
Canonical Computation without Canonical Representation

Alan Mishchenko Robert Brayton

Department of EECS
University of California, Berkeley

{alanmi, brayton}@berkeley.edu

 Ana Petkovska Mathias Soeken

School of Comp. and Comm. Sciences
EPFL, Lausanne, Switzerland

 {ana.petkovska, mathias.soeken}@epfl.ch

 Luca Amarú Antun Domic

Synopsys Inc., Design Group
Sunnyvale, California, USA

{luca.amaru, antun.domic}@synopsys.com

ABSTRACT
A representation of a Boolean function is canonical if, given
a variable order, only one instance of the representation is
possible for the function. A computation is canonical if the
result depends only on the Boolean function and a variable
order, and does not depend on how the function is
represented and how the computation is implemented.

In the context of Boolean satisfiability (SAT), canonicity of
the computation implies that the result (a satisfying
assignment for satisfiable instances and an abstraction of
the unsat core for unsatisfiable instances) does not depend
on the functional representation and the SAT solver used.

This paper shows that SAT-based computations can be
made canonical, even though the SAT solver is not using a
canonical data structure. This brings advantages in EDA
applications, such as irredundant sum of product (ISOP)
computation, counter-example minimization, etc, where the
uniqueness of solutions and/or improved quality of results
justify a runtime overhead.

1. INTRODUCTION
Canonical representations of Boolean functions, such as

truth tables, binary decision diagrams (BDDs) [5], or zero-
suppressed decision diagrams (ZDDs) [14], represent
functions in a unique way, that is, for a given function with
a given variable order, only one representation is possible.
As a consequence, if a canonical representation is
constructed for two functions, they are equivalent if and
only if the representations are isomorphic.

Another consequence of using a canonical representation
is that it allows for results of Boolean operations to be
canonical, that is, unique for a given function and a given
variable order. For example, when an irredundant sum of
products (ISOP) is computed from the BDD by the Minato-
Morreale algorithm [13][6], the resulting ISOP is unique
and enjoys some other interesting properties [15].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
DAC '18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06…$15.00
https://doi.org/10.1145/3195970.3196039

The present paper focuses on SAT-based computations
and shows that the artifacts produced by the solver can be
made canonical for both satisfiable or unsatisfiable calls.
This is achieved by introducing an additional computational
layer between the SAT solver and the calling application.

It is somewhat non-intuitive that the canonicity of the
SAT-based computations is achieved without building a
canonical data structure, such as a BDD or a ZDD.
Nevertheless, Boolean functions represented using Boolean
circuits or conjunctive normal forms (CNFs), which are not
canonical, can yield canonical SAT-based computations if a
variable ordering is provided to the solver.

In practical applications of Boolean satisfiability (SAT), a
SAT solver, in addition to the answer “yes” (satisfiable) or
“no” (unsatisfiable), can be made to return other artifacts.

In the case of a satisfiable SAT instance, a witness
represented as a variable assignment can be returned. This
witness can be made unique (canonical) by selecting it to be
the lexicographically smallest using a variable order. Such
an algorithm, LEXSAT, was introduced by Knuth [8] and
Nadel and Ryvchin [18], and improved by Petkovska et al.
[19]. In this work, we review LEXSAT and combine it with
an associated novel algorithm called LEXUNSAT. This
algorithm derives an assignment of variables that can be
seen as a unique witness for unsatisfiable SAT calls.

To understand how unsatisfiable calls are made canonical,
consider an incremental SAT run when a set of assumptions
(temporary unit clauses) is passed to the solver. If the
problem is unsatisfiable, the solver can return a sufficient
subset of assumptions using procedure analyze_final [7].
This subset is a type of abstraction of the unsat core; the
unsat core is expressed in terms of the original assumptions.

The main contribution of this paper is introducing
efficient implementation of LEXUNSAT and demonstrating
its usefulness in several practical applications. LEXUNSAT
makes the computed subset of assumptions canonical
similarly to how LEXSAT produces a canonical witness.

