
Enabling Exact Delay Synthesis
Luca Amarú∗, Mathias Soeken†, Patrick Vuillod∗, Jiong Luo∗, Alan Mishchenko‡,

Pierre-Emmanuel Gaillardon§, Janet Olson∗, Robert Brayton‡, Giovanni De Micheli†

∗Synopsys Inc., Design Group, Sunnyvale, California, USA
†Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
‡Department of EECS, UC Berkeley, Berkeley, California, USA

§LNIS, University of Utah, Salt Lake City, Utah, USA

Abstract—Given (i) a Boolean function, (ii) a set of arrival
times at the inputs, and (iii) a gate library with associated
delay values, the exact delay synthesis problem asks for a circuit
implementation which minimizes the arrival time at the output(s).
The exact delay synthesis problem, with given input arrival times,
relates to computing the communication complexity of a Boolean
function, which is an intractable problem. Input arrival times are
variable and can take any value, thereby making the exact delay
synthesis search space infinite. This paper presents theory and
algorithms for exact delay synthesis. We introduce the theory
of equioptimizable arrival times, which allows us to partition
all arrival time patterns into a finite set of equivalence classes.
Thanks to this new theory, we create for the first time exact delay
circuit databases covering all Boolean functions up to 5 variables
and all possible arrival time patterns. We describe further
arrival time compression techniques which enable the creation of
larger databases. We propose an enhanced delay synthesis flow
capable of dealing with large circuits, combining exact delay
logic rewriting and Boolean optimization techniques, attaining
unprecedented results. We improve 9/10 of the best known
results in the EPFL arithmetic delay synthesis competition,
outperforming previous best results up to 3×. Embedded in
a commercial EDA flow for ASICs, our exact delay synthesis
techniques reduce the total negative slack by 12.17%, after
physical implementation, at negligible area and runtime costs.

I. INTRODUCTION

Logic circuits with minimum delay are of paramount inter-
est to Electronic Design Automation (EDA). Delay oriented
logic synthesis, or delay synthesis in short, aims at reducing
the output arrival time of a logic circuit given (i) a target
Boolean function, (ii) arrival times at the inputs, and (iii)
available library gates. As timing requirements in modern de-
signs are hard to meet, delay synthesis most commonly targets
minimum results. Unfortunately, obtaining exact (minimum)
delay results in synthesis is a difficult problem. Exact delay
synthesis, with given input arrival times, relates to the in-
tractable problem of computing the communication complexity
of a Boolean function1 [1].

Because of the intrinsic complexity of exact delay synthesis,
modern design flows rely on heuristic methods such as Sum
Of Products (SOP) balancing and And Inverter Graph (AIG)
techniques [2], [3], high-effort collapsing and restructuring
[4], Shannon’s decomposition [5], BDD-based techniques [6],
Majority Inverter Graph (MIG) algebraic and Boolean tech-
niques [7], and many others [8]–[11]. However, heuristic
techniques may miss optimization opportunities. While it is
widely accepted that exact delay synthesis results cannot be

1Karchmer and Wigderson [1] observed that the minimum circuit depth of
a Boolean function, over the basis AND/OR/NOT, can be characterized as the
complexity of a corresponding communication game.

obtained for large design blocks in practice, other locally-
optimal approaches are still viable in principle. Exact delay
circuits can be computed offline for practical (small) cases,
stored in a database and re-used online during synthesis.
Assuming the gate library technology is an input to the
synthesis problem, a database for exact delay synthesis is a
k × m matrix of logic circuits, where k is the number of
considered Boolean functions and m is the number of arrival
time patterns at the inputs. For n input variables, we have
k ≤ 22

n

, but m is unbounded as the number of possible arrival
time patterns is infinite.

In this paper, we present the theory of equioptimizable
arrival times. We prove that for any Boolean function, two
equioptimizable arrival time patterns share the same exact
delay circuit. Equioptimizable arrival time patterns allow us
to partition all infinite possible arrival times into a finite
number of equivalence classes containing equivalent arrival
time patterns. This enables the use of exact delay synthesis
in practice. For example, considering 4 inputs and a represen-
tative CMOS technology, including standard NAND, NOR,
XNOR, MUX and INV gates, all (infinite!) arrival times can
be mapped into just 280 equioptimizable arrival time patterns
(see Section IV-A). We create exact delay databases covering
all Boolean functions up to 5 variables and all possible arrival
time patterns. We describe further arrival time compression
techniques that enable the creation of larger databases. We
propose an enhanced delay synthesis flow, combining exact
delay logic rewriting and Boolean optimization techniques,
attaining unprecedented quality of results. Experimental results
over all the 65 536 4-variable Boolean functions reveal that
heuristic synthesis techniques do not hit the minimum delay
for more than 40% of the cases, being up to 3 delay units off
the exact result. Employed in a logic optimization flow fol-
lowed by LUT-mapping, our exact delay synthesis techniques
improve the best known results for 9/10 of the EPFL arithmetic
benchmarks [12], with up to 3× reduction in number of logic
levels. We also demonstrate a much smaller gap between our
new synthesis techniques and the recently introduced exact
depth benchmarks [13]. Complete ASIC design results, using
a commercial design flow and 51 benchmarks, show that
our synthesis techniques reduce the worst negative slack by
3.04% and the total negative slack by 12.17%, after physical
implementation, at negligible area and runtime costs.

