
Improving Circuit Mapping Performance Through
MIG-based Synthesis for Carry Chains

Zhufei Chu1,2 Xifan Tang2 Mathias Soeken2 Ana Petkovska2 Grace Zgheib2

Luca Amarù3 Yinshui Xia1 Paolo Ienne2 Giovanni De Micheli2 Pierre-Emmanuel Gaillardon4

1Faculty of Electrical Engineering & Computer Science, Ningbo University, Ningbo, China
2École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

3Synopsys Inc., Sunnyvale CA, USA
4Electrical and Computer Engineering Department, University of Utah, Salt Lake City, UT, USA

Email: chuzhufei@nbu.edu.cn

ABSTRACT
Hard-wired carry chains in FPGAs are designed to improve
efficiency of important arithmetic primitives. Although they
are proven to be effective for arithmetic-rich functions, there
are very few studies on the optimization opportunities of
carry chains for general logic that is poor in arithmetic
operations. Recently, Majority-Inverter Graphs (MIGs) were
proposed for efficient Boolean logic optimization. MIGs open
an opportunity for efficient mapping of critical paths onto
hard carry chains, as the carry logic of a full adder is naturally
a majority (MAJ) gate. In this paper, we propose an MIG-
based synthesis method to exploit hard adders in FPGAs
for the mapping of general logic. The proposed heuristic
algorithm selects MAJ nodes to be mapped on the carry
chains and the associated LUTs; then, the efficiency of carry
chain mapping is examined theoretically for efficient LUT
utilization. The experimental results show that, compared
to traditional design flow Verilog-to-Routing (VTR 7.0), the
proposed approach can improve delay by up to 25% with an
average of 8%, while the channel width is reduced by up to
20% with an average of 6%.

Keywords
FPGA; majority-inverter graph; carry chain; technology map-
ping

1. INTRODUCTION
Many arithmetic intensive applications can be efficiently

designed by FPGAs and display chains of additions mapped
to Logic Blocks (LBs). When hard adder chains can be
exploited, thus avoiding routing multiplexers, performance
can improve up to 15% for arithmetic benchmarks [1]. Typ-
ically, the hard adders are technology mapped only when
additions/subtractions are specified in High-level Design Lan-
guage (HDL) descriptions. Although they have been shown
to be very effective to implement arithmetic functions, these
hard blocks have less flexibility compared to soft blocks due
to their specificity. To further exploit the efficiency of hard
adder chains, we concentrate on the problem of how to im-
prove performance through mapping of general logic when
the logic circuit contains a limited number of full adders.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’17, May 10–12, 2017, Banff, AB, Canada.
c© 2017 ACM. ISBN 978-1-4503-4972-7/17/05. . . $15.00.

DOI: http://dx.doi.org/10.1145/3060403.3060432

Majority-Inverter Graph (MIG) [2, 3] is a new paradigm for
logic optimization that receives renewed research attention
due to the emergence of new computing devices as well as
the increasing complexity of logic circuits. Regarding the
carry chains, it is interesting that the carry function of a
full adder is exactly the majority (MAJ) operator. This
feature brings promising optimization possibilities in FPGA
synthesis: a logic network represented as MIG corresponds
directly to the physical implementation of the carry chains,
i.e., chains of majority operations, even if no specific adder
chains are found. This is a complex task when using other
logic representations such as And-Inverter Graphs (AIGs) [4]
or Binary Decision Diagrams (BDDs) [5]. In contrast, the
MIG-based logic network gives us a great opportunity to
improve mapping performance by taking advantage of carry
chains.

In this paper, an MIG-based synthesis method for carry
chains is proposed with the goal to improve mapping per-
formance of general logic. Instead of exploiting arithmetic
functions, we aim at automatic realization of logic that can
be tightly implemented by both Look-Up Tables (LUTs) and
specific carry chains for general logic functions. We present a
heuristic algorithm that selects MAJ nodes from a given MIG
to be mapped on carry chains and the associated LUTs. The
efficiency of carry-chain mapping is examined theoretically
for efficient LUT utilization. The experimental results show
that the proposed approach improves delay by up to 25%
with an average of 8%, while the channel width is reduced
by up to 20% with an average of 6%.

This paper is organized as follows: Section 2 reviews the
necessary background on FPGA architecture and MIG-based
logic optimization. Section 3 presents a brief introduction
of the state-of-the-art work. Afterwards, in Section 4, the
proposed MIG-based synthesis for carry chains is described
in detail. In Section 5, the experimental results are presented
and discussed. Finally, Section 6 concludes this paper.

2. BACKGROUND
In this section, we review the necessary background about

modern FPGA architectures and MIG logic optimizations.

2.1 Modern FPGA Architecture
Modern FPGA architectures consist of an array of tiles,

as shown in Fig. 1, each of which contains a LB, Connection
Boxes (CBs), Switch Blocks (SBs), and routing tracks [6].
CBs are used to connect the heterogenous blocks to routing
tracks, while SBs interconnect the routing tracks. The func-
tionalities of FPGAs are realized by the heterogenous logic
resources that consist of LBs, memory banks, and Digital
Signal Processing (DSP) units. LBs comprise a number of

SRAM

RoutingTrack

MUX

...

Connection Box

... ...
...

