary decision diagrams,”
Journal of Symbolic Computation, vol. 73, pp. 1–26, 2016.

[52] M. Soeken, G. W. Dueck, and D. M. Miller, “A fast symbolic transfor-
mation based algorithm for reversible logic synthesis,” in Int’l Conf. on
Reversible Computation, 2016, pp. 307–321.

[53] M. Soeken, R. Wille, O. Keszocze, D. M. Miller, and R. Drechsler,
“Embedding of large Boolean functions for reversible logic,” ACM
Journal on Emerging Technologies in Computing Systems, vol. 12, no. 4,
pp. 41:1–41:26, 2016.

[54] A. Zulehner and R. Wille, “Make it reversible: Efficient embedding of
non-reversible functions,” in Design, Automation and Test in Europe,
2017, pp. 458–463.

[55] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Design
automation and design space exploration for quantum computers,” in
Design, Automation and Test in Europe, 2017, pp. 470–475.

[56] K. Fazel, M. A. Thornton, and J. E. Rice, “ESOP-based Toffoli gate
cascade generation,” in Pacific Rim Conference on Communications,
Computers and Signal Processing, 2007.

[57] A. Mishchenko and M. A. Perkowski, “Logic syntheis of reversible wave
cascades,” in Int’l Workshop on Logic and Synthesis, 2002.

[58] C. Bandyopadhyay, H. Rahaman, and R. Drechsler, “Improved cube list
based cube pairing approach for synthesis of ESOP based reversible
logic,” Transactions on Computational Science, vol. 24, pp. 129–146,
2014.

[59] R. Drechsler, “Preudo-Kronecker expressions for symmetric functions,”
IEEE Trans. on Computers, vol. 48, no. 9, pp. 987–990, 1999.

[60] A. Mishchenko and M. A. Perkowski, “Fast heuristic minimization of
exclusive-sum-of-products,” in Reed-Muller Workshop, 2001.

[61] M. Soeken, R. Wille, and R. Drechsler, “Hierarchical synthesis of
reversible circuits using positive and negative Davio decomposition,”
in Int’l Design and Test Symp., 2010, pp. 143–148.

[62] A. Chattopadhyay, A. Littarru, L. G. Amarù, P.-E. Gaillardon, and
G. De Micheli, “Reversible logic synthesis via biconditional binary
decision diagrams,” in Int’l Symp. on Multiple-Valued Logic, 2015, pp.
2–7.

[63] M. Soeken and A. Chattopadhyay, “Unlocking efficiency and scalability
of reversible logic synthesis using conventional logic synthesis,” in
Design Automation Conference, 2016, pp. 149:1–149:6.

[64] B. Valiron, “Generating reversible circuits from higher-order functional
programs,” in Int’l Conf. on Reversible Computation, 2016, pp. 289–306.

[65] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Hierarchical
reversible logic synthesis using LUTs,” in Design Automation Confer-
ence, 2017, pp. 78:1–78:6.

[66] R. Královic, “Time and space complexity of reversible pebbling,” in
Conf. on Current Trends in Theory and Practice of Informatics, 2001,
pp. 292–303.

[67] A. Parent, M. Roetteler, and K. M. Svore, “REVS: A tool for space-
optimized reversible circuit synthesis,” in Int’l Conf. on Reversible
Computation, 2017, pp. 90–101.

[68] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit
for reversible circuit design,” Multiple-Valued Logic and Soft Computing,
vol. 18, no. 1, pp. 55–65, 2012.

[69] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time T -depth opti-
mization of Clifford+T circuits via matroid partitioning,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 33, no. 10, pp. 1476–
1489, 2014.

[70] M. Roetteler, “Quantum algorithms for highly non-linear Boolean func-
tions,” in ACM-SIAM Symp. on Discrete Algorithms, 2010, pp. 448–457.

[71] A. M. Childs and W. van Dam, “Quantum algorithms for algebraic
problems,” Reviews of Modern Physics, vol. 82, no. 1, pp. 1–52, 2010.

[72] S. Bravyi and D. Gosset, “Improved classical simulation of quantum
circuits dominated by Clifford gates,” Physical Review Letters, vol. 116,
no. 25, p. 250501, 2016.

[73] M. Amy, M. Roetteler, and K. Svore, “Verified compilation of space-
efficient reversible circuits,” in Computer Aided Verification, 2017, pp.
3–21.