II. BACKGROUND AND MOTIVATION

Exact Logic Synthesis: Synthesis algorithms to find opti-
mum network realizations for a given metric can be divided



into three categories [14]: (i) algorithms based on functional
decomposition (see, e.g., [15], [16]), (ii) algorithms based on
network enumeration (see, e.g., [17]–[19]), and (iii) hybrid
approaches that are based on both functional and structural
properties (see, e.g., [14], [20], [21]). Explicit network enu-
meration algorithms, up to 5 input variables, and implicit
network enumeration algorithms, beyond 5 input variables, are
considered the most practical ones. Further information on the
other algorithms is given in [14]. One of the first algorithms
to find optimum circuit realizations with implicit enumeration
was proposed by Muroga and Ibaraki [18]. They present a
method based on integer linear programming. Although they
put an emphasis on the synthesis of multi-level NOR networks,
their approach is generic and can take into account several
other network restrictions. Ernst has thoroughly investigated
the problem of optimal multi-level logic synthesis [14]. Her
algorithm is implemented using a branch-and-bound method
similar to the ones proposed by Culliney et al. [21]. The
algorithm allows her to handle different synthesis options and
can be adapted to various cost criteria. Also, being based on
branch-and-bound, the algorithm can easily be adapted to relax
the optimality guarantee and find networks of near-optimal
cost. Knuth has shown a SAT encoding to find size-optimum
networks consisting of binary logic gates [17]. His formulation
requires the input function to be represented as a truth table
and he shows how symmetry breaking and the restriction
to normal functions can reduce the search space, borrowing
previous ideas presented for explicit network enumeration.
Along these lines, Soeken et al. [22], [23] recently revisited
SAT-based exact synthesis to find logic networks for different
logic representations that are optimum in size or depth.

Motivation: It is a widely accepted fact that exact synthesis,
whether targeting area, delay or power, cannot be applied
to a monolithic design block in practice. Consequently, it is
customary to partition the design into smaller logic cones to
find exact circuits with today’s computational capabilities. As
running exact synthesis online can be runtime prohibitive—
even for small and medium logic blocks—using a database
with precomputed exact circuits is considered an affordable
solution. A constant database look-up time keeps the runtime
overhead small, but does not compromise quality-of-results.
Such methodology is already a standard for area-oriented
synthesis, in both academia and industry [24]. However, it
is not known how to apply such exact synthesis approach for
delay, another crucial optimization objective in modern digital
circuits. In this paper, we propose solutions to major open
problems, allowing us to use exact delay circuit databases in
a commercial design flow, thus unlocking remarkable delay
reductions.

One of the main challenges in exact delay synthesis, pre-
venting us to build efficient circuit databases, is the infinite
number of arrival time patterns. In principle, each input can
take any arrival time between 0 and +∞. The current solution
to deal with this problem is not to consider arrival time
information, explicitly, during the database construction [3].
In this scenario, as we target exact results, we need to store
all possible circuit structures, for each Boolean function in the
database, which are not delay-dominated by any other [25].
Note that there may be a superexponential number of non-

delay-dominated circuits for a n-variable function. During
synthesis, as we access this type of database, all non-delay-
dominated circuits for a function need to be probed given the
input arrival times, in order to retrieve an exact delay result.
As a consequence, the runtime complexity of this approach
is not tractable. Interestingly enough, the impediment here
derives from a missing theoretical link between minimum
delay circuits and input arrival times.

III. THEORY OF EQUIOPTIMIZABLE ARRIVAL PATTERNS

In this section, we present the theory of equioptimizable
arrival time patterns. In the following, we introduce notations,
definitions, and theorems for equioptimizable arrival time
patterns. We assume the reader is familiar with basic concepts
on logic optimization and Binary Decision Diagrams (BDDs,
[26]). For a review on these topics, we refer the interested
reader to [8].

A. Notations and Basics
In the first part of this section, we consider single output

functions and integer valued delay units. We successively
extend the theory to multiple output functions and rational
valued delay units. We start with general definitions on exact
circuits and related properties.

Definition 1 (Exact delay circuit): Let f be an n-variable
Boolean function, L be a library of gates with associated delay
values, and T = (t1, . . . , tn) be input arrival times. An exact
delay circuit is a logic circuit, composed of gates from L, that
implements f with the minimum arrival time at its output. We
refer to the minimum output arrival time as mint(f, L, T ).
Next, we provide a strong notion of critical paths.

Definition 2: Let C be a (not necessarily exact) circuit that
implements a Boolean function f , and let T be input arrival
times. Then, an Essential Critical Path (ECP) of C is a path
from an input xi to C’s output such that for any ε > 0, there
exists an input assignment to C such that by replacing ti with
ti + ε, the output arrival time of C increases.
Note that there may exist multiple ECPs in the same circuit.
Also, note that the ECP’s location strongly depends on the
input arrival times and the logic structure of C. It is easy to
see that the output arrival time of a circuit is the sum of ti
and the delay of the ECP, where xi is the starting node of the
ECP.

B. Bounds on Essential Critical Paths
Next, we show an upper bound on the delay of essential

critical paths, which are later used for the analysis of exact
delay circuits.

Theorem 1: Let L be a gate library and let ∆(n,L) be n
times the best delay for a MUX operation implemented using
gates in L. For every n-variable function f , there always exists
a circuit such that the delay of its ECP is bounded by ∆(n,L).

Proof: We can construct f as a BDD in which the longest
path visits at most n non-terminal nodes that can be realized
as a MUX.
This result yields an upper bound on the minimum output
arrival time.

Corollary 2: The minimum output arrival time
mint(f, L, T ) is bounded by ∆(n,L) + maxT .



