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ABSTRACT 
A representation of a Boolean function is canonical if, given 
a variable order, only one instance of the representation is 
possible for the function. A computation is canonical if the 
result depends only on the Boolean function and a variable 
order, and does not depend on how the function is 
represented and how the computation is implemented.  

In the context of Boolean satisfiability (SAT), canonicity of 
the computation implies that the result (a satisfying 
assignment for satisfiable instances and an abstraction of 
the unsat core for unsatisfiable instances) does not depend 
on the functional representation and the SAT solver used. 

This paper shows that SAT-based computations can be 
made canonical, even though the SAT solver is not using a 
canonical data structure. This brings advantages in EDA 
applications, such as irredundant sum of product (ISOP) 
computation, counter-example minimization, etc, where the 
uniqueness of solutions and/or improved quality of results 
justify a runtime overhead. 

1. INTRODUCTION 
Canonical representations of Boolean functions, such as 

truth tables, binary decision diagrams (BDDs) [5], or zero-
suppressed decision diagrams (ZDDs) [14], represent 
functions in a unique way, that is, for a given function with 
a given variable order, only one representation is possible. 
As a consequence, if a canonical representation is 
constructed for two functions, they are equivalent if and 
only if the representations are isomorphic. 

Another consequence of using a canonical representation 
is that it allows for results of Boolean operations to be 
canonical, that is, unique for a given function and a given 
variable order. For example, when an irredundant sum of 
products (ISOP) is computed from the BDD by the Minato-
Morreale algorithm [13][6], the resulting ISOP is unique 
and enjoys some other interesting properties [15]. 
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The present paper focuses on SAT-based computations 
and shows that the artifacts produced by the solver can be 
made canonical for both satisfiable or unsatisfiable calls. 
This is achieved by introducing an additional computational 
layer between the SAT solver and the calling application. 

It is somewhat non-intuitive that the canonicity of the 
SAT-based computations is achieved without building a 
canonical data structure, such as a BDD or a ZDD. 
Nevertheless, Boolean functions represented using Boolean 
circuits or conjunctive normal forms (CNFs), which are not 
canonical, can yield canonical SAT-based computations if a 
variable ordering is provided to the solver. 

In practical applications of Boolean satisfiability (SAT), a 
SAT solver, in addition to the answer “yes” (satisfiable) or 
“no” (unsatisfiable), can be made to return other artifacts.  

In the case of a satisfiable SAT instance, a witness 
represented as a variable assignment can be returned. This 
witness can be made unique (canonical) by selecting it to be 
the lexicographically smallest using a variable order. Such 
an algorithm, LEXSAT, was introduced by Knuth [8] and 
Nadel and Ryvchin [18], and improved by Petkovska et al. 
[19]. In this work, we review LEXSAT and combine it with 
an associated novel algorithm called LEXUNSAT. This 
algorithm derives an assignment of variables that can be 
seen as a unique witness for unsatisfiable SAT calls.  

To understand how unsatisfiable calls are made canonical, 
consider an incremental SAT run when a set of assumptions 
(temporary unit clauses) is passed to the solver. If the 
problem is unsatisfiable, the solver can return a sufficient 
subset of assumptions using procedure analyze_final [7]. 
This subset is a type of abstraction of the unsat core; the 
unsat core is expressed in terms of the original assumptions. 

The main contribution of this paper is introducing 
efficient implementation of LEXUNSAT and demonstrating 
its usefulness in several practical applications. LEXUNSAT 
makes the computed subset of assumptions canonical 
similarly to how LEXSAT produces a canonical witness.  

The LEXUNSAT algorithm was first mentioned in [21], 
without emphasizing its canonicity. Under a different name, 
LEXUNSAT was used in the context of a practical 
application [23] and led to superior results. The present 
paper focuses on different applications and on the 
importance of both LEXSAT and LEXUNSAT for making 
some SAT-based computations canonical. 

