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Abstract—Due to recent advances, constraint solvers have
become efficient tools for synthesizing optimum Boolean circuits.
We take advantage of this by showing how SAT based exact
synthesis may be used as a method for finding minimum length
Boolean chains. As opposed to other exact synthesis methods,
ours may be easily parallelized, which we use to obtain a speedup
of approximately 48 times. By combining our method with NPN
canonization, we find for the first time the minimum length
chains for all 4- and 5-input functions in terms of 3-input
Boolean operators. Finally, we propose a hardware acceleration
method for NPN canonization. It can be used to speed up NPN
canonization in existing algorithms, and we believe it will allow
us to find all 6-input NPN classes as well.

I. INTRODUCTION

Every n-input Boolean function f over inputs x1, . . . , xn

can be expressed in terms of a Boolean chain. Such a chain
is a sequence of steps that combine previous steps or inputs
using Boolean operators from a set of primitives P . In the
context of digital design it is typical to refer to a Boolean
chain and steps as a logic network and gates, respectively.
But as we are considering some fundamental properties of
Boolean functions, we avoid using such hardware jargon. The
minimum length of a Boolean chain to compute f is referred
to as combinational complexity of f , and denoted C(f) [1].
More formally, a Boolean chain for corresponding to function
of n inputs is a sequence (xn+1, . . . , xn+r), where

xi = gi(x1(i), x2(i), . . . , xm(i)) for n + 1 ≤ i ≤ n + r.

In other words, each step in the chain combines m previous
steps or inputs with x1(i) < x2(i) < · · · < xm(i) < xi using the
m-input Boolean operator gi. Note that this definition allows
for multiple fanouts: multiple distinct steps in the chain may
refer to the same input or step xj .

There are several research directions that address questions
about combinational complexity in different ways. We may
consider these directions as consisting of three different
categories. The first category is concerned with finding set
of primitives such that the complexity of all Boolean functions
f satisfies some upper bound (see, e.g., [2]–[4]). The second is
concerned with finding complex Boolean functions that satisfy
a lower bound for some given set of primitives (see, e.g., [5]–
[7]). Finally, the third is concerned with finding exact numbers
for the combinational complexity given a subset of Boolean
functions and a set of primitives P (see, e.g., [1], [8], [9]).

The work we present in this paper falls into the third category.
Having exact numbers for the combinational complexity of
some small functions can help to find tighter upper bounds
for larger functions by using arguments from Boolean decom-
position. Further, efficient methods for finding small Boolean

TABLE I
COMBINATIONAL COMPLEXITY OF ALL 4-INPUT FUNCTIONS USING

2-INPUT OPERATORS [1]

C(f) Classes Functions

0 2 10
1 2 60
2 5 456
3 20 2474
4 34 10624
5 75 24184
6 72 25008
7 12 2720

TABLE II
COMBINATIONAL COMPLEXITY OF ALL 5-INPUT FUNCTIONS USING

2-INPUT OPERATORS [1]

C(f) Classes Functions

0 2 12
1 2 100
2 5 1140
3 20 11570
4 93 109826
5 389 995240
6 1988 8430800
7 11382 63401728
8 60713 383877392
9 221541 1519125536
10 293455 2123645248
11 26535 195366784
12 1 1920

chains has applications in logic synthesis and optimization. For
example, logic rewriting algorithms optimize logic networks
by replacing subnetworks by optimized Boolean chains [8],
[10].

Knuth [1] has computed the combinational complexity of
all 4- and 5-input Boolean functions composed of all 2-input
Boolean operators. In this work we repeat the experiment
by using all 3-input Boolean operators as set of primitives.
Following Knuth we make use of the property that all functions
that are equivalent up to input negation, input permutation,
and output negation (NPN equivalence, [11]) have the same
combinational complexity. This allows us to consider a subset of
222 and 616,126 functions instead of 65,536 and 4,294,967,296
functions for 4 and 5 inputs, respectively.