Input : Library L, arrival time pattern T = (t1, . . . , tn)
Output : Compressed arrival time pattern

1 set d← maxT −∆(n,L);
2 foreach ti ∈ T do
3 if ti < d then
4 set ti ← d;
5 end
6 set m← minT ;
7 foreach ti ∈ T do
8 set ti ← ti −m;
9 end

10 return T ;

Algorithm 1: Arrival time lossless compression algorithm

C. Arrival Time Pattern Compression

With the help of the upper bounds on the output arrival time,
we can compress arrival time patterns. We do so by limiting
individual input arrival times to a fixed range, which results in
a partitioning of all arrival time patterns into a finite number
of classes.

Theorem 3: Let T = (t1, . . . , tn) be an input arrival time
pattern such that there exists a ti with ti < maxT −∆(n,L).
Let T ′ = (t1, . . . , t

′
i = maxT − ∆(n,L), . . . , tn). Then

mint(f, L, T ) = mint(f, L, T
′) for every n-variable func-

tion f .
Proof: (by contradiction) Let t = mint(f, L, T ) and let

t′ = mint(f, L, T
′). We assume that t 6= t′. Note that, since

t′i > ti, we also have t′ > t. We need to consider two
cases depending on whether t′i is originating in an ECP. If
it is not, then t′i does not affect t′ and the contradiction is
evident. If t′i is originating in an ECP, then we know that
t′ = dECP+t′i, where dECP is the delay of the ECP. Therefore,
t′ = dECP+maxT−∆(L, n). Using Theorem 1, we have that
t′ ≤ ∆(n,L)+maxT −∆(n,L) = maxT . Consequently, we
have t < t′ ≤ maxT , which means that the output arrival time
is smaller than the input arrival time, leading to a contradiction.

As a consequence of not changing the output arrival time
in Theorem 3, T ′ also leads to the same exact delay circuit as
T .

Corollary 4: An exact delay circuit for (f, L, T ) is also
an exact delay circuit for (f, L, T ′), under the conditions of
Theorem 3.

We use Theorem 3 to define an arrival time compression
algorithm, illustrated in Algorithm 1. The driving principle
is to reduce the maximum difference between the latest and
earliest arrival times to ∆(n,L).

Note that Algorithm 1 can take an infinite number of possi-
ble arrival time patterns as input. On the other hand, the num-
ber of distinct patterns achievable as output of Algorithm 1,
with unit-discretized delay information, is (∆(n,L)+1)n. On
top of the infinite to finite space reduction, it is left to show
that Algorithm 1 preserves the exactness property for delay
synthesis.

Theorem 5: An exact delay circuit for (f, L, T ) is also an
exact delay circuit for (f, L, T ′), where T ′ is obtained by
running Algorithm 1 on L and T .

Proof: We need to prove that operations in Algorithm 1
do not alter the optimality of the original exact delay circuit.

In Algorithm 1, there are two operations on ti: (i) ti ← d and
(ii) ti ← ti−m. Setting ti ← d = maxT−∆(n,L), if ti < d,
does not change the original exact delay circuit according to
Theorem 3. Subtracting a common offset m = minT from all
input arrival times ti does not affect the circuit structure.
Consequently, for a given library L, both arrival time patterns
T and T ′, where T ′ is obtained from Algorithm 1, are
equioptimizable patterns. The exact delay optimization process
therefore finds the same circuit structures for both patterns.

D. Generalizations

1) Multiple Output Functions: The theory of equioptimiz-
able patterns is also valid for multiple outputs. To notice this,
it is sufficient to consider the latest arriving output among all
outputs of a circuit. All other arguments follow when treating
this output as the single output in previous considerations.
The proof to Theorem 1 will use shared BDDs, but since the
number of variables does not change, also the path length in
the BDD stays the same.

2) Rational Valued Delays: Real physical delays take
values in R≥0, because of the continuous nature of time.
However, technology libraries have delay values defined on
a minimum delay precision, so they take values in Q≥0.

We now consider T = (t1, . . . , tn) ∈ Qn
≥0. We also consider

library gates with delay values in Q≥0. We can transform any
exact synthesis problem defined in Q≥0 into an equivalent
problem defined in N≥0 by normalizing all values using an
appropriate factor. One obtains integer values by dividing all
delays for library gates and all arrival times by dp(L), which
is the minimum delay precision of library L.

It is worth noticing that our study is based on a load-
independent abstraction of the delay information. This is
because, during logic optimization and mapping, we do not
have accurate information on the physical fanouts of a given
gate. Indeed, this information becomes available only during
physical design. Thus, we defer the use of load-dependent
delays at later stages in the design flow, e.g., placement-aware
sizing and buffering, where the real fanouts and their relative
distance is known.

Please note that the primary purpose of Section III-D is
to show that, in theory, we can deal with physical libraries
and achieve exact results still having finite countable sets. In
practice, using a scale factor of 1/dp(L) leads to delay sets
too large to be stored and processed. Lossy quantization is a
commonly accepted solution leading to tractable delay sets.

IV. BUILDING EXACT DELAY DATABASES

The previous section showed how to obtain a finite set of
equioptimizable arrival time patterns. This enables the creation
of databases of exact delay circuits. One of the remaining chal-
lenges in building, and storing, such databases is to keep the
memory footprint small. As both the number of functions and
number of equioptimizable patterns grow superexponentially
with the number of inputs n, various compression techniques
are needed to make a database scalable. On the number
of functions, an immediate size saving derives from storing
only input permutation classes. This does not compromise the
results exactness after retrieval, as it will be shown later on
in this section. On the number of equioptimizable patterns,



Input : n-variable Boolean function f , library L, pattern T
Output : Exact delay circuit C from edd(n,L) = (Cij)

1 set D ← ∆(n,L);
2 set f̂ , π ← classify(f );
3 set i← index(f̂ );
4 apply Algorithm 1 to L and T ;
5 set T ← (t1π, . . . , tnπ);
6 set j ←

∑n
i=1 ti· (D + 1)i−1;

7 set C ← Cij ;
8 permute C’s inputs according to π;
9 return C;

Algorithm 2: Exact circuit retrieval from the EDD

sharing of equivalent patterns, still leading to the same circuit
structures, further helps reducing the size of a database.