The LEXUNSAT algorithm was first mentioned in [21],
without emphasizing its canonicity. Under a different name,
LEXUNSAT was used in the context of a practical
application [23] and led to superior results. The present
paper focuses on different applications and on the
importance of both LEXSAT and LEXUNSAT for making
some SAT-based computations canonical.

We note that having a variable order plays a central role
in making both BDD-based and SAT-based computations
canonical. In the case of canonical reduced ordered BDDs,
all variables have to be ordered; otherwise a BDD cannot

be constructed and used. In the case of SAT, only a subset
of all problem variables (such as inputs of a node) have to
be ordered. This leads to canonical results without imposing
substantial restrictions on the variable decision heuristics
used in a SAT solver, which could slow it down.

In this paper, Section 2 contains necessary background.
Section 3 gives an overview of the algorithm. Section 4
discusses practical applications. Section 5 presents
experimental results. Section 6 concludes the paper.

2. BACKGROUND

2.1 Boolean Function
In the presentation below, function refers to a completely

specified Boolean function f(X): Bn  B, B = {0,1}. The
support of function f is the set of variables X, which
influence the output value of f. The support size is denoted
by |X|. A minterm of the function is an assignment of its
inputs, for which the function evaluates to 1.

2.2 Boolean Network
A Boolean network (or circuit) is a directed acyclic graph

(DAG) with nodes corresponding to Boolean functions and
edges corresponding to connections between the nodes.

A node n may have zero or more fanins, i.e. nodes driving
n, and zero or more fanouts, i.e. nodes driven by n. The
primary inputs (PIs) are nodes without fanins. The primary
outputs (POs) are a subset of nodes of the network,
connecting it to the environment. A transitive fanin (fanout)
cone (TFI/TFO) of a node is a subset of nodes of the
network, which are reachable through the fanin (fanout)
edges of the node. The TFO support of a node is the set of
primary outputs reachable through the fanouts of the node.

2.3 Boolean Satisfiability
A satisfiability problem (SAT) is a decision problem that

takes a propositional formula of a Boolean function and
answers the question whether the formula is satisfiable, that
is, whether the Boolean function is not a constant 0. The
formula is satisfiable (SAT) if there is an assignment of
variables such that the formula evaluates to 1. Otherwise,
the formula is unsatisfiable (UNSAT). A software program
that solves SAT problems is called a SAT solver.

2.4 Conjunctive Normal Form
To use the SAT solver, important aspects of the problem

are encoded using Boolean variables. Presence or absence
of a given aspect of the problem is represented by a positive
or negative literal of the variable. A disjunction of literals is
called a clause. A conjunction of clauses is called a
conjunctive normal form (CNF), or a SAT instance. The
CNF is loaded into the SAT solver and manipulated by it to
determine whether the CNF is satisfiable or unsatisfiable.

If the instance is unsatisfiable, it is often possible to
remove some clauses from it without making it satisfiable.
A subset of the original clauses of the CNF, for which the
instance is still unsatisfiable, is called an unsat core.

2.5 Incremental SAT
Modern SAT solvers, such as MiniSAT [7] and

Glucose [1], offer a mode of solving that allows executing

multiple SAT calls without restarting the SAT solver. In
this mode, the CNF first loaded into the SAT solver is
reused with the possibility of adding new clauses or
deleting old ones between the calls. To do this efficiently,
the SAT solver accepts assumptions, which are single-
literal clauses holding for one call to the SAT solver. The
process of determining the satisfiability of a SAT instance
under assumptions is called incremental SAT solving.

2.6 Witnesses and Sufficient Assumption Subsets
When a SAT problem is satisfiable, the solver returns a

counter-example, or a witness, which is useful in practice to
reproduce a particular situation and/or understand the
reason of a malfunction in the design. For example, a
witness for the CNF representing a Boolean function shows
one assignment of values of the input variables for which
the function takes value 1.

