
Practical Exact Synthesis
(Executive Session Paper)

Mathias Soeken1 Winston Haaswijk1 Eleonora Testa1 Alan Mishchenko2 Luca G. Amarù3

Robert K. Brayton2 Giovanni De Micheli1
1Integrated Systems Laboratory, EPFL, Switzerland

2EECS, UC Berkeley, CA, USA
3Synopsys Inc., CA, USA

Abstract—In this paper, we discuss recent advances in exact
synthesis, considering both their efficient implementation and
various applications in which they can be employed. We em-
phasize on solving exact synthesis through Boolean satisfiability
(SAT) encodings. Different SAT encodings for exact synthesis
are compared, and examined the applications to multi-level
logic synthesis, in both area and depth optimization. Another
application of SAT based exact synthesis is optimization under
many constraints. These constraints can, e.g., be a fixed fanout
or delay constraints. Finally, we end our discussion by proposing
directions for future research in exact synthesis.

I. INTRODUCTION

Exact synthesis is the problem of finding the optimum logic
representation for a given Boolean function with respect to
some cost criteria. Specific instances of the problem are find-
ing the sum-of-product (SOP) representation using the smallest
number of implicants, or a 2-input gate level logic network
with the fewest number of gates. For theoretical purposes, one
often considers the whole set of Boolean functions for a fixed
number of variables n. This allows us to derive lower bounds
on the complexity of logic representations. It is known that all
4-variable Boolean functions can be represented using SOPs
with at most 8 implicants [1]. Also, all 5-variable Boolean
functions can be represented using 2-input gate-level networks
with at most 12 gates [2]. Since the number of Boolean
functions grows double-exponentially, it is hard to derive such
results for larger number of variables.

In practical applications, we are not interested in finding
logic representations for all Boolean functions, but instead
only in a small subset of Boolean functions that are found
during synthesis and optimization [3]. Recent advances in
the implementation of exact synthesis algorithms—particularly
SAT-based implementations—significantly improved their per-
formance and thereby widened the applications in which they
are employed. This makes it viable to consider SAT-based
exact synthesis an essential engine in modern practical logic
synthesis applications.

This paper summarizes the state-of-the-art and reviews the
most important algorithmic details. The next section introduces
preliminaries to ease the formal notation in the remaining sec-
tions. Section III illustrates the main SAT-based formulation
and algorithms for the general case. Section IV discusses how
to consider delay constraints, whereas Section V discusses how
to include arbitrary constraints for logic synthesis applications
with many and complex constraints. The paper concludes by
mentioning future challenges in Section VI.

x3x2x1

∧ ⊕

∧ ⊕

∨

g1 (carry) g2 (sum)

x4 x5

x6 x7

x8

Fig. 1: Illustration of a Boolean logic network for a full
adder. The steps are labeled with their corresponding Boolean
operators.

II. PRELIMINARIES

This section introduces definitions and notations on Boolean
logic networks and Boolean satisfiability solving.

A. Boolean logic networks
Combinatorial Boolean logic networks are directed acyclic

graphs. A vertex with in-degree 0 is a primary input and a
vertex with out-degree 0 is a primary output. All other vertices
correspond to Boolean logic gates that can represent an
arbitrary k-variable Boolean function, where k is the in-degree
of the vertex. In practice, we often restrict the syntactical
expressiveness of a logic network by (i) restricting the in-
degree (number of inputs) of a logic gate, or (ii) restricting
which functions can be realized by the logic gates.

In our ongoing discussions on exact synthesis we will
consider logic networks in which each logic gate has two
inputs, and can realize any of the 16 2-input Boolean functions.
We make use of a formal notation inspired by Boolean chains
in [2], since they allow for an easier description of the exact
synthesis formulations in the following sections. Formally, a
(two-input gate) Boolean network for n inputs x1, . . . , xn is
a sequence of gates (xn+1, . . . , xn+r) with

xi = xj(i) ◦i xk(i), for n+ 1 ≤ i ≤ n+ r. (1)

That is, each gate combines two previous gates or inputs
with j(i) < k(i) < i using ◦i, which is one of the 2-input
Boolean functions. For single-output functions, the last gate

xn+r is considered the network’s output. For multi-output
networks, each gate could potentially be an output. We call a
single-output function f normal, if f(0, . . . , 0) = 0. A multi-
output function is normal, if all of its component functions are
normal. A Boolean network represents normal functions if all
of its gate functions are normal.

