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Abstract—In-memory computing devices, such as resistive
RAMs, natively implement material implication or a variant
of the majority-of-three operation called RM3. This operation
generalizes material implication and has been used as target
operation in several logic synthesis algorithms for in-memory
computing applications. In this work, we investigate a homo-
geneous logic network data structure that uses RM3 as only
logic operation. Such a data structure makes an ideal fit for the
use in design automation algorithms for in-memory computing.
We show how to derive RM3 networks from well-known logic
synthesis data structures and a technique how to obtain such
networks using technology mapping.

Index Terms—logic synthesis, in-memory computing, majority
logic

I. INTRODUCTION

Logic synthesis is an essential tool in the design of emerging
technologies. It is inevitable for the task of finding efficient
realizations once the basic logic primitives of the technology
are known. But also before, in the phase of developing a
new technology, logic synthesis can guide how primitives are
modeled in order to obtain the best cost trade-offs [1].

We are investigating logic synthesis for memristive circuits.
Memristive circuits have opened up the promising research
of in-memory computing. As one example, resistive RAMs
(RRAMs) allow for both storing data and performing primi-
tive Boolean operations. These Boolean operations of course
depend on the RRAM’s inherent functionality. It has been
shown that RRAMs can natively perform material implication
x → y (see, e.g., [2], [3], [4]). Since material implication
is universal, one can realize all Boolean functions using a
sequence of in-memory computations and several works for
automatic synthesis of Boolean functions into such sequences
have been proposed (see, e.g., [5], [6], [7], [8], [9]).

More recently, it has further been shown that the logic
capabilities of RRAM devices go beyond material implica-
tion with an expressive implementation of the majority-like
operation 〈xȳz〉 = xȳ ∨ xz ∨ ȳz = (x ∨ ȳ)(x ∨ z)(ȳ ∨ z),
which is true, whenever at least two of the values {x, ȳ, z}
are true. [10].1 The operation has been coined RM3, and
it is in fact a generalization of material implication, since
〈yx̄1〉 = x̄ ∨ y = x → y. Of course, RM3 is therefore also
universal. Several approaches have been presented to obtain
a sequence of in-memory computations based on RM3 for
any combinational Boolean function (see, e.g., [10], [11], [12],
[13]).

1〈xyz〉 means majority-of-three and is true, if and only if at least two
operands are true.

Current logic synthesis approaches for in-memory com-
puting, both based on material implication and RM3, make
use of existing general purpose logic data representations
such as binary decision diagrams [14], [15], And-inverter
graphs [16], implication networks [5], [7], [8], and majority-
inverter graphs [11], [12].

In this paper, we investigate a dedicated homogeneous net-
work structure, called RM3 logic network, which has the RM3

operation as its only logic operation. The paper is explicitly
focusing on logic synthesis based on these primitives and is
motivated by several technological findings in the recent past.
For more details on the technology, the reader is referred to [2],
[3], [4], [10]. We show how RM3 networks can be derived
from other logic representations and some rewriting operations
that allow optimizing RM3 networks for both size and logic
depth. Since RM3 networks are a natural representation of
sequences for in-memory computations, the size and depth
provide for a meaningful cost metric without the need of a
technology mapping step.

II. PRELIMINARIES

A Boolean logic network is a simple digraph whose vertices
are constants, primary inputs, primary outputs, and gates and
whose arcs connect gates to inputs, outputs, and other gates.
Each gate in the logic network realizes a Boolean function.
Also some networks allow an arc to be complemented instead
of having a gate that realizes an inverter. If each gate can
realize an arbitrary Boolean function with up to k inputs,
the network is called k-feasible network or k-LUT network.
LUT means lookup-table and LUT mapping (see, e.g., [17],
[18], [19], [20]) refers to a family of algorithms that obtain k-
feasible networks. If each gate realizes the same Boolean func-
tion, the network is referred to as homogeneous logic network.
A larger flexibility can be achieved by using complemented
arcs and constant inputs. Frequently used homogeneous logic
representations are And-inverter graphs (AIGs, [21], [22])
or Majority-inverter graphs (MIGs, [23]). These are logic
networks with complemented arcs in which all gates realize the
AND or majority-of-three function, respectively. In this paper,
the proposed RM3 networks are homogeneous logic networks
with constant inputs but without complemented arcs in which
each node realizes the operation 〈xȳz〉.