In fact, the exact numbers for the combinational complexity
for all 222 NPN classes of the 4-input functions can be found
efficiently by enumerating all Boolean chains until some chain
for each function has been encountered [1]. Table I lists the
combinational complexity for all 4-input functions. A more
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Fig. 1. An example of two different functions that are P-equivalent. The
circuit in (a) computes f = a · b̄ and the circuit in (b) computes g = ā · b.
They can be made equivalent by swapping the inputs to the AND gate.

sophisticated algorithm is required to find exact numbers for
the combinational complexity for all 616,126 NPN classes of
the 5-input functions. Yet, “thanks to a bit of good luck” (as
stated in [1]) and the computer program BOOLCHAINS,1 it was
possible to find the numbers presented in Table II. However,
modifications to the main algorithm were required to find the
numbers for some of these classes. Certain classes were handled
as special cases. The vast majority of computation time was
spent finding the 11-step chains for their 6 corresponding NPN
classes and the 12-step chain for its single corresponding NPN
class [1].

We propose the use of SAT based exact synthesis to find
the combinational complexity of all 4- and 5-input functions,
and show that it is an efficient method for doing so. Exact
synthesis [12]–[14] is a method that, given a set of primitives,
finds optimum Boolean chains. We adjust the typical exact
synthesis formulation by considering 3-input Boolean operators
as the set of primitives. Our findings are that exact synthesis can
efficiently find optimum Boolean chains for all 4- and 5-input
NPN classes. It does so without the requirement to explicitly
enumerating all Boolean chains or to use any case distinctions.
Further, our method does not require any modifications to
handle special cases. Finally, our method is easily parallelized.

II. PRELIMINARIES

A. NPN Canonization

Two functions are P-equivalent if they are equivalent up to
permutation of their inputs. For example the functions f = a · b̄
and g = ā·b are P-equivalent, since we can make them equal by
swapping the inputs a and b (see Figure 1). NPN equivalence
is a generalization of P equivalence. We say that two functions
are NPN-equivalent if they are equivalent up to permutation of
their inputs and negation of their inputs and output [15], [16].
For example, the functions h = a · b + c and i = ā · c̄ + b̄ · c̄
are NPN-equivalent, since h can be made equivalent to i by
negating its output (see Figure 2).

The number of single output n-input functions is 22
n

. This
number grows rapidly as we increase n. NPN canonization is a
way to group Boolean functions into classes that are equivalent
up to permutation and negation of inputs and output. Due to
this grouping into classes we use the terms NPN canonization
and NPN classification interchangeably. We can view an NPN
equivalence class as a set of functions [f ]. When two functions
f and g are part of the same NPN class (i.e., f ∈ [f ] and g ∈

1http://www-cs-faculty.stanford.edu/˜uno/programs/boolchains.tgz

a

b

c

(a)

a

b

c

(b)

Fig. 2. An example of two different functions that are NPN-equivalent.
The circuit in (a) computes h = a · b + c and the circuit in (b) computes
i = ā · c̄ + b̄ · c̄. They are NPN-equivalent because circuit (a) can be made
equivalent to circuit (b) by inverting its output.

TABLE III
COMPARING THE NUMBER OF n-INPUT FUNCTIONS AND NPN CLASSES

n Number of functions Number of NPN classes

0 1 1
1 4 2
2 16 4
3 256 14
4 65,536 222
5 4,294,967,296 616,126
6 18,446,744,073,709,551,616 200,253,952,527,184

[f ]), we say that they are NPN-equivalent. We pick one function
f̂ ∈ [f ] to be the equivalence class representative. We say that
f̂ is the canonical representative of [f ]. Typically, the function
f ∈ [f ] whose truth table corresponds the smallest integer
value is chosen to be the equivalence class representative.

In general, Boolean function classification is useful when
we want to learn something about all functions. For example,
in this paper we are interested in finding the minimum length
Boolean chain for all 5-input functions. Since NPN equivalence
relies only on permutations and negations, it does not affect the
length of Boolean chains. The minimum length Boolean chain
for any f ∈ [f ] can be derived from chain for f̂ , simply by
applying the proper permutations and negations. More formally,
C(f) = C(g) if g ∈ [f ]. Hence, to find C(f) for all n-input
functions we do not need to examine all functions. Instead we
can find C(f̂) only for the NPN class representatives. This is
preferable, since the number of NPN classes is significantly
smaller than the number of functions. Table III lists the number
of functions and classes for up to 6 inputs to illustrate how
significant this difference is. NPN classification has applications
ranging from Boolean matching to logic rewriting and exact
synthesis [17]–[19]. Efficient exact and heuristic algorithms for
NPN classification have been developed over the years [17],
[20], [21].