We note that having a variable order plays a central role 
in making both BDD-based and SAT-based computations 
canonical. In the case of canonical reduced ordered BDDs, 
all variables have to be ordered; otherwise a BDD cannot 



be constructed and used.  In the case of SAT, only a subset 
of all problem variables (such as inputs of a node) have to 
be ordered. This leads to canonical results without imposing 
substantial restrictions on the variable decision heuristics 
used in a SAT solver, which could slow it down. 

In this paper, Section 2 contains necessary background. 
Section 3 gives an overview of the algorithm. Section 4 
discusses practical applications. Section 5 presents 
experimental results. Section 6 concludes the paper. 

2. BACKGROUND 

2.1 Boolean Function 
In the presentation below, function refers to a completely 

specified Boolean function f(X): Bn  B, B = {0,1}. The 
support of function f is the set of variables X, which 
influence the output value of f. The support size is denoted 
by |X|. A minterm of the function is an assignment of its 
inputs, for which the function evaluates to 1. 

2.2 Boolean Network 
A Boolean network (or circuit) is a directed acyclic graph 

(DAG) with nodes corresponding to Boolean functions and 
edges corresponding to connections between the nodes.  

A node n may have zero or more fanins, i.e. nodes driving 
n, and zero or more fanouts, i.e. nodes driven by n. The 
primary inputs (PIs) are nodes without fanins. The primary 
outputs (POs) are a subset of nodes of the network, 
connecting it to the environment. A transitive fanin (fanout) 
cone (TFI/TFO) of a node is a subset of nodes of the 
network, which are reachable through the fanin (fanout) 
edges of the node.  The TFO support of a node is the set of 
primary outputs reachable through the fanouts of the node. 

2.3 Boolean Satisfiability 
A satisfiability problem (SAT) is a decision problem that 

takes a propositional formula of a Boolean function and 
answers the question whether the formula is satisfiable, that 
is, whether the Boolean function is not a constant 0. The 
formula is satisfiable (SAT) if there is an assignment of 
variables such that the formula evaluates to 1. Otherwise, 
the formula is unsatisfiable (UNSAT). A software program 
that solves SAT problems is called a SAT solver.  

2.4 Conjunctive Normal Form 
To use the SAT solver, important aspects of the problem 

are encoded using Boolean variables. Presence or absence 
of a given aspect of the problem is represented by a positive 
or negative literal of the variable. A disjunction of literals is 
called a clause.  A conjunction of clauses is called a 
conjunctive normal form (CNF), or a SAT instance. The 
CNF is loaded into the SAT solver and manipulated by it to 
determine whether the CNF is satisfiable or unsatisfiable.  

If the instance is unsatisfiable, it is often possible to 
remove some clauses from it without making it satisfiable. 
A subset of the original clauses of the CNF, for which the 
instance is still unsatisfiable, is called an unsat core.  

2.5 Incremental SAT 
Modern SAT solvers, such as MiniSAT [7] and 

Glucose [1], offer a mode of solving that allows executing 

multiple SAT calls without restarting the SAT solver. In 
this mode, the CNF first loaded into the SAT solver is 
reused with the possibility of adding new clauses or 
deleting old ones between the calls. To do this efficiently, 
the SAT solver accepts assumptions, which are single-
literal clauses holding for one call to the SAT solver. The 
process of determining the satisfiability of a SAT instance 
under assumptions is called incremental SAT solving. 

2.6 Witnesses and Sufficient Assumption Subsets 
When a SAT problem is satisfiable, the solver returns a 

counter-example, or a witness, which is useful in practice to 
reproduce a particular situation and/or understand the 
reason of a malfunction in the design. For example, a 
witness for the CNF representing a Boolean function shows 
one assignment of values of the input variables for which 
the function takes value 1. 

When an incremental SAT problem is unsatisfiable, a 
modern SAT solver, such as MiniSAT [7] or Glucose [1], 
can use a procedure called analyze_final to derive a subset 
of assumptions that are sufficient to make the instance 
unsatisfiable. This sufficient assumption subset can be seen 
as an abstraction of the unsat core, that is, the unsat core 
expressed in terms of the assumptions given to the solver.  