When an incremental SAT problem is unsatisfiable, a
modern SAT solver, such as MiniSAT [7] or Glucose [1],
can use a procedure called analyze_final to derive a subset
of assumptions that are sufficient to make the instance
unsatisfiable. This sufficient assumption subset can be seen
as an abstraction of the unsat core, that is, the unsat core
expressed in terms of the assumptions given to the solver.

For example, if a satisfying assignment of a CNF
representing a Boolean function is given as a set of
assumptions to a SAT solver whose CNF represents the
complement of the function, the incremental run is
unsatifiable because a minterm of the function cannot be a
minterm of its complement. Moreover, the resulting
sufficient assumption subset returned by the SAT solver in
this case represents an implicant of the function computed
by expanding the given minterm.

The implementation of analyze_final is efficient because
it involves only one additional call to the conflict analysis
procedure of the SAT solver to determine the result of the
root-level (final) conflict in terms of the root-level
(assumption-based) decisions. However, the resulting
subset is not guaranteed to be minimal, that is, it may be
possible to remove some assumptions from the subset while
preserving the unsatisfiability of the incremental SAT call.
Thus, in the example above the implicant may not be prime.

2.7 Activation Literals
In many practical applications, assumptions given to the

incremental SAT solver are activation literals, that is,
literals of Boolean variables activating some constraints in
the problem formulation. Activation literals are assumed to
be active-high, that is, when an activation literal is positive,
the constraint is activated. For example, if a certain node
appears in the support of another node, the corresponding
assumption is a positive activation literal.

If assumptions given to the SAT solver are not activation
literals, a set of new Boolean variables can be introduced to
create activation literals. A new two-literal clause is added
for each activation literal. The clause is such that, when a
new variable is 1, the corresponding assumption is implied;
otherwise, when it is 0, there is no implication.

3. ALGORITHMS
This section introduces two algorithms, LEXSAT and

LEXUNSAT. They are introduced first using a simple
pseudo-code, followed by a more efficient formulation.

3.1 Simple LEXSAT
The pseudo-code of LEXSAT is given in Algorithm 1. It

takes a CNF of a function F loaded into the SAT solver,
and an array of literals A. Initially A contains all negative
literals in the given variable order. Upon termination, A
contains the LEXSAT assignment. This assignment is the
smallest satisfying assignment of F in the following sense:
if we look at each literal as a binary digit in the order of
their appearance in A and consider an integer number
formed by these digits, the resulting number is the smallest
among all numbers created for any satisfying assignment.

array LEXSAT(cnf F, array A) {
 for (i = 0; i < |A|; i++) { // consider literals in the given order
 if (F is UNSAT under assumptions A[0] through A[i])
 invert the polarity of literal A[i] to be positive;
 }
 return A;
}

Algorithm 1: A naïve implementation of LEXSAT.

Algorithm 1 considers literals in the given order. It checks
if a satisfying assignment with the negative literal exists. If
so, the literal remains negative (stands for 0 in the satisfying
assignment). Only if a satisfying assignment with the
negative literal does not exist, the literal is changed to be
positive (stands for 1 in the satisfying assignment). The
resulting assignment is the lexicographically smallest,
where the MSB (LSB) is the first (last) literal in the array A.

It should be noted that Algorithm 1 assumes that F is
satisfiable. If F is unsatisfiable, the algorithm returns an
invalid satisfying assignment.

3.2 Simple LEXUNSAT
As shown in Section 2.7, it can be assumed that the

assumptions given to the SAT solver are active-high
activation literals, that is, a constraint is activated when a
corresponding assumption is a positive literal.