B. Exact Synthesis

Given a set of primitives P , an exact synthesis algorithm
finds the optimum representation for a Boolean function in
terms of P . Given different objectives, different representations
may be considered optimum. For example, we may be looking
for the representation with the smallest depth, or for the smallest
possible Boolean chain. For example, suppose that P consists
only of the 2-input NAND operator. We could then use exact



synthesis to find the smallest possible chain of NAND operators
that implements a given function.

Exact synthesis is a special case of the well-known mini-
mum circuit size problem (MCSP) [22]. No polynomial time
algorithm for either MCSP or exact synthesis is known, and
they are conjectured to be computationally intractable [23].
Due to its complexity, the application of exact synthesis has
been limited to small functions, i.e., functions of 4 or 5 inputs.

There are various ways in which we can implement an
exact synthesis algorithm [8], [13], [24]. Recently, a class
of implementations that view exact synthesis as a SAT/SMT
problem has been getting more attention. We describe how
the problem may be formulated in such a way that it can be
solved by a SAT/SMT solver. Suppose that we are given the
set of primitives P and the Boolean function f . Our goal is
to find the smallest possible Boolean chain that computes f
in terms of P . Let us assume that our constraint solver has a
procedure solution exists(f, g) which returns true if and only
if there exists a Boolean chain of g operators from P that
computes f . Our goal then reduces to finding the minimum g
for which this is true. We start by setting g ← 0, and checking
if solution exists(f, g) is true. If not, we increment g and
try again until we find a value for g that works. The first g
for which solution exists(f, g) returns SAT is the minimum.
The procedure solution exists(f, g) can be expressed as a
SAT or SMT formula. Hence, we can solve the exact synthesis
problem with a SAT or SMT solver. Other optimization criteria,
such finding the Boolean chain with minimum depth, can be
achieved similarly.

III. EXACT SYNTHESIS METHOD

Our goal in this paper is to find the minimum length Boolean
chains for all 4- and 5-input functions in terms of 3-input
Boolean operators. In other words, P consists of all 3-input
Boolean functions. We present a method that achieves this goal
by using NPN classification and exact synthesis. Roughly, our
method can be divided into two parts: (i) finding all 5-input
NPN classes, and (ii) using exact synthesis to find all minimum
length Boolean chains.

A. Finding All NPN Classes

In order to find the representative f̂ for a given function
f , one needs to visit all functions in [f ] to find the smallest
one. If f has no helpful properties—such as symmetries in the
inputs (see, e.g., [20], [25])—one needs to apply all possible
combinations of 2n input negations and n! input permutations
for both f and f̄ . In order to reduce the effort, we can use a
smart ordering in which all these transformations are applied.
We can use gray code enumeration to invert inputs, thereby
flipping only one bit at a time. In a similar way we can use
plain changes (see, e.g., [26]) to visit all permutations by
swapping two adjacent inputs at each time. Note that it is
possible to combine both concept in an enumeration algorithm
that visits all signed permutations, i.e., permutations in which
elements can be complemented [1].

Since all elements in [f ] are visited when computing f̂ , we
can store this information while enumerating all representatives
of all NPN classes. In the case n = 5, which we consider,
there are 22

5

= 4, 294, 967, 296 single output 5-input functions.
We initialize a map R that is indexed by 5-input functions
and initialize each of its 22

5

elements with Λ (null). In a loop
we find some f for which R(f) = Λ, and compute f̂ using
the algorithm described above. While visiting all elements f ′

in [f ] we set R(f) ← f̂ . Obviously, this loop needs to be
traversed only 616,126 times, the number of NPN classes for
5-input functions. Afterwards, the image of R is the set of all
representatives.