Example 1: Fig. 1 shows an example network for a full
adder with three inputs consisting of five gates:

x4 = x1 ∧ x2, x5 = x1 ⊕ x2, x6 = x3 ∧ x5,

x7 = x3 ⊕ x5, x8 = x4 ∨ x6

The network has two outputs g1 = x8 for the carry and g2 =
x7 for the sum.

We refer to the number of gates r as the size of the network.
The logic depth is the length of the longest path between
primary inputs and primary outputs. The length of a path is
measured in terms of the number of gates on the path.

Example 2: The delay of the logic network in the example
is 3, as three gates are on the path from inputs x1 and x2 to
output g1.

We can assume different input arrival times for the inputs of
the logic network. This is especially important if we consider
subnetworks in the context of a larger network. They influence
the overall delay of the network. We refer to δi as the input
arrival time of input xi. When computing the delay, the input
arrival time needs to be added to the length of the path.

Example 3: Assume δ1 = 0, δ2 = 0, and δ3 = 2. Then, the
delay of the network is 4, since now the path from x3 to g1

has length 2.

B. Boolean satisfiability
Given a Boolean formula f(x1, . . . , xn), the Boolean satisfi-

ability problem (or SAT problem) asks whether there exists an
assignment to the variables x1, . . . , xn such that f evaluates
to true. If this is the case, such an assignment is called a
satisfying assignment and f is called satisfiable. Otherwise, f
is unsatisfiable. SAT solvers [4], [5] are software programs that
receive a Boolean formula f , typically represented in conjunc-
tive normal form (CNF), and return a satisfying assignment, if
and only if f is satisfiable. A CNF is a conjunction of clauses,
a clause is a disjunction of literals, and a literal is a variable
in regular or complemented form. Since in the remainder we
use CNFs only to describe the input to a SAT solver, we also
refer to them as SAT formulas.

III. SAT-BASED EXACT SYNTHESIS

Given an m-tuple of m functions over n variables

(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

we can formulate the exact synthesis of these functions as a
sequence of decision problems P0, P1, P2, Problem Pr
corresponds to the question: “Can functions f1, . . . , fm be
computed by an r-step Boolean logic network?”. Each instance
Pr can be described by a SAT formula.1 In this section
we describe what such a formula looks like, how additional
constraints can speed up the synthesis process, as well as

1In practice, P0 is often handled as a trivial special case, since it means
that all f1, . . . fm are constants or variable projections.

some experimental results. We attribute the SAT formulation
described here to Kojevnikov et al., Eén, and Knuth [6], [7],
[5]. Knuth [5] improved previous approaches, by restricting
synthesis to normal Boolean functions.

A. Variables
We first define the variables used in the SAT formulation.

For 1 ≤ h ≤ m, n < i ≤ n + r, and 0 < t < 2n, define the
following:

xit : tth bit of xi’s truth table
gih : [fh = xi]

sijk : [xi = xj ◦i xk] for 1 ≤ j < k < i

fipq : ◦i(p, q) for 0 ≤ p, q ≤ 1, p+ q > 0

The variables xit correspond to the value (at row t) of the
global truth table for step xi. The gih variables determine
which outputs point to which steps. Thus, if gih is true,
it means that function fh is computed by step i. The sijk
variables determine, for each step i, the inputs j and k. Also
known as selection variables, their assignments control the
underlying DAG structure of the Boolean network. The fipq
encode for all steps i what the corresponding Boolean operator
is. Since we synthesize normal logic networks, we do not need
to consider row 0 of the gate’s truth tables and require only
2n − 1 truth table indices t. Also p + q > 0, since the local
function describing a gate’s operation does not need to be
specified for the case p = q = 0.