The pseudo-code of LEXUNSAT, given in Algorithm 2,
takes a CNF of F loaded into the SAT solver, and an array
of assumptions A in the given order. Initially, the array
contains all positive literals. Upon termination, the array
contains the lexicographically smallest sufficient
assumption subset. This subset is the smallest for function F
in the following sense: if we look at each activation literal
as a binary digit in the order of their appearance in A and
consider an integer number formed by these digits, this
number is the smallest among all similar numbers created
by considering other unsatisfiable subsets of assumptions.

array LEXUNSAT(cnf F, array A) {
 for (i = 0; i < |A|; i++) { // consider literals in the given order
 if (F is UNSAT under assumptions in A excluding A[i])
 invert the polarity of A[i] to be negative;
 }
 return A;
}

Algorithm 2: A naïve implementation of LEXUNSAT.

It is easy to see that the resulting subset is minimal. The
fact that the subset is lexicographically smallest implies that
we cannot replace a positive literal by a negative one
without making the problem satisfiable.

Algorithm 2 considers assumptions one at a time in the
order given. It checks if F is unsatisfiable with one
assumption skipped (the corresponding activation literal
complemented). If so, the assumption literal is made
negative and excluded from future checks. If F is satisfiable
with assumption i excluded, the A[i] is kept positive. Thus,
the resulting polarity of assumption literals is the lexically
smallest, where the MSB is the first literal in A.

Algorithm 2 assumes that F is unsatisfiable. If F is
satisfiable, the algorithm returns an invalid subset.

3.3 Comparing LEXSAT and LEXUNSAT
Comparing the pseudo-code of Algorithms 1 and 2 shows

that they are very similar and can be derived from each
other by the following modifications:
 initialize array A with all negative (or positive) literals;
 check satisfiability of the formula with literals up to the

given one (or with all literals);
 if the formula is UNSAT, complement the literal,

making it positive (or negative).
LEXSAT and LEXUNSAT work in different directions.

LEXSAT starts with the smallest (all-0) assignment and
works its way up to the smallest valid satisfying assignment.
LEXUNSAT starts with the largest (all-1) subset of
assumptions and works its way down to find the smallest
valid subset that makes the problem unsatisfiable. Both
algorithms use the variable order by setting the MSB to 0
whenever possible before moving to less significant digits.

3.4 Efficient Implementation
Since the algorithms are similar, only LEXUNSAT is

considered in this section.
The procedure takes a CNF representation of F and the

ordered array of assumptions A as a set of positive
activation literals. It returns a minimized version of A.

array LEXUNSAT(cnf F, array A)
{
 if (|A| == 1) { // there is only one assumption in A
 if (F is UNSAT with A as a negative literal)
 return A as negative literal; // this assumption is not needed
 else
 return A as positive literal; // this assumption is needed
 }
 // divide assumptions into two parts
 A_msb = entries in A with index in range [0; |A|/2]
 A_lsb = entries in A with index in range [|A|/2+1; |A|-1]

 // solve the problem for the MSB part
 assume A_lsb as positive literals;
 B = LEXUNSAT(F, A_msb as positive literals);
 unassume A_lsb as positive literals;

 // solve the problem for the LSB part
 assume literals in B;
 C = LEXUNSAT(F, A_lsb as positive literals);
 unassume literals in B;

 return literals in B followed by literals in C;
}

Algorithm 3: An efficient implementation of LEXUNSAT.

The implementation uses a divide-and-conquer strategy
for minimizing the subset of assumptions. It divides the
array A into two parts, the MSB part and the LSB part.
First, the algorithm assumes the LSB assumptions in the
solver and calls itself recursively for the MSB part. Then, it
reverses the order of parts, and calls itself recursively for
the resulting LSB part. Finally, the subsets computed by the
two recursive calls are combined.

3.5 Complexity Considerations
In this section, we compare the complexities of the

following three procedures:
 the non-canonical implementation,
 the naïve canonical implementation,
 the efficient canonical implementation.
The complexity of a procedure is expressed as the number

of incremental SAT calls needed to implement it. The
following observations can be made.

3.5.1 Non-Canonical Implementation
The non-canonical implementation has complexity O(1)

because it takes only one SAT call. For example, when we
run the solver, we either get a satisfying assignment or
prove it unsatisfiable and use analyze_final to compute a
sufficient assumption subset.