For example, if a satisfying assignment of a CNF 
representing a Boolean function is given as a set of 
assumptions to a SAT solver whose CNF represents the 
complement of the function, the incremental run is 
unsatifiable because a minterm of the function cannot be a 
minterm of its complement. Moreover, the resulting 
sufficient assumption subset returned by the SAT solver in 
this case represents an implicant of the function computed 
by expanding the given minterm. 

The implementation of analyze_final is efficient because 
it involves only one additional call to the conflict analysis 
procedure of the SAT solver to determine the result of the 
root-level (final) conflict in terms of the root-level 
(assumption-based) decisions. However, the resulting 
subset is not guaranteed to be minimal, that is, it may be 
possible to remove some assumptions from the subset while 
preserving the unsatisfiability of the incremental SAT call. 
Thus, in the example above the implicant may not be prime. 

2.7 Activation Literals 
In many practical applications, assumptions given to the 

incremental SAT solver are activation literals, that is, 
literals of Boolean variables activating some constraints in 
the problem formulation. Activation literals are assumed to 
be active-high, that is, when an activation literal is positive, 
the constraint is activated. For example, if a certain node 
appears in the support of another node, the corresponding 
assumption is a positive activation literal. 

If assumptions given to the SAT solver are not activation 
literals, a set of new Boolean variables can be introduced to 
create activation literals. A new two-literal clause is added 
for each activation literal. The clause is such that, when a 
new variable is 1, the corresponding assumption is implied; 
otherwise, when it is 0, there is no implication. 



3. ALGORITHMS 
This section introduces two algorithms, LEXSAT and 

LEXUNSAT. They are introduced first using a simple 
pseudo-code, followed by a more efficient formulation.  

3.1 Simple LEXSAT  
The pseudo-code of LEXSAT is given in Algorithm 1.  It 

takes a CNF of a function F loaded into the SAT solver, 
and an array of literals A. Initially A contains all negative 
literals in the given variable order. Upon termination, A 
contains the LEXSAT assignment. This assignment is the 
smallest satisfying assignment of F in the following sense: 
if we look at each literal as a binary digit in the order of 
their appearance in A and consider an integer number 
formed by these digits, the resulting number is the smallest 
among all numbers created for any satisfying assignment. 

 
array LEXSAT( cnf F, array A )   { 
       for ( i = 0; i < |A|; i++ ) { // consider literals in the given order 
              if ( F is UNSAT under assumptions A[0] through A[i]) 
                     invert the polarity of literal A[i] to be positive; 
       } 
       return A;  
} 

Algorithm 1: A naïve implementation of LEXSAT. 

Algorithm 1 considers literals in the given order. It checks 
if a satisfying assignment with the negative literal exists. If 
so, the literal remains negative (stands for 0 in the satisfying 
assignment). Only if a satisfying assignment with the 
negative literal does not exist, the literal is changed to be 
positive (stands for 1 in the satisfying assignment).  The 
resulting assignment is the lexicographically smallest, 
where the MSB (LSB) is the first (last) literal in the array A. 

It should be noted that Algorithm 1 assumes that F is 
satisfiable.  If F is unsatisfiable, the algorithm returns an 
invalid satisfying assignment.  

3.2 Simple LEXUNSAT  
As shown in Section 2.7, it can be assumed that the 

assumptions given to the SAT solver are active-high 
activation literals, that is, a constraint is activated when a 
corresponding assumption is a positive literal.  

The pseudo-code of LEXUNSAT, given in Algorithm 2,  
takes a CNF of F loaded into the SAT solver, and an array 
of assumptions A in the given order. Initially, the array 
contains all positive literals. Upon termination, the array 
contains the lexicographically smallest sufficient 
assumption subset. This subset is the smallest for function F 
in the following sense: if we look at each activation literal 
as a binary digit in the order of their appearance in A and 
consider an integer number formed by these digits, this 
number is the smallest among all similar numbers created 
by considering other unsatisfiable subsets of assumptions. 

 
array LEXUNSAT( cnf F, array A )   { 
       for ( i = 0; i < |A|; i++ ) { // consider literals in the given order 
           if ( F is UNSAT under assumptions in A excluding A[i] ) 
                     invert the polarity of A[i] to be negative; 
       } 
       return A;  
} 

Algorithm 2: A naïve implementation of LEXUNSAT. 