B. Constraints
We now constrain the variables by a set of clauses which

ensures that the network computes the correct functions. With
the addition of these clauses, the SAT formula is satisfiable if
and only if the given functions can be computed by an r-step
logic network. For 0 ≤ a, b, c ≤ 1 and 1 ≤ j < k < i, the
main clauses are:

((sijk ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄))→ (fibc ⊕ ā))

In other words: if step i has inputs j and k, and the tth bit of
xi is a, and the tth bit of xj is b, and the tth bit of xk is c, then
we must have ◦i(b, c) = a. We can rewrite these constraints
to CNF:

(s̄ijk ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā))

Here, a, b, and c are constants used to set the proper variable
polarities. In fact, these constraints may be simplified in
several cases. When b = c = 0, the final term encodes fi00. If
a = 0 this is trivially true, due to the normality of the network.
Hence, in that case the entire clause may be omitted. If a = 1
the final literal is omitted from the clause. Similarly, xjt and
xkt are constants if j ≤ n or k ≤ n, and the appropriate
simplifications can be made.

Next, let (t1, . . . , tn)2 = t be the binary encoding of t,
such that ti refers to the ith bit of t. In order to fix the proper
output values, we add the clauses (ḡhi ∨ x̄it) or (ḡhi ∨ xit)
depending on the value fh(t1, . . . , tn). Finally, we add the
clauses

∨n+r
i=n+1 ghi and

∨
1≤j<k<i sijk, so that every output h

points to a step in the network and to ensure that every gate i
has two inputs.

Example 4: Recall the Boolean logic network from Fig. 1.
Let us consider a variable assignment that would synthesize
it. It has 5 steps, so the corresponding decision problem is
P5 and r = 5. Further, it has 3 inputs and 2 outputs. Hence,
indices i and t range from 4 to 5 and from 1 to 7, respectively.

t = 7 6 5 4 3 2 1

x4t = 1 0 0 0 1 0 0

x5t = 0 1 1 0 0 1 1

x6t = 0 1 1 0 0 0 0

x7t = 1 0 0 1 0 1 1

x8t = 1 1 1 0 1 0 0

There are two outputs, each of which can point to 5 steps,
making for a total of 10 ghi variables. In this case we have
g17 = 1, g28 = 1, and ghi = 0 for all other ghi.

From the DAG structure of the network, we can see that
s412 = 1, s512 = 1, s635 = 1, s735 = 1, and s846 = 1. All
other sijk are zero.

Finally, the Boolean operators for the different steps are
assigned the following values:

(p, q) = (1, 1) (0, 1) (1, 0)

f4pq = 1 0 0

f5pq = 0 1 1

f6pq = 1 0 0

f7pq = 0 1 1

f8pq = 1 1 1

Additional clauses: The above clauses are the minimum
ones necessary to ensure that a valid logic network is found.
However, we may add additional constraints to boost synthesis
speed, such as clauses to force a colexicographic order on the
steps. We refer the reader to [5] for the details.

C. Alternative selection variable scheme
We can create equivalent SAT formulas for Pr using an

alternative selection variable scheme. Instead of creating vari-
ables sijk, we can create sij for n < i ≤ n + r and j < i.
This reduces the number of selection variables from

n+r∑
i=n+1

(
i

2

)
=

1

6
(3n2 + 3nr + r2 − 1)

to
n+r∑
i=n+1

(i− 1) =
1

2
(2n+ r − 1).

Thus, it reduces the number of selection variables from poly-
nomial to linear in n and r. On the other hand, it increases
the complexity of clauses. The main clauses are now of the
form:

((sij ∧ sik ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄))→ (fibc ⊕ ā)).

The other clauses must be adapted analogously. Thus, there
is a trade-off between the number of variables, and the com-
plexity of clauses. It is not obvious which scheme is superior,
and it may vary due to implementations details and with

constraints from different problem domains. This selection
variable scheme was used in [8], [9]. A similar scheme was
used by Kojevnikov [6].