3.5.2 Simple Canonical Implementation
The naïve implementation in Sections 3.2 and 3.3 has

complexity O(N), where N is the number of variables in the
ordered subset of variables (for LEXSAT) or the number of
assumptions given to the SAT solver (for LEXUNSAT).
The complexity is O(N) because we need to have a separate
call to the SAT solver for each variable (assumption).

3.5.3 Efficient Canonical Implementation
The efficient implementation of the algorithms in

Section 3.4 has complexity O(max(log2(N), M)) where N is
the number of variables (assumptions) and M is the number
of positive literals in the resulting assignment (subset).

If the resulting satisfiable assignment (unsatisfiable
subset) is sparse, that is, contains only a few positive
literals, the complexity is logarithmic in the number of
variables, because the efficient implementation uses binary
search as a divide-and-conquer strategy.

If the resulting assignment (or subset) is dense, that is,
contains many positive literals, the complexity deteriorates
to linear in the number of these literals, because for each of
them, we need a SAT call to confirm that it is needed.

3.6 Practical Considerations
In practical applications, the simple way of using the SAT

solver is the fastest one but it is not canonical and the result
returned is not guaranteed to be minimal. For example, if
we use analyze_final to expend minterm into a cube, the
resulting cube is not guaranteed to be prime.

The naïve canonical implementation discussed above
guarantees uniqueness and minimality but it is often much
slower than the non-canonical implementation.

The efficient canonical implementation is the best one for
using in practical applications. It guarantees uniqueness and
minimality while keeping the runtime reasonable.

4. APPLICATIONS
Listed below are practical applications of LEXSAT and

LEXUNSAT in the synthesis and verification areas. In each
case, their use is to make the solution unique (independent
of the CNF computation and the SAT solver) and/or to
improve the quality of results (by guaranteeing the
minimality of the solution).
 SAT-based computation of irredundant sum-of-

products (ISOP) [20] (see also Section 5.1). In [20],
efficient LEXSAT and naïve LEXUNSAT are used,
without identifying that the algorithm is LEXUNSAT.

 LEXUNSAT can be used to efficiently compute
minimal subsets of Boolean divisors in various SAT-
based formulations of re-substitution [9], functional
decomposition [10][11], and ECO [22].

 LEXSAT can be used to enumerate different satisfying
assignments of a Boolean formula; e.g. for finding
diverse witnesses falsifying safety properties in
Bounded Model Checking (BMC) [4], which is
currently done using other methods [17].

 LEXUNSAT can be used to minimize the number of
care bits in the counter-examples, which helps
debugging hardware designs (see Section 5.2).

 LEXSAT has been independently proposed in the
context of SMT solving [18].

An overview of other applications of lexicographical
algorithms can be found in [12].

5. EXPERIMENTS
The proposed algorithms were implemented in C and

evaluated in two practical applications.

5.1 Computing Canonical ISOP
In this experiment, we compute ISOP for single-output

functions extracted from design blocks considered for
collapsing (deriving the SOP representation from the
original circuit structure, followed by deriving a new circuit
structure by factoring the resulting SOP).

The following ISOP computations have been compared:
 BDDovo: BDD-based ISOP [13][6] for the original

variable order without dynamic variable reordering,
 BDDdvr: BDD-based ISOP [13][6] for the original

variable order with dynamic variable reordering,
 SATovo: SAT-based ISOP with LEXSAT and

LEXUNSAT for the original variable order,
 SATrvo: SAT-based ISOP with LEXSAT and

LEXUNSAT for a random variable order.
Table 1 shows the problem statistics (the number of

inputs, outputs, AIG nodes, logic levels, and the number of
cubes in the ISOP) and compares the runtimes, in
milliseconds, averaged over 10 runs for each algorithm
measured on a Intel Xeon E5-2698 v4 CPU @ 2.20 GHz.
A dash in the algorithm means that the algorithm timed out
after 5 minutes. The shaded cells represent the best
runtimes for each example.