It is easy to see that the resulting subset is minimal. The 
fact that the subset is lexicographically smallest implies that 
we cannot replace a positive literal by a negative one 
without making the problem satisfiable.  

Algorithm 2 considers assumptions one at a time in the 
order given. It checks if F is unsatisfiable with one 
assumption skipped (the corresponding activation literal 
complemented). If so, the assumption literal is made 
negative and excluded from future checks. If F is satisfiable 
with assumption i excluded, the A[i] is kept positive. Thus, 
the resulting polarity of assumption literals is the lexically 
smallest, where the MSB is the first literal in A. 

Algorithm 2 assumes that F is unsatisfiable.  If F is 
satisfiable, the algorithm returns an invalid subset. 

3.3 Comparing LEXSAT and LEXUNSAT 
Comparing the pseudo-code of Algorithms 1 and 2 shows 

that they are very similar and can be derived from each 
other by the following modifications: 
 initialize array A with all negative (or positive) literals; 
 check satisfiability of the formula with literals up to the 

given one (or with all literals);  
 if the formula is UNSAT, complement the literal, 

making it positive (or negative). 
LEXSAT and LEXUNSAT work in different directions. 

LEXSAT starts with the smallest (all-0) assignment and 
works its way up to the smallest valid satisfying assignment. 
LEXUNSAT starts with the largest (all-1) subset of 
assumptions and works its way down to find the smallest 
valid subset that makes the problem unsatisfiable. Both 
algorithms use the variable order by setting the MSB to 0 
whenever possible before moving to less significant digits. 

3.4 Efficient Implementation 
Since the algorithms are similar, only LEXUNSAT is 

considered in this section. 
The procedure takes a CNF representation of F and the 

ordered array of assumptions A as a set of positive 
activation literals. It returns a minimized version of A.  

 
array LEXUNSAT( cnf F, array A )  
{ 
       if ( |A| == 1 ) {  // there is only one assumption in A 
              if ( F is UNSAT with A as a negative literal ) 
                    return A as negative literal; // this assumption is not needed 
              else 
                    return A as positive literal; // this assumption is needed 
       } 
       // divide assumptions into two parts 
       A_msb = entries in A with index in range [0; |A|/2] 
       A_lsb = entries in A with index in range [|A|/2+1; |A|-1] 
       
      // solve the problem for the MSB part      
      assume A_lsb as positive literals; 
      B = LEXUNSAT( F, A_msb as positive literals ); 
      unassume A_lsb as positive literals; 
 
       // solve the problem for the LSB part 
       assume literals in B; 
       C = LEXUNSAT( F, A_lsb as positive literals ); 
       unassume literals in B; 
 
       return literals in B followed by literals in C;  
} 

Algorithm 3: An efficient implementation of LEXUNSAT. 



The implementation uses a divide-and-conquer strategy 
for minimizing the subset of assumptions.  It divides the 
array A into two parts, the MSB part and the LSB part. 
First, the algorithm assumes the LSB assumptions in the 
solver and calls itself recursively for the MSB part. Then, it 
reverses the order of parts, and calls itself recursively for 
the resulting LSB part. Finally, the subsets computed by the 
two recursive calls are combined. 

3.5 Complexity Considerations 
In this section, we compare the complexities of the 

following three procedures:  
 the non-canonical implementation, 
 the naïve canonical implementation, 
 the efficient canonical implementation. 
The complexity of a procedure is expressed as the number 

of incremental SAT calls needed to implement it. The 
following observations can be made. 

3.5.1 Non-Canonical Implementation 
The non-canonical implementation has complexity O(1) 

because it takes only one SAT call. For example, when we 
run the solver, we either get a satisfying assignment or 
prove it unsatisfiable and use analyze_final to compute a 
sufficient assumption subset. 