B. Finding Minimum Length Chains With Exact Synthesis

After finding the NPN classes, we use exact synthesis to
find the minimum length Boolean chains. We use a SAT based
method similar to the one introduced in Section II-B. Our
algorithm is an extension of the SAT formulation proposed by
Knuth in [12]. This formulation is itself based on earlier work
from Kojevinok et al. [13] and Eén [14]. To find all minimum
length chains, we simply apply our exact synthesis to every 4-
and 5-input NPN class.

A key difference between our synthesis algorithm and
previous approaches is that our set of primitives P consists of
all 3-input Boolean operators. By contrast, in earlier approaches
P typically consist of 2-input operators, or a small subset of 2-
and 3-input operators [8], [9], [12]. The use of 3-input operators
significantly speeds up synthesis time. We are not aware of
any other exact synthesis algorithm that is able to find these
minimum length Boolean chains, at least not without handling
special cases differently. Moreover, using 3-input operators
leads to novel results: the minimum length chains in terms of
2-input operators are known, but the minimum chains in terms
of 3-input operators are not.

Another difference between our method and others is that
ours is easily parallelized. Exact synthesis may be invoked
in parallel on every NPN class we find, as there are no
dependencies between invocations. Other methods would be
significantly harder to parallelize. For example, enumeration
based methods work by doing a search of different circuit
structures [1]. This search proceeds sequentially, yielding a
sequence of optimum chains. This is not a process that is trivial
to parallelize, as lower parts of the search space tree depend
on choices made above.

For both 4-input and 5-input functions we can find tight
upper bounds on the length of minimum Boolean chains. Our
set of primitives P includes the 2-to-1 multiplexer, as it has
a corresponding 3-input Boolean operator. We can use this
operator to efficiently decompose functions and to find an upper
bound. For example, we can write any 4-input Boolean function
as f(x1, x2, x3, x4) = x̄1·f(0, x2, x3, x4)+x1·f(1, x2, x3, x4).
This is known as Boole’s expansion, and can be implemented
by a 2-to-1 multiplexer. Note that the cofactors of f are 3-input
functions. This means that they can both be implemented by
a single operator from P . Figure 3 shows a sketch of this
decomposition. Therefore, by using a multiplexer to do the
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Fig. 3. We can implement any 4-input Boolean function by using at most
three 3-input operators.

TABLE IV
COMBINATIONAL COMPLEXITY OF ALL 4-INPUT FUNCTIONS USING

3-INPUT OPERATORS

Computation time (sec)
C(f) Classes Functions Avg. Max. Total

0 2 10 0.000 0.000 0.000
1 12 932 0.001 0.002 0.014
2 117 34,250 0.001 0.002 0.173
3 91 30,344 0.003 0.005 0.245

initial expansion and two operators to implement the cofactors,
we can implement any 4-input function with at most 3 operators
from P . A similar argument can be used to show that we can
implement any 5-input function using at most 7 operators.

C. Experimental Results

Using NPN classification reduces the number exact invo-
cations. However, at 616,126 5-input classes the number is
still large. To make the run time of our experiment practical
we run exact synthesis in parallel. We use a machine with 2
Intel Xeon E5-2680 v3 (Haswell) CPUs, each of which has
12 cores with support for 2 hyperthreads. Since the problem is
embarrassingly parallel, we take full advantage of our hardware
by using 48 threads.

We first use our method to find the minimum length Boolean
chains for all 4-input operators. The results of this can be
found in Table IV. This table shows the number of NPN
classes that have a specific combinational complexity C(f),
as well as the corresponding number of functions with that
complexity. Further, it shows run time information. For each
value of C(f) we show the average, maximum, and total
synthesis run time (in seconds) for all the NPN classes with that
combinational complexity. The results show that our synthesis
algorithm is efficient: it never requires more than 0.005 seconds
to synthesize any 4-input function.

The results also show that the upper bound we derived for
4-input functions in Section III-B is exact. There are exactly
91 NPN classes, corresponding to 30344 functions, that cannot
be implemented by using fewer than 3 operators.

Next, we apply our method to finding the minimum length
chains for all 5-input functions. The results can be found
in Table V. Interestingly, the upper bound we found in
Section III-B was not exact in this case. Any 5-input function
can be implemented by using at most 5 3-input operators.