Although all ISOPs are canonical, they are not the same
due to using different variable orders. However, for these
benchmarks, all methods produced ISOPs with the same
cube count listed in column “Cubes”, except one case

(test11), for which SAT-based computation with a random
order resulted in the ISOP with four additional cubes.

The following observations can be made from Table 1:
 The quality of results (the cube count) and average

runtime of the BDD-based ISOP and the SAT-based
ISOP are close, with the SAT-based ISOP being on
average about 70% slower, compared to BDDs, for
those test-cases where both computations finished.

 SAT-based computation is more robust and finishes on
all examples where BDD-based fails. For case test14,
all algorithms timed out.

 SAT-based computation is less variable-order
dependent, except the first case (test1) whose runtime
increases substantially with a random variable order.

It should be noted that the results listed in Table 1 differ
from those appearing in [20] in that they use the efficient
implementation of LEXUNSAT to achieve canonicity. For
a fair comparison between the algorithms, only one single-
output function (the function with the largest support set
and AIG node count) is considered for each benchmark.

5.2 Minimizing Counter-Examples
Many formal verification algorithms return a counter-

example to demonstrate a failure of a safety property or a
difference in the behavior of two designs that are expected
to be equivalent. Because the counter-example is used by
the designer to find the reason of the failure, it is often
desirable to minimize the number of care-bits in it; the
remaining don’t-care bits can be set to any value without
affecting the failure.

The counter-example minimization problem can be solved
by a call to LEXUNSAT. The SAT instance is created by
unfolding of the design to the failure depth, asserting that
the property holds, and using assumptions to represent the
values of primary inputs in each timeframe, according to the
counter-example. The resulting problem is UNSAT because
the counter-example should fail the property. A sufficient
assumption subset produced by LEXUNSAT yields a
minimal set of care-bits of the counter-example.

The first section of Table 2 lists statistics (the number of
primary inputs, flip-flops, and AIG nodes) for several
single-output safely model checking benchmarks from the
recent Hardware Model Checking Competitions [3]. The
second section of Table 2 lists the statistics of counter-
examples produced by BMC [4] applied to the AIG
representations of the benchmarks preprocessed by a
synthesis script. The statistics include the zero-based
number of the timeframe, in which the property failed, and
the AIG node count in the unfolding up to this timeframe.

 The third section of Table 2 contains the number of bits
in the original counter-example (column “Init”) and the
number of care-bits produced by the following algorithms:
 Struct: Structural priority-based counter-example

minimization without SAT [16].
 SATaf: SAT-based minimization, which proves the

instance UNSAT and uses fast heuristic procedure
analyze_final, resulting in a non-canonical subset of
care-bits that is not guaranteed to be minimal.

 SATlu: SAT-based minimization, which uses one call
to LEXUNSAT to derive a canonical minimal subset of
care-bits for the given variable order.

The variable order given to LEXUNSAT is the original
order of inputs in each time frame, considered from the
initial one to the one where the failure happens. Reversing
this order tends to produce different subsets, which can be
up to 10% larger or smaller than the one reported Table 2.

The last section of Table 2 compares the runtimes of the
two SAT-based algorithms on an Intel i7-4600U CPU @
2.1GHz. The comparison shows that LEXUNSAT is more
time-consuming but leads to 30% fewer care-bits than the
procedure analyze_final. We believe that the improvement
in designer productivity afforded by smaller counter-
examples justifies the increase in runtime.

6. CONCLUSIONS
The two popular computation engines, BDDs and SAT,

offer complementary ways of solving Boolean problems,
which can be seen as trading space for time. The canonicity
of BDDs makes them easy to use but difficult to construct
without exceeding memory limits, in particular, for some
practical functions, such as multipliers. The non-canonicity
of SAT makes SAT instances easy to construct but difficult
to solve, due to exceeding time limits for hard problems.