3.5.2 Simple Canonical Implementation 
The naïve implementation in Sections 3.2 and 3.3 has 

complexity O(N), where N is the number of variables in the 
ordered subset of variables (for LEXSAT) or the number of 
assumptions given to the SAT solver (for LEXUNSAT). 
The complexity is O(N) because we need to have a separate 
call to the SAT solver for each variable (assumption).  

3.5.3 Efficient Canonical Implementation 
The efficient implementation of the algorithms in 

Section 3.4 has complexity O(max(log2(N), M)) where N is 
the number of variables (assumptions) and M is the number 
of positive literals in the resulting assignment (subset). 

If the resulting satisfiable assignment (unsatisfiable 
subset) is sparse, that is, contains only a few positive 
literals, the complexity is logarithmic in the number of 
variables, because the efficient implementation uses binary 
search as a divide-and-conquer strategy. 

If the resulting assignment (or subset) is dense, that is, 
contains many positive literals, the complexity deteriorates 
to linear in the number of these literals, because for each of 
them, we need a SAT call to confirm that it is needed. 

3.6 Practical Considerations 
In practical applications, the simple way of using the SAT 

solver is the fastest one but it is not canonical and the result 
returned is not guaranteed to be minimal.  For example, if 
we use analyze_final to expend minterm into a cube, the 
resulting cube is not guaranteed to be prime. 

The naïve canonical implementation discussed above 
guarantees uniqueness and minimality but it is often much 
slower than the non-canonical implementation. 

The efficient canonical implementation is the best one for 
using in practical applications. It guarantees uniqueness and 
minimality while keeping the runtime reasonable. 

4. APPLICATIONS 
Listed below are practical applications of LEXSAT and 

LEXUNSAT in the synthesis and verification areas. In each 
case, their use is to make the solution unique (independent 
of the CNF computation and the SAT solver) and/or to 
improve the quality of results (by guaranteeing the 
minimality of the solution). 
 SAT-based computation of irredundant sum-of-

products (ISOP) [20] (see also Section 5.1). In [20], 
efficient LEXSAT and naïve LEXUNSAT are used, 
without identifying that the algorithm is LEXUNSAT. 

 LEXUNSAT can be used to efficiently compute 
minimal subsets of Boolean divisors in various SAT-
based formulations of re-substitution [9], functional 
decomposition [10][11], and ECO [22]. 

 LEXSAT can be used to enumerate different satisfying 
assignments of a Boolean formula; e.g. for finding 
diverse witnesses falsifying safety properties in 
Bounded Model Checking (BMC) [4], which is 
currently done using other methods [17]. 

 LEXUNSAT can be used to minimize the number of 
care bits in the counter-examples, which helps 
debugging hardware designs (see Section 5.2). 

 LEXSAT has been independently proposed in the 
context of SMT solving [18].  

An overview of other applications of lexicographical 
algorithms can be found in [12]. 

5. EXPERIMENTS 
The proposed algorithms were implemented in C and 

evaluated in two practical applications. 

5.1 Computing Canonical ISOP 
In this experiment, we compute ISOP for single-output 

functions extracted from design blocks considered for 
collapsing (deriving the SOP representation from the 
original circuit structure, followed by deriving a new circuit 
structure by factoring the resulting SOP). 

The following ISOP computations have been compared: 
 BDDovo: BDD-based ISOP [13][6] for the original 

variable order without dynamic variable reordering, 
 BDDdvr: BDD-based ISOP [13][6] for the original 

variable order with dynamic variable reordering, 
 SATovo: SAT-based ISOP with LEXSAT and 

LEXUNSAT for the original variable order, 
 SATrvo: SAT-based ISOP with LEXSAT and 

LEXUNSAT for a random variable order. 
Table 1 shows the problem statistics (the number of 

inputs, outputs, AIG nodes, logic levels, and the number of 
cubes in the ISOP) and compares the runtimes, in 
milliseconds, averaged over 10 runs for each algorithm 
measured on a Intel Xeon E5-2698 v4 CPU @ 2.20 GHz. 
A dash in the algorithm means that the algorithm timed out 
after 5 minutes. The shaded cells represent the best 
runtimes for each example. 