III. SYNTHESIS FROM LOGIC NETWORKS

In this section, we discuss how one can obtain RM3

networks from well-known network data structures used in



logic synthesis.

A. Synthesis from Implication Networks

Implication networks are logic networks which have the
material implication as single logic operation. They have been
extensively used in the design of implication-based memristor
circuits (see, e.g., [5], [6], [7], [8], [9]). With the help of a
constant 0 value, material implication is universal, as

x ∧ y = x→ (y → 0). (1)

We can similarly realize NOT, AND, OR, and NOR [5]:

x̄ = x→ 0 x ∧ y = (x→ (y → 0))→ 0

x ∨ y = (x→ 0)→ y x ∨ y = ((x→ 0)→ y)→ 0
(2)

Synthesis from implication networks is straightforward
since they only contain a single operation x → y, which is
trivially contained in RM3 logic, since

x→ y = x̄ ∨ y = 〈yx̄1〉. (3)

However, RM3 can use a third non-constant input and is
therefore functionally more powerful compared to material
implication. Indeed, it can be used to realize AND using a
single operation instead of three:

x ∧ y = 〈x1̄y〉 (4)

All operations in (2) can be expressed using at most two RM3

operations, which is detailed in the next section.
We have not performed any experiment for the translation

of implication networks into RM3 networks, as the resulting
networks will have both the same size and logic depth.

B. Synthesis from And-inverter Graphs

And-inverter graphs (AIGs, [21], [22]) are one of the
most commonly used homogeneous network data structures
in today’s industrial and academic logic synthesis tools. AIGs
contain implication networks since x → y = x ∧ y. When
translating an AIG into an RM3 network, one can encounter
eight different configurations depending on whether the input
edges and output edge are regular or inverted. For six of these
configurations, a single RM3 operations suffices, while two
configurations require two RM3 operations:

x ∧ y = 〈x1̄y〉 x̄ ∧ y = 〈0x̄y〉
x ∧ ȳ = 〈0ȳx〉 x̄ ∧ ȳ = 〈0〈x0̄y〉1〉
x ∧ y = 〈0〈x1̄y〉1〉 x̄ ∧ y = 〈1ȳx〉
x ∧ ȳ = 〈1x̄y〉 x̄ ∧ ȳ = 〈x0̄y〉

(5)

We have performed an experiment to investigate the increase
of size and logic depth in the RM3 networks compared to
AIGs. Benchmarks for this experiment, and also for all other
experiments in this paper, are the non-optimized AIGs of the
arithmetic EPFL benchmarks.2 Table I lists the results. The
first column shows the name of the benchmark. The second
and third column give the size and logic depth of the AIG,

2lsi.epfl.ch/benchmarks

TABLE I
OBTAINING RM3 NETWORKS FROM AND-INVERTER GRAPHS

Benchmark AIG RM3

size depth size depth
Adder 1020 255 1275 256
Barrel shifter 3336 12 3470 15
Divisor 57247 4372 68040 4635
Hypotenuse 214335 24801 243697 25120
Log2 32060 444 39387 531
Max 2865 287 3668 328
Multiplier 27062 274 33070 293
Sine 5416 225 6335 250
Square-root 24618 5058 31310 6890
Square 18484 250 22318 253

while the last two columns give the size and logic depth of
the RM3 network. As can be seen, the size may increase up
to 28% in the case of Max and the logic depth may increase
up to 36% in the case of Square-root.