D. Algorithms
Now that we know how to create the SAT formula for Pr,

we can use that to construct an exact synthesis algorithm. The
pseudocode can be found in Algorithm 1.

Algorithm 1 A simple SAT based exact synthesis algorithm.
function SYNTHESIZE(f1(x1, . . . , xn), . . . , fm(x1, . . . xn))

r ← 1
s← get_sat_solver()
while true do

reset_sat_solver(s)
create_vars(Pr)
create_clauses(Pr)
if solve(s) = SAT then

return extract_network(s)
end if
r ← r + 1

end while
end function

Given a sequence of functions, the algorithm clearly finds a
Boolean logic network of minimal size. Additional functional-
ity can be added to this basic algorithm for different purposes.
For example, in practice we often want to limit the runtime
of the algorithm. We can do this by using timeouts or SAT
conflict limits. Other variants of the algorithm use incremental
SAT in a CEGAR loop [10], which can make synthesis faster
for some functions.

E. Experimental results
Table I shows experimental results for the synthesis of two

sets of functions, using the algorithm described in this section.
We have used similar function sets throughout all sections in
the paper for an easier comparison. The end of this section
comments on application to large functions in practical logic
synthesis applications. The set NPN4 consists of all 222 4-
input NPN classes. The set FDSD6 consists of 1000 fully
disjoint support set (DSD) decomposable functions [11]. Both
sets of functions can be fully synthesized in less than 70
seconds. On average, all functions are synthesized in (much)
less than a second. Interestingly, the 6-input DSD functions
have a lower average runtime than the 4-input NPN classes.
This is due to the fact that it is the complexity of Boolean
networks which drives runtime, rather than the number of
inputs. The complexity of Boolean networks is also known as
combinational complexity [2]. Hence, the runtime difference
is due to the fact that the 4-input NPN classes contain some
functions of relatively high complexity. Generally, we expect
random functions to be of high combinational complexity [3].

The results show that it is now becoming viable to use exact
synthesis as the optimization engine in the context of a larger
logic synthesis algorithms. In fact, the algorithm described
here has been used as a basis for various logic optimization
algorithms [8], [12], [13]. Some of the algorithms build
databases of optimal logic networks using exact synthesis, e.g.,

TABLE I: Exact synthesis of all 4-input NPN classes and a set
of 6-input DSD functions. All runtimes are in milliseconds.

Function set Nr. of functions Mean runtime (ms) Total runtime (ms)

NPN4 222 225.46 50052.12
FDSD6 1000 69.00 69000.00

all representatives of NPN classes, some of the algorithms find
optimum network representations on-the-fly.

IV. EXACT DELAY NETWORKS

This section discusses exact delay optimization using SAT-
based exact synthesis. Exact delay synthesis can be achieved
by extended the SAT formulation from the previous section.
The extension allows for using a SAT solver to check whether
there exists a Boolean network with r gates that realizes the
n-variable functions g1, . . . , gm with a maximum delay of at
most ∆ assuming the input arrival times δ1, . . . , δn. Since
logic rewriting is computing the delay and input arrival times
based on the logic level, all values are integers.

A. Encoding
The idea is to assign a minimum depth to each gate and then

constrain the maximum depth of the output gates. To encode
the depth at each gate we make use of the order encoding [14],
[5]. In the order encoding, a value x in the range 0 ≤ x ≤M
is represented by M variables xl for 1 ≤ l ≤M where xl =
[x ≥ l]. We have x = x1 + x2 + · · · + xM , i.e., the bitstring
derived by xj has x ones followed by (M − x) zeros. The
clauses

(x̄l+1 ∨ xl) (2)

for 1 ≤ l < M ensure this property.
Example 5: If M = 4, we can represent the values

x = 0, 1, 2, 3, 4 by the bitstrings 0000, 1000, 1100, 1110, 1111,
respectively.