Formally, an Exact Delay Database (EDD), for gate library
L and n variables, is a matrix of logic circuits:

edd(n,L) =


C11 C12 · · · C1M

C21 C22 · · · C2M

...
...

. . .
...

CN1 C22 · · · CNM


having N rows, where N is the number of permutation classes
of n-input Boolean functions, and M columns, where M is
the number of equioptimizable patterns over n variables and
library L. Each entry Cij of the EDD is an exact delay circuit
for (i) the Boolean function representative of the ith P class
and (ii) the jth indexed equioptimizable arrival pattern.

While there are known techniques to enumerate and index
permutation classes [17], for quick look-up time purposes in
the database, the same solutions are not directly applicable for
equioptimizable patterns. To address this issue, we develop
unique encoding algorithms to address equioptimizable pat-
terns.

A. Encoding Equioptimizable Patterns
Equioptimizable arrival patterns can be encoded into an

interval of integers starting at 0, using a simple explicit
equation. The insight is the following. Every arrival time in
the equioptimizable pattern can take integer values from 0 to
D = ∆(n,L). We have n arrival times, with distinct and non-
switchable positions. We interpret such arrival time pattern
as an integer in base (D + 1), having n digits. Each digit is
associated with a specific arrival time in the pattern. Therefore,
given an arrival time pattern T = (t1, . . . , tn), one gets a
unique integer in the range [0, (D + 1)n − 1] by:

n∑
i=1

ti· (D + 1)i−1 (1)

Using Eq. 1, one can compute a column index for an EDD.

B. Exact Delay Circuit Retrieval
Algorithm 2 shows a procedure to retrieve an exact delay

circuit from the EDD. We describe Algorithm 2 by means of
an example.

Example 1: Let us consider an edd(3, L), with gate li-
brary L = {NAND,NOR,XNOR,MUX, INV}. The timing
information is tNAND = tNOR = tINV = 1 and tXNOR =

tMUX = 2. The edd(3, L) has 80 rows and 343 columns. Each
row points to a permutation class, and we have 80 different
permutation classes of 3 variables [27], [28]. Each column
points to an equioptimizable pattern, and we have 343 equiop-
timizable patterns because D = ∆(3, L) = tMUX· 3 = 6,
and the number of patterns is (D + 1)n = (6 + 1)3 = 343.
Please note that the number of equioptimizable patterns can
be further reduced as it will be discussed later on in this paper.
In this example, we want to retrieve from edd(3, L) an exact
delay circuit for function f = a ⊕ b + c̄ and arrival times
ta = 12, tb = 0 and tc = 1. With Algorithm 2, we first
find the permutation class representative g = x̄1 + x2 ⊕ x3.
The permutation is π = (2, 3, 1). The index i of permutation
class g is 16, but this number can be arbitrarily changed
as rows in the EDD can be swapped with no effect on the
results. We then apply Algorithm 1 to T = (12, 0, 1), obtaining
T = (6, 0, 0). We apply permutation π to T , obtaining
T = (0, 6, 0). The index of the equioptimizable pattern is
computed as j = 0 + 6· 7 + 0· 72 = 42. At this point, we look
for entry C16,42 in the EDD. The circuit contained in C16,42 is
C = MUX(x2,NAND(x1, INV(x3)),NAND(x1, x3)). After
applying π to C’s inputs, we obtain the exact delay circuit
C = MUX(a,NAND(c, INV(b)),NAND(c, b)). The returned
circuit achieves tf = 14 which is the minimum output arrival
time possible given the function and input arrival times.

C. Computing The Entries of An Exact Delay Database

Computing an entry of edd(n,L) involves finding an exact
synthesis solution for a given Boolean function and arrival time
pattern. This problem can be practically solved with explicit
circuit enumeration for n ≤ 5. For larger Boolean functions,
e.g., n ≥ 6, implicit circuit enumeration techniques based on
Boolean satisfiability (SAT) are more practical. We discuss
both approaches hereafter.

Please note that the exact delay synthesis problem is an
intractable problem [1], [17]. Exact delay solutions are in-
creasingly hard to compute with growing n, and may require
the database creation to happen offline with respect to the rest
of the synthesis flow. Please also note that, with n ≥ 6, only
partial EDDs are currently feasible.

1) Explicit Circuit Enumeration: Explicit circuit enumer-
ation techniques explore the logic representation space ex-
haustively. This is convenient when a complete exact delay
database needs to be populated. Algorithm 3 depicts the high-
level flow for explicit circuit enumeration for exact delay
synthesis. It operates as follows. We first store trivial circuits
for the logic constants and input variables. These circuits,
which are simple wires, are delay optimal by construction.
Then, we start the enumeration loop and we try to add
a new gate from L, in increasing delay order, having as
fanin some of the already stored functions, also in increasing
arrival time order. If the generated function is not already
stored, we save it. Otherwise, we already have a better delay
implementation stored for the generated function. We keep
iterating this procedure until we have stored circuits for all the
22

n

functions. It can be easily seen that this procedure only
stores exact delay circuits. Please note that the procedure in
Algorithm 3 can be sped up by taking into account library
considerations and function filtering. On the library side,