TABLE V
COMBINATIONAL COMPLEXITY OF ALL 5-INPUT FUNCTIONS USING

3-INPUT OPERATORS

Computation time (sec)
C(f) Classes Functions Avg. Max. Total

0 2 12 0.000 0.000 0.000
1 12 2,280 0.001 0.002 0.017
2 311 395,676 0.003 0.005 0.911
3 12,257 58,519,472 0.021 0.089 260.550
4 339,739 2,321,397,216 1.805 57.898 613,082.000
5 263,805 1,914,652,640 18.550 3,261.770 4,893,600.000

As shown by Table V, exact synthesis turns out to be an
efficient method for finding the minimum chains. No function
requires more than an hour to be synthesized, and the average
synthesis time is just 8.938 seconds. This means that our
method is able to find all minimum length chains, without
having to resort to different handling of special cases.

Despite the efficiency of our method, the total sequential
CPU time necessary to find all minimum length chains is
still 8.938 × 616, 126 = 5, 506, 943.478 seconds, simply
due to the large number of functions. However, one useful
property of our method is that it can be easily parallelized. By
running it on 48 threads in parallel the total wall clock time
reduces significantly. We are able to synthesize all functions
in 5,506,943.478

48 = 114727.99 seconds. As there are 86,400
seconds in a day, this allows us to complete synthesis in just
114,727.99

86,400 = 1.3 days. In other words, we are able to take full
advantage of the embarrassingly parallel nature of the problem,
and to obtain a speedup of approximately 48 times. Other
exact synthesis methods, such as those based on exhaustive
enumeration of Boolean chains, are much harder to parallelize.
Therefore, even if we suppose they have better run time per
function, they may still not be as practical as our method.

IV. CONCLUSIONS AND OUTLOOK

We present a method for finding the minimum length
Boolean chains for all 4- and 5-input functions in terms of
3-input operators. Our method is based on NPN classification
and exact synthesis. It can also be easily parallelized, enabling
an approximate 48× reduction in run time. We show that our
exact synthesis implementation is efficient and able to find all
minimum length chains without needing to handling any special
cases differently. For the first time, we present the lengths of
these minimum chains as well as their implementations.

Besides being of academic interest, finding minimum chains
has practical application. For example, they can be used
in logic optimization and technology mapping. It is also
motivated by emerging and existing technologies. In recent
years different nanotechnologies have been implementing more
powerful devices that go beyond the capabilities of traditional
NAND/NOR gates [27]–[29]. These devices implement more
expressive operators, such as 3-input majority or minority
functions. More traditionally, gates such as multiplexers also
correspond to 3-input operators. Hence, finding optimum chains
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based on 3-input operators can help in the design of circuits
based on these technologies.

Classifying 6-input functions—an outlook: The classification
results for 4- and 5-input functions are a self-contained result
and very helpful both in theory and practice. But what if we’d
like to go a step further and investigate the combinational
complexity of all 6-input functions? There exist more than 200
trillion NPN classes and to compute them requires a lot of
time making our classification approach infeasible. We suggest
to investigate whether hardware acceleration can be a solution
to overcome this limitation and compute NPN classes using
dedicated hardware. Such hardware can exploit full parallelism
in computing the NPN representative as shown by the design
in Fig. 4. Input to the circuit is a function f and output its
representative f̂ . Both functions are represented as 64-bits
vectors. The circuit consists of one block to enumerate all
NPN classes and one block to calculate the representative
given all elements in the class.

Input to the first block is the 6-input function f . This block
considers all 26 · 6! = 46, 080 permutations for f , given by
permuting and negating inputs. At the circuit level, both these
operations on inputs result in considering different orders for the
64 bits of f . The same 46, 080 permutations are considered for
f̄ . Hence, the first block has 92, 160 64-bit outputs representing
all functions in [f ]. The second block finds the minimum of
all these functions by a balanced tree of comparators, resulting
in dlog2 92, 160e = 17 levels. The output of this comparator
tree is the smallest functions, i.e., the representative f̂ .
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