When BDDs are used, canonical representation results in
canonical computation. This paper shows, for the first time,
that without building a canonical representation, SAT-based
computations can be made canonical for both satisfiable
and unsatisfiable instances, at the cost of increased runtime.

The canonicity of computation in the case of both BDDs
and SAT is achieved by fixing a variable order. For BDDs,
the ordering of all variables is necessary. In the case of
SAT, the order has to be fixed only for variables used to
express the results of the computation, which also helps the
SAT solver perform well on difficult problem instances.

We have shown that, unlike BDDs, SAT solvers are
practically insensitive to variations in the variable order.
This allows for exploiting variable orders in LEXUNSAT
to achieve optimization objectives. For example, ordering
less important variables first decreases the likelihood of
their appearance in the solution. However, the exploration
of the impact of a variable order on the quality of solutions
is deferred to future work.

Also, unlike BDDs, SAT-based computations can relax
canonicity by using regular SAT calls, instead of LEXSAT
and LEXUNSAT, in order to improve the runtime when
canonicity is not required.

In summary, the canonicity of SAT-based computations
has several practical advantages, such as uniqueness of
solutions, reproducibility of runs for different SAT solvers,
good performance for various variable orders, and
improved quality of results.

ACKNOWLEDGMENTS
This work was supported in part by SRC contract

2710.001 “SAT-based methods for scalable synthesis and
verification”, NSF/NSA grant “Enhanced equivalence
checking in cryptoanalytic applications”, and by the Swiss
National Science Foundation (200021-169084 MAJesty).

REFERENCES
[1] G. Audemard and L. Simon, SAT solver Glucose 3.0 (2013),

http://www.labri.fr/perso/lsimon/glucose/

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification.
http://www-cad.eecs.berkeley.edu/~alanmi/abc

[3] Hardware Model Checking Competitions. fmv.jku.at/hwmcc
[4] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu,

“Symbolic model checking using SAT procedures instead of
BDDs”, In Proc. DAC’99, pp. 317-320.

[5] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation”. IEEE Trans. Computers, Vol. C-35 (8), August
1986, pp. 677-691.

[6] O. Coudert, J. C. Madre, H. Fraisse, and H. Touati, ”Implicit prime
cover computation: An overview”, In Proc. SASIMI '93.

[7] N. Een and N. Sörensson, “An extensible SAT-solver”, In Proc.
SAT’03, LNCS 2919, pp. 502-518.

[8] D. E. Knuth. Volume 4, Fascicle 6: Satisfiability, The Art of
Computer Programming. Addison-Wesley, Reading, Mass., 2015.

[9] C.-C. Lee, J.-H. R. Jiang, C.-Y. (R.) Huang, and A. Mishchenko,
“Scalable exploration of functional dependency by interpolation and
incremental SAT solving”, In Proc. ICCAD'07.

[10] R.-R. Lee, J.-H. R. Jiang, and W.-L. Hung, “Bi-decomposing large
Boolean functions via interpolation and satisfiability solving”, In
Proc. DAC'08, pp. 636-641.

[11] H.-P. Lin, J.-H. R. Jiang, and R.-R. Lee, “To SAT or not to SAT:
Ashenhurst decomposition in a large scale”, In Proc. ICCAD'08, pp.
32-37.

[12] J. Marques-Silva, J. Argelich, A. Graca, and I. Lynce, “Boolean
lexicographic optimization: algorithms and applications”, Annals
of Mathematics and Artificial Intelligence, Vol. 62(3), pp. 317-
343, May 2011.

[13] S. Minato, “Fast generation of irredundant sum-of-products forms
from binary decision diagrams”, In Proc. SASIMI'92, pp. 64-73.

[14] S. Minato, “Zero-suppressed BDDs for set manipulation in
combinatorial problems”. In Proc. DAC ‘93, pp. 272-277.

[15] S. Minato and G. DeMicheli. “Finding all simple disjunctive
decompositions using irredundant sum-of-products forms”, In Proc.
ICCAD'98, pp. 111-117.