For the integration of delay constraints into the SAT formu-
lation, we associate a value di with each gate to represent a
lower bound on the delay of the gate xi with n < i ≤ n+ r.
The value is in the range 0 ≤ di ≤ δmax + (i − n) where
δmax = max{δ1, . . . , δn} is the greatest input arrival time.
Next, we can encode each di in the order encoding using
variables dli for 1 ≤ l ≤ δmax + (i− n).

We add clauses to propagate the depth limits according to
the wiring of the network. Clauses
δmax+j−n∧

l=1

(s̄ijk ∨ d̄lj ∨ dl+1
i)∧

δmax+k−n∧
l=1

(s̄ijk ∨ d̄lk ∨ dl+1
i) (3)

for 1 ≤ j < k < i ensure that the minimum delay of gate
xi is larger by at least one compared to the minimum delay
of the children, xj and xk. For j ≤ n, the value of dlj is the
constant value [δj ≥ l]. The same applies to values of dlk for
k ≤ n.

Finally, we add constraints ḡhi ∨ d̄∆+1
i for primary outputs.

If a gate is a primary output, its depth must be less or equal
to the maximum depth ∆. Note that this constraint only needs
to be added if ∆ < δmax + (i− n); otherwise, the maximum
depth constraint cannot be violated.

B. Enumeration-based method

As seen in the previous section, it is convenient to create a
database of optimum solutions for logic optimization. Boolean
function classification, such as NPN classification, can help to
reduce the number of Boolean functions that need to be syn-
thesized and stored. In exact delay synthesis the space of input
instances is much large, as one needs to take into account also
all possible delay values and input arrival time profiles. The
work in [15] introduces the concept of equioptimizable input
arrival time patterns which allow to compress the number of
possible arrival time profiles and find databases that capture all
possible delay configurations for all 4-input Boolean functions.

C. Experimental results

SAT-based exact delay synthesis has been used in a logic
synthesis application to reduce the delay of large Boolean
networks [16]. The algorithm enumerates all subnetworks with
k inputs. For each subnetwork the input arrival time pattern
and the current delay can be extracted from the network. Exact
synthesis is then used to improve the current delay. If this
is successful, the subnetwork is replaced by the optimized
subnetwork. The approach has been applied for sizes with up
to k = 6, where optimized networks are computed on-the-fly.
For this size, a database solution is not feasible anymore [17],
[15].

V. GATE LIBRARIES AND STRUCTURAL CONSTRAINTS

Besides optimizing for the traditional cost metrics such as
size or depth of a Boolean logic network, exact synthesis
can easily target optimization applications with many and
complex constraints that need to be respected at the same time.
Additional application constraints correspond to additional
constraints added to the SAT formula. In fact, in a scenario in
which the solution must ensure additional constraints, heuristic
algorithms may be too weak. Heuristic algorithms can only
find a solution that satisfies the constraints or that does not
satisfy the constraint—it does not answer to the question
whether a satisfying solution can exist at all. In this section, we
present exact synthesis for problems with complex constraints
and we address (i) constraints due to different primitives; and
(ii) constraints due to the logic representations for which the
synthesis has to be performed.

A. Encoding gate libraries

Previous sections considered exact synthesis using 2-input
gate Boolean networks—meaning that each node of the logic
network can represent any 2-input Boolean function. In this
section we discuss constraints and clauses aiming at constrain-
ing the functionality of the nodes; further, we extend our
notation to the 3-input case.

To constrain the functionality of the nodes, some clauses
can be added to ensure only some Boolean functions to be
used. For instance, for a 2-input Boolean network, only AND
and OR gates, with possible input complementations, can be
allowed with a further clause

(f̄i11 ∨ fi01 ∨ fi10) (4)

x3x2x1

∨ ∧

∧

∧

∧

∧

∨

Carry Sum

x4 x5

x6

x7

x8

x9

x10

x3x1x2

〈〉 〈〉

〈〉

x4 x5

x6

Carry

Sum

Fig. 2: (a) Boolean network for the full adder using only AND
and OR operations; (b) Boolean network for the full adder
using only 3-input majority operations and inversions. The 〈〉
is the majority operator, while bubbles on the edge represent
complementation.

that excludes the fipq variables to realize the XOR gate. Recall
the Boolean network from Fig. 1; the same full adder can be
built using only AND and OR functions as shown in Fig. 2(a).