Input : Arrival time pattern T = (t1, . . . , tn), gate library L
Output : Exact delay circuits for all 22n Boolean functions

1 store circuits for constant (0, 1) and projection functions xi;
2 set t← n+ 2;
3 sort L by increasing delay;
4 while t < 22n do
5 foreach g ∈ L do
6 set m← fanin count of g;
7 foreach set of pins (o1, . . . , om) ∈ stored circuits do
8 foreach permutation π of (o1, . . . , om) do
9 set f ← g(o1π, . . . , omπ);

10 if f is not already stored then
11 store circuit for f ;
12 set t← t+ 1;
13 end
14 end
15 end
16 end
17 end
Algorithm 3: Explicit enumeration of exact delay circuits

we can filter based on the gate properties, e.g., functional
symmetry, delay dominance and decomposition, etc. On the
function side, we can filter based on considerations on NPN-
class properties [14] of the already stored functions. With all
filtering, explicit enumeration runs quite fast. It takes less than
2 minutes to generate edd(4, L) for a typical L in CMOS
technology, such as the one described in Example 1. On the
other hand, SAT-based methods can take more than 3 hours
to complete a 4 variables delay-optimal database [22]. As
previously mentioned, the advantage of explicit enumeration
over SAT quickly vanishes with n > 5.

We refer the interested reader to [14], [17] for an in-depth
discussion on circuit enumeration techniques.

Fig. 1 shows a sample entry for an exact delay database,
generated by the aforementioned explicit circuit enumeration
algorithm. The minimum delay precision is set to 0.5 delay

c"b

d" a"

f"

c"

d" a"

b"

ta=0"
tb=3.5"
tc=2"
td=1"

dnor=1"
dand=1.5"
dnot=0.5"
dxor=2"

tf=8"

Fig. 1. Sample entry of an exact delay database

units for this example, for practical reasons. The gate delays
are extracted from a characteristic CMOS library in a 45nm
technology node.

Input : Function f , arrival time pattern T = (t1, . . . , tn),
library L

Output : Exact delay circuit for f
1 set t← minT ;
2 while true do
3 foreach gate size r do
4 set C ← hasCircuit(f, L, r, T, t);
5 if C is a circuit then return C;
6 end
7 set t← t+ dp(L);
8 end

Algorithm 4: SMT-based exact delay synthesis

2) Boolean Satisfiability: We can solve the task of exact
delay synthesis by encoding the problem as in instance of the
Boolean satisfiability problem. For this purpose, one encodes
the problem “Does there exists a circuit with r gates from
L that implements function f with input arrival times T
respecting an output delay of t?” Let us refer to a SAT
encoding of this problem as hasCircuit(f, L, r, T, t). This
procedure either yields to a circuit satisfying the constraints if
it exists, or unsatisfiable otherwise.

We can solve the task of exact delay synthesis by encoding
the problem as an instance of the Satisfiability Modulo Theo-
ries (SMT) problem. Algorithm 4 depicts the high-level SMT
procedure for exact delay synthesis. We start by setting t to
minT , the minimum physical output arrival time possible. We
try to find a circuit with r gates by choosing suitable values
for r. For example, we can increase r until an upper bound
of gates is reached. If no satisfying solution and therefore no
circuit can be found, t is incremented by the library delay
precision dp(L). This procedure is guaranteed to hit the exact
delay circuit eventually. We refer the reader to [22] for an
in-depth discussion of SAT formulation for exact synthesis
and [23] for a detailed discussion on how to encode delay
constraints.

D. Reducing The Size of Exact Delay Databases

The size of an exact delay database grows very quickly
with the number of inputs n, and the complexity of the gate
library L. We can reduce the size of an EDD using some of
the following techniques:

1) Tighten ∆(n,L): The original bound on ∆(n,L) is quite
loose. For small cases, i.e., n < 5, it is possible to compute a
much tighter bound with brute force methods, e.g., exhaustive
exploration of the search space. A tighter bound leads to fewer
equioptimizable patterns to store.

2) Merge Equioptimizable Patterns: Even with a tight
bound on ∆(n,L), there may exist equioptimizable patterns
still leading to the same exact synthesis solution. Indeed, the
equioptimizable patterns theory is agnostic of the specific
function considered. A post processing pass on an EDD can
identify pattern candidates for merging.

3) Disregard Inverters: While inverters carry delay infor-
mation, there are applications where they can be neglected
as first approximation. This is the case, for example, for
LUT synthesis or other technology independent optimization
flows. With this assumption, the EDD can consider NPN
classification instead of P classification. This leads to much
fewer classes and therefore to fewer rows in the EDD.



4) Partial Databases: In practical synthesis problems, only
a fraction of all possible functions over n variables are encoun-
tered. The larger n is, the smaller the fraction of encountered
functions becomes. Exact delay databases can be optimized to
contain only such frequently appearing function classes, and
their equioptimizable patterns. This leads to a better control
on the EDD size.

V. LOGIC SYNTHESIS WITH EXACT DELAY DATABASES

Exact delay databases find natural application in logic syn-
thesis flows. Logic rewriting techniques [24] directly support
the use of an EDD. The rationale behind logic rewriting
is to partition the network into smaller blocks, for example
with the help of cut computation, and try to rewrite each
block in topological order using precomputed solutions from
a database [24]. In this context, exact delay databases enable
delay-oriented logic rewriting. Please note that remapping
is not necessary after such synthesis flow, as the solutions
retrieved from the EDD already consists of library gates.