C. Synthesis from Majority-inverter Graphs

Majority logic has been studied since the 1960s [24], [25],
[26], and has recently obtained much attention in the logic
synthesis community. In the last few years, it has been used
in scalable logic synthesis flows to find optimized networks
for Boolean functions. Majority logic owes its interest to
many emerging nanotechnologies that implement majority as
their primitive building block [1]. Recently, Majority-inverter
graphs (MIGs, [23]) have been proposed which exploit the
algebraic properties of majority logic. MIGs use majority-of-
three operations and inverters as the only logic primitives [1],
[23]. MIGs use complemented edges to represent inverters.
MIGs contain AIGs, since x ∧ y = 〈0xy〉.

Translating a MIG into an RM3 network is straightforward
if we make use of the inverter propagation axiom 〈x̄ȳz̄〉 =
〈xyz〉 that allows us to have at most one inverted input to
each majority operation without increasing the number of total
operations. The following configurations consider the case in
which all inputs are non-constant:

〈x̄yz〉 = 〈yx̄z〉 〈xȳz〉 = 〈xȳz〉
〈xyz̄〉 = 〈xz̄y〉 〈xyz〉 = 〈x〈0ȳ1〉z〉
〈x̄yz〉 = 〈xȳ〈0z̄1〉〉 〈xȳz〉 = 〈yx̄〈0z̄1〉〉
〈xyz̄〉 = 〈〈0x̄1〉ȳz〉 〈xyz〉 = 〈〈0x̄1〉ȳ〈0z̄1〉〉

(6)

For three out of the eight configurations, a single RM3

operation suffices, four require two RM3 operations and one
configuration cannot be done with less than three RM3 oper-
ations. If one operand is constant, the rules as in (5) apply.

Note that we can express 〈xyz〉 also as

〈xyz〉 = 〈x〈xȳz〉z〉 (7)

which follows from (6) by applying the relevance rule which
has been proposed in [27]. Finally, to realize the XOR of 3
variables, we need at least three RM3 operations:

x⊕ y ⊕ z = 〈〈yx̄z〉ȳ〈xz̄y〉〉 (8)



TABLE II
OBTAINING RM3 NETWORKS FROM MAJORITY-INVERTER GRAPHS

Benchmark MIG RM3

size depth size depth
Adder 386 129 513 129
Barrel shifter 3110 14 3440 14
Divisor 57272 4401 67720 4565
Hypotenuse 153311 9320 184254 9489
Log2 25040 230 30201 274
Max 2491 290 2783 311
Multiplier 19844 143 25499 158
Sine 4496 167 5231 192
Square-root 21066 5989 23377 6080
Square 13671 156 17458 176

One obtains XOR of two by, e.g., setting y to 0; a realization
with less than three RM3 operations is not possible.

We performed a similar experiment as for the And-inverter
graphs to compare MIGs to RM3 networks after translating
them using (6). Starting points are MIGs obtained using LUT-
based resynthesis [28]. Table II depicts the results. The size
may increase up to 33% in the case of Adder and the logic
depth may increase up to 19% in the case of Log2.

D. Post-optmization Rewriting Rules

One striking advantage of using MIGs for logic synthesis
is that they define a complete axiomatic system based in five
rules [27]. In special cases these rules also hold for the RM3

operation.

〈xz̄x〉 = x, 〈xx̄z〉 = z (9)
〈xȳz〉 = 〈xȳx〉 (10)
〈xū〈yūz〉〉 = 〈zū〈yūx〉〉 (11)
〈xū〈yv̄z〉〉 = 〈〈xūy〉v̄〈xūz〉〉 (12)

The set of Boolean values with the RM3 operation are not
a median algebra since RM3 commutes only on its uncom-
plemented arguments (see (10)). Also, note that the inverter
propagation axiom does not hold for RM3.

However, the rules can be used to optimize an RM3 network,
e.g., after it has been obtained from an AIG or an MIG. The
majority rule (9) can be used to reduce both size and logic
depth. Associativity (11) can be used to reduce logic depth,
and distributivity (12) for either reducing size or logic depth,
depending on which direction it is applied.