Next, we consider an extension of the SAT formulation to
3-input gate Boolean networks. In this case, the xit and ghi
variables are used in the same way as in Section III-A, while
both sijk and fipq need to be reexamined to work with three
children. In the three input case, the new select variable is
sijkl, which is true if the operands of gate xi are xj , xk,
and xl. In a similar way, the function variables fipqu is true
if the operation of gate xi is true under the input assignment
(p, q, u). Clauses can be built in a straightforward way starting
from the ones depicted in Section III-B. It is worth noting
that the variables fipqu allow for a representation of all 128
normal 3-input functions, but also in this case new clauses and
variables can be added in order to limit the functionality of
each node. Here, we address new variables and clauses in order
to limit the functionality of each node to the 8 normal majority
operation. As proposed in [13], a new variable operation can
be added in order to encode which of these 8 operations is
realized by each node. For each gate i, the operation variable
oiw is true if the operation of gate i is w, where w is one of
the 8 possible normal majority operations. Two new clauses
need to be added: (i) one to bind a function operation fipqu to
the respective operation oiw, and (ii) a clause that ensures that
each gate realizes at least one of the 8 operations. Fig. 2(b)
shows an optimum full adder, obtained by using only majority
function and inversion (represented as complemented edges in
the graph).

B. Encoding structural properties
Here, we consider the encoding of constraints due to struc-

tural properties. Examples of these constraints could be a
limited depth (see Section IV), limited fan-out, or inversion
patterns. Here, we propose a way to take into account fan-
out limitations without changing the general encoding scheme
of the problem; in other words, we describe further clauses

that can added in order to limit the maximum fan-out of each
node. One of the possible solutions that can be employed
to constraint the maximum fan-out is by using a cardinality
constraint to limit the maximum fan-out to a given value
Φ. The fan-out of each node i can be encoded by limiting
the number of select variables with index larger than i:
s(i+1)jkl, . . . , s(i+n)jkl that are equal to 1. The constraint is
forced on all select variables that use i as one of the children;
moreover also the output variables need to be taken into
account. As an example, consider Fig. 2(b). The cardinality
constraint on Φ for node x4 would be:

s5124 + s5134 + s5234 + s6124 + s6134+

s6234 + s6145 + s6245 + s6345 + g14 + g24 ≤ Φ
(5)

Given a concrete function, often it is helpful to include
function-specific constraints into the SAT formula. Some func-
tional decomposition properties may imply certain substruc-
tures or gate functions. Also arrival time profiles may prohibit
or imply certain structures. Adding corresponding constraints
to the SAT formula prunes the search space and can lead to
significant performance improvements (see, e.g., [5], [16]).

C. Experimental results
We present experimental results using some of the con-

straints described above. The first two rows of Table II show
experimental results for the synthesis of NPN4 and NPN5,
using three-input Boolean networks (all the details can be
found in [8]). The set NPN4 is the same used in previous
sections, while the set NPN5 consists of 616,126 5-input NPN
classes. The results show that minimum size 3-input Boolean
networks can be found for all functions: 4-input functions can
be synthesized in less than 0.5 seconds, while for NPN5 the
average computation time is less than 10 minutes.

The last two rows of Table II show the exact synthesis for
the two sets of functions used in Section III-E; in this case,
we consider the following constraints to the 3-input Boolean
network: (i) only majority functions can be employed; (ii) the
maximum depth is limited to 3; (iii) the maximum fan-out is
equal to 3. For the first set, a timeout of 10 minutes has been
set; while a 2 minutes timeout is used for the 1000 functions.
The "Nr. of timeouts" illustrates the number of functions that
have not been finished in the given amount of time. All 222
NPN4 can be synthesized using a maximum depth of 3 and
maximum fan-out of 3; none of the functions requires more
than 10 minutes. For the FDSD6, 14 functions cannot be
synthesized within the timeout.