Although all ISOPs are canonical, they are not the same 
due to using different variable orders. However, for these 
benchmarks, all methods produced ISOPs with the same 
cube count listed in column “Cubes”, except one case 



(test11), for which SAT-based computation with a random 
order resulted in the ISOP with four additional cubes. 

The following observations can be made from Table 1: 
 The quality of results (the cube count) and average 

runtime of the BDD-based ISOP and the SAT-based 
ISOP are close, with the SAT-based ISOP being on 
average about 70% slower, compared to BDDs, for 
those test-cases where both computations finished. 

 SAT-based computation is more robust and finishes on 
all examples where BDD-based fails. For case test14, 
all algorithms timed out. 

 SAT-based computation is less variable-order 
dependent, except the first case (test1) whose runtime 
increases substantially with a random variable order. 

It should be noted that the results listed in Table 1 differ 
from those appearing in [20] in that they use the efficient 
implementation of LEXUNSAT to achieve canonicity. For 
a fair comparison between the algorithms, only one single-
output function (the function with the largest support set 
and AIG node count) is considered for each benchmark. 

5.2 Minimizing Counter-Examples 
Many formal verification algorithms return a counter-

example to demonstrate a failure of a safety property or a 
difference in the behavior of two designs that are expected 
to be equivalent. Because the counter-example is used by 
the designer to find the reason of the failure, it is often 
desirable to minimize the number of care-bits in it; the 
remaining don’t-care bits can be set to any value without 
affecting the failure. 

The counter-example minimization problem can be solved 
by a call to LEXUNSAT. The SAT instance is created by 
unfolding of the design to the failure depth, asserting that 
the property holds, and using assumptions to represent the 
values of primary inputs in each timeframe, according to the 
counter-example. The resulting problem is UNSAT because 
the counter-example should fail the property. A sufficient 
assumption subset produced by LEXUNSAT yields a 
minimal set of care-bits of the counter-example. 

The first section of Table 2 lists statistics (the number of 
primary inputs, flip-flops, and AIG nodes) for several 
single-output safely model checking benchmarks from the 
recent Hardware Model Checking Competitions [3]. The 
second section of Table 2 lists the statistics of counter-
examples produced by BMC [4] applied to the AIG 
representations of the benchmarks preprocessed by a 
synthesis script. The statistics include the zero-based 
number of the timeframe, in which the property failed, and 
the AIG node count in the unfolding up to this timeframe. 

 The third section of Table 2 contains the number of bits 
in the original counter-example (column “Init”) and the 
number of care-bits produced by the following algorithms: 
 Struct: Structural priority-based counter-example 

minimization without SAT [16]. 
 SATaf: SAT-based minimization, which proves the 

instance UNSAT and uses fast heuristic procedure 
analyze_final, resulting in a non-canonical subset of 
care-bits that is not guaranteed to be minimal. 

 SATlu: SAT-based minimization, which uses one call 
to LEXUNSAT to derive a canonical minimal subset of 
care-bits for the given variable order. 

The variable order given to LEXUNSAT is the original 
order of inputs in each time frame, considered from the 
initial one to the one where the failure happens. Reversing 
this order tends to produce different subsets, which can be 
up to 10% larger or smaller than the one reported Table 2. 

The last section of Table 2 compares the runtimes of the 
two SAT-based algorithms on an Intel i7-4600U CPU @ 
2.1GHz. The comparison shows that LEXUNSAT is more 
time-consuming but leads to 30% fewer care-bits than the 
procedure analyze_final. We believe that the improvement 
in designer productivity afforded by smaller counter-
examples justifies the increase in runtime.  