In its simplest implementation, logic rewriting with
edd(n,L) requires cut computation of size n. However, we
can achieve even stronger results by combining exact delay
solutions of size n with Boolean delay optimization of higher
order m > n. In this case, we compute larger cuts of size
m and process each logic block as follows. We consider the
latest arriving variable, say xj , and try the following operations
on the cut Boolean function, in order: (i) 2-operand disjoint
support decomposition wrt. xj and (ii) Shannon decomposition
wrt. xj . If the first operation is successful, we are left with
one logic block of (m − 1) variables. Otherwise, Shannon
decomposition creates two logic blocks of (m− 1) variables.
Both DSD decomposition and Shannon decomposition are
immediately implemented in terms of library gates. Blocks
created by Shannon decomposition can be simplified by con-
stant propagation and gate sharing. If the current blocks have
size equal to n, we can directly retrieve an exact delay im-
plementation for them from the EDD. Otherwise, we continue
the delay-driven decomposition.

The goal of this combined Boolean-exact delay optimization
is to decompose a large logic block into a delay-optimal tree
where the leaves are minimum solutions from the EDD.

We call such synthesis flow Enhanced Delay Synthesis
(EDS) with parameters m and n: eds(m,n). The setup
eds(n, n) corresponds to plain logic rewriting with an
EDD. More aggressive setups are eds(n + k, n) with k =
1, 2, 3, 4, 5, 6. While it is in principle possible to explore even
more aggressive delay setups, the area overhead would start
to be too large and possibly absorb the achieved delay gain
during physical design.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of exact delay
synthesis. We first run experiments for all 4 variables functions
and show the gap between exact delay synthesis and state-
of-the-art synthesis heuristics. Then, we employ the EDS
flow, empowered with exact delay databases, to improve the
best known results of the EPFL benchmark suite [12]. We
also show a much smaller gap with respect to the recently
introduced exact depth multi-level benchmark [13]. Finally,

we integrate the EDS flow in a complete industrial design
flow and show sensible timing gain measured after place &
route.

A. Methodology
We implemented exact delay synthesis as part of a com-

mercial design automation solution. Generation of exact delay
databases can be performed offline, but also online. In practice,
we embed by default a generic eddg(4, L), with a simple gate
library consisting of NAND (delay 1), NOR (delay 1), XNOR
(delay 2), MUX (delay 2), and INV (delay 1) gates. Note that
the number of equioptimizable patterns, after compression,
is only 280, leading to a memory footprint below 8 MB.
Then, during the initial steps of the design compilation, we
refine this EDD based on the provided library. In our x86-
64, 16 cores, 2.6 GHz, 20GB RAM machine environment,
generation of library specific edds(4, L) takes less than 2
minutes. Generation of a complete EDD for more than 4
variables must be carried over offline, for runtime reasons.

We also generated a complete, generic eddg(5, L), but its
size exceeds 600 GB. The reason is that we have ≈ 36 · 106

P classes of 5 variables [28] and about 1000 equioptimiz-
able patterns, after high-effort compression. To make this
database practical, compromises on the delay-exactness, e.g.,
use of NPN classes, or database-completeness, e.g., store
only frequently appearing functions, need to be made. In our
experiments, we were able to find a 400 MB quasi-exact
delay database of 5 variables still leading to promising results.
However, the size of the database still represents a challenge,
which require loading the database in form of an external
library. In commercial applications, the use of large external
logic libraries, which exceed the size of the tool executable,
may be hard to adopt. The best compromise we found is to
have a complete eddg(4, L), statically embedded in the tool
and refined dynamically during execution, and attempt online
at partial EDD of higher order.

We employ the EDD within an EDS flow, as described in the
previous section. We use eds(n, n) as core timing optimization
engine, with calls to eds(n + k, n) to escape local minima.
More details on the configuration is given below for each
experiment.

B. Measuring the Exact-Heuristic Delay Gap
In this first experiment, we aim at showing the gap between

exact delay results and heuristic delay techniques, already for
4 variables Boolean functions. We employ the generic gate
library described in the previous subsection. We consider hard
to synthesize input arrival time patterns, which are the ones
challenging modern synthesis tools. In particular, with the
arrival time pattern (0, 0, 4, 4), traditional tools face difficulties
in improving the input circuit structures for delay. We consider
a required output arrival time of 0 for all 65 536 functions of
4 variables. On the one hand, we generate circuits using exact
delay synthesis. On the other hand, we also generate circuits
using a commercial delay-oriented heuristic approach, starting
from a minimized SOP. Fig. 2 depicts the results graphically.
The delay scale is normalized wrt. to unit INV delay. It is
worth noticing that the synthesis heuristic does not hit the
exact results more than 42% of the cases and can be up to 3
delay units off.



Standard delay 

Standard delay 

Func%on'id,'sorted'in'increasing'delay'complexity'

Heuris%c'
Exact'delay'

Arrival'%me'pa:ern'0044'
De

la
y'
m
in
'sl
ac
k'

Fig. 2. Exact delay synthesis vs. heuristic delay synthesis. Results span all
65536 functions of 4-variables. The output required time is 0 for all cases.

On top of this experiment, we also tried to compare exact
delay results to ABC [29] delay command “if -g”, for the
arrival time pattern (0, 0, 0, 0). Also for this “easy” input
arrival pattern, ABC results do not hit the exact numbers more
than 18% of the cases and can be up to 2 delay units off.

C. Improving the Best Known Results for the EPFL Suite
The EPFL benchmark suite project keeps track of the best

synthesis results, mapped into LUT-6, generated by EDA
research groups [12]. In this work, we challenge the delay
category of the EPFL suite, whose previous best results are
held by UC Berkeley, EPFL, and Cornell research groups. We
focus on the 10 arithmetic benchmarks of the EPFL suite,
which are considered the hardest to synthesize.