VI. RELATED WORK AND FUTURE CHALLENGES

Exact synthesis has been studied thoroughly in the past.
Ernst [18] provides a good overview of the related work in
exact synthesis, which she organizes into three categories: i)
algorithms based on functional decomposition (e.g., [19], [20],
[21], [22]), ii) algorithms based on explicit (e.g, [23], [24],
[25], [2]) or implicit network enumeration (e.g., [26], [5],
[27], [28], [6], [7], and iii) hybrid approaches that combine
both structural and functional properties (see, e.g., [18], [29],
[30]). SAT-based exact synthesis as discussed in this paper
is based on implicit enumeration; algorithms in this category

TABLE II: Exact synthesis of all 4-input NPN classes, 5-input NPN classes, and a set of 1000 6-input DSD functions using
different constraints. All runtimes are reported in seconds.

Function set Nr. of functions Mean runtime (s) Total runtime (s) Nr. of timeout Configuration

NPN4 222 0.001 0.432 0 3-input Boolean network
NPN5 616,126 553.294 5,506,943.478 0 3-input Boolean network
NPN4 222 1.391 305.960 0 3-input Boolean network, only majority, depth ≤ 3, fan-out ≤ 3
FDSD6 1000 1.269 1251.141 14 3-input Boolean network, only majority, depth ≤ 3, fan-out ≤ 3

are considered the most practical ones. One striking advantage
of SAT-based implementations is that advances in new SAT
solvers directly influence the performance of exact synthesis.
Also, SAT formulas versatile and easily allow the integration
of additional constraints.

Being based on SAT provides ample freedom on how to
encode the synthesis problem into a SAT formula—a choice
that has significant impact on the performance. Finding an
optimal encoding, in general or with respect to a given problem
instance, is unsolved and has barely been addressed so far.
Further, the runtimes of individual instances can highly differ,
even when the problem sizes are similar: while some problems
may take a few micro-seconds to solve, others may take
several hours. Such irregularity impedes the integration into
robust logic synthesis flows. While initial solutions to address
this problem have been presented [12], [8], finding more
solutions to handle or partition difficult instances remains of
high interest.

Several open source implementations for SAT-based exact
synthesis are available online. ABC [31] has four commands
‘exact’, ‘twoexact’, ‘lutexact’, and ‘majexact’. A
variant with a different encoding for the structural con-
straints is available at github.com/whaaswijk/topsynth. Further,
in CirKit (github.com/msoeken/cirkit), there are SMT-based
exact synthesis algorithms ‘exact_mig’ and ‘exact_xmg’
to find optimum majority-inveter graphs and optimum XOR-
majority graphs, respectively.

REFERENCES

[1] T. Sasao, Switching Theory for Logic Synthesis. Springer, 1999.
[2] D. E. Knuth, The Art of Computer Programming, Volume 4A. Addison-

Wesley, 2011.
[3] C. E. Shannon, “The synthesis of two-terminal switching circuits,” Bell

System Technical Journal, vol. 28, no. 1, pp. 59–98, 1949.
[4] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of

Satisfiability. IOS Press, 2009.
[5] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:

Satisfiability. Addison-Wesley, 2015.
[6] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient

circuits using SAT-solvers,” in Int’l Conf. on Theory and Applications
of Satisfiability Testing, 2009, pp. 32–44.

[7] N. Éen, “Practical SAT - a tutorial on applied satisfiability solving,”
2007, slides of invited talk at FMCAD.

[8] W. Haaswijk, M. Soeken, L. G. Amarù, P.-E. Gaillardon, and
G. De Micheli, “A novel basis for logic optimization,” in Asia and South
Pacific Design Automation Conference, 2017, pp. 151–156.

[9] W. Haaswijk, E. Testa, M. Soeken, and G. De Micheli, “Classifying
functions with exact synthesis,” in Int’l Symp. on Multiple-Valued Logic,
2017, pp. 272–277.