[16] A. Mishchenko, N. Een, and R. Brayton, "A toolbox for counter-
example analysis and optimization", In Proc. IWLS'13.

[17] A. Nadel, “Generating diverse solutions in SAT”, In Proc. SAT’11,
pp. 287-301.

[18] A. Nadel and V. Ryvchin, “Bit-vector optimization”, In Proc.
TACAS’16, pp. 851-67.

[19] A. Petkovska, A. Mishchenko, M. Soeken, G. De Micheli, R.
Brayton, and P. Ienne, "Fast generation of lexicographic satisfiable
assignments: Enabling canonicity in SAT-based applications", In
Proc. ICCAD'16.

[20] A. Petkovska, A. Mishchenko, D. Novo, M. Owaida, and P. Ienne.
“Progressive generation of canonical irredundant sums of products
using a SAT solver”. In: Advanced Logic Synthesis. Springer, 2018,
pp. 169-188.

[21] A. Petkovska, “Exploiting satisfiability solvers for efficient logic
synthesis”. Ph.D. Thesis, EPFL, 2017.

[22] B.-H. Wu, C.-J. Yang, C.-Y. (R.) Huang, and J.-H. R. Jiang. ”A
robust functional ECO engine by SAT proof minimization and
interpolation techniques”. In Proc. ICCAD'10, pp. 729-734.

[23] D. A. Quoc, M. P.-H. Lin, N.-Z. Lee, L.-C. Chen, J.-H. R. Jiang, A.
Mishchenko, and R. Brayton, "Efficient computation of ECO patch
functions", In Proc. DAC'18.

Table 1: Comparing BDD-based and SAT-based ISOP computation algorithms.

Testcase Problem statistics BDDovo BDDdvr SATovo SATrvo
 PIs POs ANDs Levels Cubes T,msec T,msec T,msec T,msec

test01 160 1 405 21 105 11.5 20.1 89.5 22141.8
test02 104 1 321 12 97 8.7 - 28.9 29.9
test03 70 1 215 12 64 5.7 10.8 14.3 13.9
test04 135 1 381 14 128 - 92.0 65.3 64.8
test05 148 1 348 29 232 13.6 22.8 240.3 298.6
test06 85 1 228 26 60 10.0 15.4 32.2 36.3
test07 50 1 147 16 95 - 175.7 22.8 27.2
test08 60 1 187 11 56 6.5 11.6 11.3 12.2
test09 94 1 256 20 16 6.0 9.7 12.2 12.4
test10 105 1 136 14 67 - - 18.5 17.4
test11 107 1 282 22 110 75.0 60.9 64.4 73.3
test12 31 1 70 13 270 8.2 9.6 32.3 37.0
test13 119 1 292 41 56 - 74.2 19.7 21.4
test14 6246 1 173954 387 - - - - -
test15 10 1 15 5 16 6.3 7.0 2.9 2.9
test16 10 1 20 9 6 5.5 7.6 2.1 2.2
test17 8 1 18 9 5 5.4 7.6 1.9 1.8
test18 4110 1 12288 26 4097 1716.9 7462.7 53335.5 67215.2
Geomean 1.000 1.400 1.593 1.702

Table 2: Comparing structural and SAT-based counter-example minimization algorithms.

Testcase Original property cone Time frames The number of care-bits Runtime, sec
 PIs FFs ANDs Depth ANDs Init Struct SATaf SATlu Taf Tlu

6s41 19 959 3274 73 112493 1406 173 197 90 0.01 5.52
6s134 36 571 2095 168 22511 6084 944 295 240 0.02 1.08
6s162 73 156 1244 73 72424 5402 602 565 401 0.01 8.83
6s199 144 1660 13666 49 178258 7200 459 229 184 0.01 9.15
bob12s03 617 5174 32335 12 41643 8021 618 97 57 0.01 0.59
bobtuttt 2807 111 9482 27 249240 78596 308 216 207 0.02 22.80
Geomean 1.00 0.70