We optimize these benchmarks using the EDS flow, with the
most aggressive timing setup possible, i.e., using 0 as output(s)
required time. We first use eds(4, 4), fed with eddg(4, L), as
long as we see delay improvement. Then, we try to escape
local minima with eds(4 + k, 4), starting from k = 1 and
increasing k up to 6 until a delay improvement is obtained. At
this point, we go back to eds(4, 4). We iterate this routine until
a delay improvement is possible or a runtime limit of 3 hours
is reached. We did not impose any area constraints, as the
EPFL competition for delay do not require so. For this reason,
consecutive calls to eds(4 + k, 4), which involve continuous
logic collapsing, may sensibly increase area. Nevertheless, we
included in our flow a delay-bounded area-recovery phase.

We map the optimized circuits using an in-house delay-
oriented LUT-6 mapper. Please note that we did not include
optimization techniques [31], [32] directly in the LUT mapper,
so further improvements may be reached on top of our results.
We leave this to future work on improving LUT mapping.

Table I shows the results. We were able to improve 9/10 of
the previous best results, in the arithmetic section. We either
got (i) both fewer number of levels and fewer number of nodes
(2/10), (ii) fewer number of levels but larger number of nodes
(3/10) or (iii) the same number of levels but fewer number of

TABLE I
NEW BEST DELAY RESULTS FOR THE EPFL SUITE

Benchmark I/O LUT-6 count Level Count Improv.
adder 256/129 470 5 yes

barrel shifter 135/128 512 4 no
divisor 128/128 26914 228 yes

hypotenuse 256/128 151442 567 yes
log2 31/32 9210 55 yes
max 512/130 880 10 yes

multiplier 128/128 7274 27 yes
trigonometric sin 24/25 487941 12 yes

square-root 128/64 27265 241 yes
square 64/128 3967 11 yes

nodes (4/10)2. It is worth noticing that we reduced the depth
of all benchmarks with > 100 levels. Also, we obtained about
3× depth improvement over the previous best trigonometric
sin implementation. The only benchmark which we have not
improved is the barrel shifter. Please note that no research
group has been able to improve the original depth nor the size
of this benchmark. Thus, it is believed that this benchmark is
already optimal, even though a formal proof is still missing.
Our circuit implementations can be downloaded at [33].

D. Exact Depth Benchmarks Experiments
On top of challenging general benchmark suites, we also

consider the recently introduced exact depth benchmarks [13].
We compare to the synthesis setup proposed in [13], using the
EDS optimization flow described in the previous subsection.
In place of LUT-6 mapping, we simply strash the optimized
gate-level circuits into an AIG, for the sake of fair comparison.

4 5 6 7 8 9 10
0

500

1,000

1,500

2,000

Benchmark Complexity

L
og

ic
L

ev
el

s

Number of Levels vs. Complexity

Sub-optimal
DSD
AIG
MIG
EDS

Strash-Exact

Fig. 3. Synthesis experiments over exact depth benchmarks. The benchmark
complexity metric is computed as log2(#inputs).

Fig. 3 shows the EDS results w.r.t. the exact depth bech-
marks experiments presented in [13]. As we can notice from
the plot, the gap between the orange line (Strash-exact) and
the black line (EDS) is remarkably smaller than the best
optimization results previously seen [13]. Indeed, the depth

2The tie breaking rules for the EPFL best results have been decided by the
IWLS community.



is about 2× smaller on average as compared to AIG/MIG
results. Our results can be downloaded at [33]. Please note that,
despite strongly improving previous results, an exponential gap
still appears between the known minimum depth and the EDS
flow. This is because the EDS flow obtains exact results on
subnetworks and not on the original monolithic logic block.

E. Complete Design Experiments

In order to evaluate the potential of exact delay synthesis in
commercial EDA, we integrated the EDS flow in a complete
design solution, down to physical design. According to the
latest trends for synthesis R&D in industry [30], we aim at
sensible delay reductions, greater than 10% Total Negative
Slack (TNS) reduction, coming at negligible area and runtime
overhead, i.e., less than 1%. In order to achieve this challeng-
ing goal, we tuned the EDS flow described in the previous
subsections to keep the area overhead under tight control.
Runtime of EDS synthesis is intrinsically very small, because
the database solutions eddg(4, L) are precomputed offline and
cut computation followed by replacement is runtime friendly.
Table II shows the complete design results, post place & route,
for 51 state-of-the-art ASICs, coming from major electronics
industries. We cannot provide details on each ASIC benchmark
because of non-disclosure agreements. However, we present
average results w.r.t. a baseline flow without our EDS tech-
niques. The results are summarized in Table II. Our complete

TABLE II
POST PLACE&ROUTE RESULTS ON 51 INDUSTRIAL DESIGN

Flow WNS TNS Area Runtime
baseline 1 1 1 1

exact delay flow -3.04% -12.17% +0.41% +0.98%

design flow, embedding exact delay synthesis, enables sensible
worst negative slack reduction, −3.04% on average, and strong
total negative slack reduction, −12.17% on average, at only
+0.41% area cost and +0.98% runtime overhead.

VII. CONCLUSIONS

In this paper, we presented theory and practical methods
for exact delay synthesis. We introduced, for the first time,
the concept of equioptimizable arrival time patterns, which
enabled the creation of exact delay databases. When employed
in an enhanced synthesis flow, our exact delay synthesis
techniques showed excellent results. Nine out of ten best
known results in the EPFL arithmetic synthesis competition
have been improved, exceeding previous best results up to
3×. We also showed a much smaller gap with respect to
the recently introduced exact depth multi-level benchmark.
Embedded in a commercial design automation flow for ASICs,
the exact delay synthesis techniques reduced the total negative
slack by 12.17%, after physical implementation, at negligible
area and runtime costs.