IV. SYNTHESIS USING TECHNOLOGY MAPPING

One can use technology mapping to obtain an RM3 network
from a given technology-independent logic network, e.g., an
And-inverter graph. For this purpose, one needs a cell library
that contains only the functions that can be realized using
a single RM3 operation. All these functions are listed in
Table III. There are three 3-input functions depending on
which of the operands is negated. Then, there are six 2-
input functions, which are the ones from (5) that require a
single RM3 operation. Also, both 1-input functions, identity
and inversion, can be realized using a single RM3 operation

TABLE III
ALL FUNCTION PRIMITIVES THAT APPEAR IN RM3 NETWORKS

Function Truth table Number of inputs

〈xȳz〉, 〈zȳx〉 1011 0010 3
〈yx̄z〉, 〈zx̄y〉 1101 0100 3
〈xz̄y〉, 〈yz̄x〉 1000 1110 3
〈0x̄y〉, 〈yx̄0〉 0100 2
〈0ȳx〉, 〈xȳ0〉 0010 2
〈1x̄y〉, 〈yx̄1〉 1101 2
〈1ȳx〉, 〈xȳ1〉 1011 2
〈x0̄y〉, 〈y0̄x〉 1110 2
〈x1̄y〉, 〈y1̄x〉 1000 2
〈0x̄1〉, 〈1x̄0〉 01 1
〈00̄x〉, 〈x0̄0〉, 〈11̄x〉, 〈x1̄1〉 10 1

TABLE IV
OBTAINING RM3 NETWORKS FROM TECHNOLOGY MAPPING

Benchmark AIG RM3

size depth 1 input 2 inputs 3 inputs size depth
Adder 1020 255 127 766 127 1020 129
Barrel shifter 3336 12 6 3336 0 3342 12
Divisor 57247 4372 219 57235 6 57460 4369
Hypotenuse 214335 24801 4852 188709 13812 207373 9115
Log2 32060 444 297 28804 1222 30323 280
Max 2865 287 70 2365 138 2573 212
Multiplier 27062 274 402 23641 1176 25219 158
Sine 5416 225 131 5068 171 5370 184
Square-root 24618 5058 229 24622 1 24852 5058
Square 18484 250 405 16914 788 18107 132

and are therefore part of the cell library. A similar approach
has been presented in [29] for the synthesis of implication
networks.

We tested this approach for the EPFL arithmetic bench-
marks. Starting point are the non-optimized AIGs (as in
Section III-B). We use ABC [30] to read the AIGs and map
them using the command ‘map’. Table IV lists the results
of the experiment. The first three columns list the name of
the benchmark, its initial AIG size and logic depth. The next
four columns list the size after mapping, where column ‘k
inputs’ refers to the number of gates that realize a k-input
function (cf. Table III). It can be seen that technology mapping
is able to recover a lot of RM3 operations with three non-
constant operands for some benchmarks. In these cases (e.g.,
Hypotenuse, Log2, and Multiplier), significant reductions in
depth and considerable reductions in size can be obtained.
Clearly, this approach works far better than translating AIGs
directly into RM3 networks, as done in Section III-B.

V. CONCLUSIONS

In-memory computing is based on devices that natively
implement material implication or RM3, and RM3 generalizes
material implication. It is a natural consequence to have a dedi-
cated logic network structure tailored for the use of in-memory
computing design automation algorithms. We have shown how
to obtain RM3 networks from well-known logic network data
structures. A direct translation is disadvantageous, since some
elementary logic operations require several RM3 operations.



Post-synthesis optimization techniques are required—and need
further investigation—to obtain better quality results. We have
shown that a simple method based on technology mapping is
already capable of deriving good initial results in which many
RM3 operations with non-constant operands are recovered.
This work can be seen as the starting point to several logic
synthesis algorithms for in-memory computing applications.
The RM3 logic representation has been implemented on top
of the logic synthesis framework CirKit3 and is available at
github.com/msoeken/cirkit-addon-plim.
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