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Computer Aided
Verification, 2000, pp. 154–169.

[11] V. Bertacco and M. Damiani, “Boolean function representation based
on disjoint-support decompositions,” in Int’l Conf. on Computer Design,
1996, pp. 27–32.

[12] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Exact
synthesis of majority-inverter graphs and its applications,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 36, no. 11, pp. 1842–
1855, 2017.

[13] E. Testa, M. Soeken, O. Zografos, F. Catthoor, and G. De Micheli, “Ex-
act synthesis for logic synthesis applications with complex constraints,”
in Int’l Workshop on Logic and Synthesis, 2017.

[14] J. M. Crawford and A. B. Baker, “Experimental results on the application
of satisfiability algorithms to scheduling problems,” in National Conf.
on Artificial Intelligence, 1994, pp. 1092–1097.

[15] L. G. Amarù, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P.-E.
Gaillardon, J. Olson, R. K. Brayton, and G. De Micheli, “Enabling exact
delay synthesis,” in Int’l Conf. on Computer-Aided Design, 2017.

[16] M. Soeken, G. De Micheli, and A. Mishchenko, “Busy man’s synthesis:
Combinational delay optimization with SAT,” in Design, Automation
and Test in Europe, 2017, pp. 830–835.

[17] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,”
in Int’l Conf. on Computer-Aided Design, 2012, pp. 597–604.

[18] E. A. Ernst, “Optimal combinational multi-level logic synthesis,” Ph.D.
dissertation, The University of Michigan, 2009.

[19] R. M. Karp, F. E. McFarlin, J. P. Roth, and J. R. Wilts, “A computer
program for the synthesis of combinational switching circuits,” in Symp.
on Switching Circuit Theory and Logical Design, 1961, pp. 182–194.

[20] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM
Journal of Research and Development, vol. 6, no. 2, pp. 227–238, 1962.

[21] P. R. Schneider and D. L. Dietmeyer, “An algorithm for synthesis
of multiple-output combinational logic,” IEEE Trans. on Computers,
vol. 17, no. 2, pp. 117–128, 1968.

[22] E. L. Lawler, “An approach to multilevel Boolean minimization,”
Journal of the ACM, vol. 11, no. 3, pp. 283–295, 1964.

[23] L. Hellerman, “A catalog of three-variable Or-invert and And-invert
logical circuits,” IEEE Trans. Electronic Computers, vol. 12, no. 3, pp.
198–223, 1963.

[24] R. A. Smith, “Minimal three-variable NOR and NAND logic circuits,”
IEEE Trans. Electronic Computers, vol. 14, no. 1, pp. 79–81, 1965.

[25] R. Drechsler and W. Günther, “Exact circuit synthesis,” in Int’l Workshop
on Logic and Synthesis, 1998.

[26] S. Muroga and T. Ibaraki, “Design of optimal switching networks by
integer programming,” IEEE Trans. on Computers, vol. 21, no. 6, pp.
573–582, 1972.

[27] C. R. Baugh, C. S. Chandersekaran, R. S. Swee, and S. Muroga,
“Optimal networks of NOR-OR gates for functions of three variables,”
IEEE Trans. on Computers, vol. 21, no. 2, pp. 153–160, 1972.

[28] S. Muroga and H. C. Lai, “Minimization of logic networks under a
generalized cost function,” IEEE Trans. on Computers, vol. 25, no. 9,
pp. 893–907, 1976.

[29] E. S. Davidson, “An algorithm for NAND decomposition under network
constraints,” IEEE Trans. on Computers, vol. 18, no. 12, pp. 1098–1109,
1969.

[30] J. N. Culliney, M. H. Young, T. Nakagawa, and S. Muroga, “Results
of the synthesis of optimal networks of AND and OR gates for four-
variable switching functions,” IEEE Trans. on Computers, vol. 28, no. 1,
pp. 76–85, 1979.

[31] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 2010, pp.
24–40.