ACKNOWLEDGMENTS

This work was partly supported by H2020-ERC-2014-ADG
669354 CyberCare and by Grant 2016016 from the United
States-Israel Binational Science Foundation.

REFERENCES

[1] M. Karchmer, A. Wigderson, “Monotone circuits for connectivity require
super-logarithmic depth”, SIAM J. Discrete Math., 3(2):255-265, 1990.

[2] A. Mishchenko, et al. “Delay optimization using SOP balancing”, Proc.
ICCAD, 2011.

[3] W. Yang, L. Wang, A. Mishchenko, Lazy mans logic synthesis, ICCAD,
2012, pp. 597604.

[4] R.K. Brayton, G.D. Hachtel, A.L. Sangiovanni-Vincentelli, “Multilevel
logic synthesis”, Proc. IEEE 78.2 (1990): 264-300.

[5] C. L. Berman, D. J. Hathaway, A. S. LaPaugh, L. Trevillyan. “Efficient
techniques for timing correction”, ISCAS, pp. 415419, 1990.

[6] N. Vemuri, et al., “BDD-based logic synthesis for LUT-based FPGAs”,
ACM TODAES 7.4 (2002): 501-525.

[7] L. Amaru, P.-E. Gaillardon, G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization”, IEEE TCAD-IC 35.5 (2016):
806-819.

[8] G. De Micheli, “Synthesis and Optimization of Digital Circuits”,
McGraw-Hill, New York, 1994.

[9] V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions”, ICCAD 1997.

[10] V. N. Kravets and P. Kudva, “Implicit enumeration of structural changes
in circuit optimization”, DAC 2004.

[11] M. Elbayoumi, M. Choudhury, V. N. Kravets, A. Sullivan, M. S. Hsiao,
and M. Y. ElNainay, TACUE: A timing-aware cuts enumeration algorithm
for parallel synthesis, DAC 2014.

[12] L. Amaru, P.-E. Gaillardon, G. De Micheli, “The EPFL Combinational
Benchmark Suite” International Workshop on Logic & Synthesis (IWLS),
2015.

[13] L. Amaru, et al., “Multi-level logic benchmarks: An exactness study”,
ASPDAC’17, Tokyo, Japan, January 2017.

[14] E. A. Ernst, Optimal combinational multi-level logic synthesis, PhD
thesis, The University of Michigan, 2009.

[15] R. M. Karp, F. E. McFarlin, J. P. Roth, J. R. Wilts, A computer
program for the synthesis of combinational switching circuits, in Symp.
on Switching Circuit Theory and Logical Design, 1961, pp. 182194.

[16] J. P. Roth, R. M. Karp, Minimization over Boolean graphs, IBM Journal
of Research and Development, vol. 6, no. 2, pp. 227238, 1962.

[17] D. Knuth, “The Art of Computer Programming”, Volume 4A, Part 1
[18] S. Muroga, T. Ibaraki, Design of optimal switching networks by integer

programming, IEEE Trans. on Computers, vol. 21, no. 6, pp. 573582,
1972.

[19] A. Kojevnikov, A. S. Kulikov, G. Yaroslavtsev, Finding efficient circuits
using SAT-solvers, in Intl Conf. on Theory and Applications of Satisfia-
bility Testing, 2009, pp. 3244.

[20] E. S. Davidson, An algorithm for NAND decomposition under network
constraints, IEEE Trans. on Computers, vol. 18, no. 12, pp. 10981109,
1969.

[21] J. N. Culliney, M. H. Young, T. Nakagawa, S. Muroga, Results of the
synthesis of optimal networks of AND and OR gates for four-variable
switching functions, IEEE Trans. on Computers, vol. 28, no. 1, pp. 7685,
1979.

[22] M. Soeken, L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Exact Synthesis
of Majority-Inverter Graphs and Its Applications”, IEEE TCAD-IC, 2017.

[23] M. Soeken, G. De Micheli, A. Mishchenko, “Busy Mans Synthesis:
Combinational Delay Optimization With SAT,” Design, Automation &
Test in Europe Conference (DATE), Lausanne, Switzerland, 2017.

[24] A. Mishchenko, S. Chatterjee, R. Brayton, DAG-aware AIG rewriting a
fresh look at combinational logic synthesis, Proc. DAC 2006.

[25] S. Hassoun, T. Sasao. Logic Synthesis and Verification, Springer, 2001
[26] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function

Manipulation”. IEEE Transactions on Computers, C-35(8):677691, 1986.
[27] V. Correia, A. Reis. “Classifying n-input Boolean functions”, Proc.

IWLS 2001.
[28] M. Harrison, “The number of equivalence classes of Boolean functions

under groups containing negation”, IEEE Transactions on Electronic
Computers 5 (1963): 559-561.

[29] ABC synthesis tool: https://bitbucket.org/alanmi/abc.
[30] L. Amaru, P. Vuillod, J. Luo, J. Olson, ”Logic Optimization and

Synthesis: Trends and Directions in Industry”, Design, Automation &
Test in Europe Conference (DATE), Lausanne, Switzerland, 2017.

[31] B. Schmitt, A. Mishchenko, R. Brayton, ”SAT-based area recovery in
technology mapping”, IWLS’17.

[32] A. Mishchenko, R. Brayton, A. Petkovska, M. Soeken, ”SAT-based
optimization with don’t-cares revisited”, IWLS’17.

[33] http://lsi.epfl.ch/benchmarks