6. CONCLUSIONS 
The two popular computation engines, BDDs and SAT, 

offer complementary ways of solving Boolean problems, 
which can be seen as trading space for time. The canonicity 
of BDDs makes them easy to use but difficult to construct 
without exceeding memory limits, in particular, for some 
practical functions, such as multipliers. The non-canonicity 
of SAT makes SAT instances easy to construct but difficult 
to solve, due to exceeding time limits for hard problems. 

When BDDs are used, canonical representation results in 
canonical computation. This paper shows, for the first time, 
that without building a canonical representation, SAT-based 
computations can be made canonical for both satisfiable 
and unsatisfiable instances, at the cost of increased runtime. 

The canonicity of computation in the case of both BDDs 
and SAT is achieved by fixing a variable order. For BDDs, 
the ordering of all variables is necessary. In the case of 
SAT, the order has to be fixed only for variables used to 
express the results of the computation, which also helps the 
SAT solver perform well on difficult problem instances. 

We have shown that, unlike BDDs, SAT solvers are 
practically insensitive to variations in the variable order. 
This allows for exploiting variable orders in LEXUNSAT 
to achieve optimization objectives. For example, ordering 
less important variables first decreases the likelihood of 
their appearance in the solution. However, the exploration 
of the impact of a variable order on the quality of solutions 
is deferred to future work. 

Also, unlike BDDs, SAT-based computations can relax 
canonicity by using regular SAT calls, instead of LEXSAT 
and LEXUNSAT, in order to improve the runtime when 
canonicity is not required. 

In summary, the canonicity of SAT-based computations 
has several practical advantages, such as uniqueness of 
solutions, reproducibility of runs for different SAT solvers, 
good performance for various variable orders, and 
improved quality of results.  
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Table 1: Comparing BDD-based and SAT-based ISOP computation algorithms. 
 

Testcase Problem statistics BDDovo BDDdvr SATovo SATrvo 
 PIs POs ANDs Levels Cubes T,msec T,msec T,msec T,msec 

test01 160 1 405 21 105 11.5 20.1 89.5 22141.8 
test02 104 1 321 12 97 8.7 - 28.9 29.9 
test03 70 1 215 12 64 5.7 10.8 14.3 13.9 
test04 135 1 381 14 128 - 92.0 65.3 64.8 
test05 148 1 348 29 232 13.6 22.8 240.3 298.6 
test06 85 1 228 26 60 10.0 15.4 32.2 36.3 
test07 50 1 147 16 95 - 175.7 22.8 27.2 
test08 60 1 187 11 56 6.5 11.6 11.3 12.2 
test09 94 1 256 20 16 6.0 9.7 12.2 12.4 
test10 105 1 136 14 67 - - 18.5 17.4 
test11 107 1 282 22 110 75.0 60.9 64.4 73.3 
test12 31 1 70 13 270 8.2 9.6 32.3 37.0 
test13 119 1 292 41 56 - 74.2 19.7 21.4 
test14 6246 1 173954 387 - - - - - 
test15 10 1 15 5 16 6.3 7.0 2.9 2.9 
test16 10 1 20 9 6 5.5 7.6 2.1 2.2 
test17 8 1 18 9 5 5.4 7.6 1.9 1.8 
test18 4110 1 12288 26 4097 1716.9 7462.7 53335.5 67215.2 
Geomean      1.000 1.400 1.593 1.702 

Table 2: Comparing structural and SAT-based counter-example minimization algorithms. 
 

Testcase Original property cone Time frames The number of care-bits Runtime, sec 
 PIs FFs ANDs Depth ANDs Init Struct SATaf SATlu Taf Tlu 

6s41 19 959 3274 73 112493 1406 173 197 90 0.01 5.52 
6s134 36 571 2095 168 22511 6084 944 295 240 0.02 1.08 
6s162 73 156 1244 73 72424 5402 602 565 401 0.01 8.83 
6s199 144 1660 13666 49 178258 7200 459 229 184 0.01 9.15 
bob12s03 617 5174 32335 12 41643 8021 618 97 57 0.01 0.59 
bobtuttt 2807 111 9482 27 249240 78596 308 216 207 0.02 22.80 
Geomean        1.00 0.70   

 