Switch Block

LB SB CB

Logic Block

Connecti
on Box

Switch BoxConnection
Box

Tile

M
U
X

FF
CLK

5-LUT M
U
X

5-LUT
FF

CLK

M
U
X

Logic Element
M
U
X

LUT6_out

M
U
X

M
U
X

...

in0
in1
in2
in5

...

Cin

Cout

out0

out1

Logic Block

......

Local Routing

...
... Logic Element

[0]

...

...

out0

out1

in0

in5

Cin

Cout

out0

out1

in0

in5

Cin

Cin

Logic Element
[N-1]

out0

out1

in0

in5 Cout

Cin

Figure 1: FPGA tile architecture and the considered
LB.

Logic Elements (LEs) and a local routing architecture, which
provides intra-block interconnections. Basically, there are at
least a fracturable LUT [7], a Flip-flop (FF), and an output
selector in every LE. To boost the functionality of logic re-
sources, FPGA vendors embed additional elements, such as
hard carry chains and shift registers, within the LBs. In this
paper, we consider the LB resembling commercial FPGA
architectures [8, 9]. As depicted in Fig. 1, a LB contains two
5-input LUTs, two FFs and a carry logic. The two LUTs,
referred to as carry-chain LUTs in the rest of paper, can be
either grouped to implement a 6-input LUT or realize two
distinct 5-input LUTs with shared inputs. The output of
carry logic can be connected to both fast carry output Cout

and normal outputs of LEs, out0 and out1, which allow for
early exits of carry signals. When only one or two inputs of
carry logic are used (can happen in MIG), the 5-input LUTs
can be efficiently utilized to map additional logic.

2.2 Majority-Inverter Graph
MIGs [2, 3] can efficiently represent Boolean functions due

to the expressive power of the majority operator. Indeed,
by means of fixing one input as constant binary value 0 or
1, the majority operator can be configured to behave as a
traditional conjunction (AND) or disjunction (OR) opera-
tor, respectively. Consequently, traditional And-Or-Inverter
Graphs (AOIGs) are a special case of MIGs. MIGs can be
easily derived from AOIGs as shown in Fig. 2, in which
the lines with bubbles indicate complemented edges require
additional inverters.

MIG-based representations are extremely competitive at
logic rewriting. The axiomatic system for the MIG Boolean
algebra, referred to as Ω, is defined by five primitive transfor-
mation rules: commutativity (Ω.C), majority (Ω.M), associa-
tivity (Ω.A), distributivity (Ω.D), and inverter propagation
(Ω.I). The majority operation of three variables x, y, and
z is denoted as 〈xyz〉 in Ω. A strong property of MIGs and
their algebraic framework is reachability. It has been proven
that, by using a sequence of transformations drawn from the
primitive five rules, it is possible to traverse the entire MIG
representation space [2]. This result is of paramount interest
to logic synthesis because it guarantees that the best MIG

AND AND

OR

AND AND

OR

x yy

z z

AOIG

x yy

z z

MAJMAJ

MAJ

MAJMAJ

MAJ

0

0

0

0

00

MIG

x yz

MAJMAJ

MAJ

x yz

x

Optimized MIG

(a) (b) (c)

Figure 2: Example of transposing an optimal (a)
AOIG representation into (b) an initial MIG rep-
resentation and (c) an optimal MIG representation
after using MIG algebraic transformation.

under a given target metric can always be reached. However,
deriving a sequence of Ω transformations is an intractable
problem. As for traditional logic optimization, heuristic tech-
niques can obtain fast solutions with reasonable quality [10].
From the perspective of logic optimization, it is practical to
improve the FPGA performance by reducing the maximum
number of logic levels (depth) with affordable area penalty,
which leads to a better delay of the physical implementation
of the circuit [14]. Thanks to the flexible MIG algebraic
framework, it is possible to obtain a better MIG, both in
depth and area, as shown in Fig. 2(c).

Ω =

Commutativity − Ω.C

〈xyz〉 = 〈yxz〉 = 〈zyx〉
Majority − Ω.M{
〈xyz〉 = x = y if x = y

〈xyz〉 = z if x = ȳ

Associativity − Ω.A

〈xu〈yuz〉〉 = 〈zu〈yux〉〉
Distributivity − Ω.D

〈xy〈uvz〉〉 = 〈〈xyu〉〈xyv〉z〉
Inverter Propagation − Ω.I

〈xyz〉 = 〈x̄ȳz̄〉

3. RELATED WORK
Carry chains are widely studied since they were intro-

duced by commercial FPGAs. Most of the existing papers
focus on the carry-chain architectures and how to imple-
ment best the arithmetic operators. Most of the widely-used
tools rely on users explicitly writing additions/subtractions
using HDL primitives or using a predefined adder macro
to recognize carry-chain logic. Frederick and Somanni [11]
proposed a mapping algorithm that exploits carry chains
for general circuits. The results proved that carry chains
have the potential to improve the delay of general-purpose
circuits. However, the technique proposed is only applicable
to carry-select chains, which are no longer present in modern
FPGAs. To target arbitrary carry-chain structures, Preußer
and Spallek [12] proposed an approach to the automatic
mapping that uses carry chains for general logic implementa-
tion. The algorithm searches the cuts that cover LUTs and
the carry-chain node in the same logic block, which impose
much tighter constraints than in our approach. The benefit
of this approach is that it naturally utilizes the carry-chain
LUTs, while the tight constraints may decrease the map-
ping possibilities. Petkovska et al. [13] propose to map logic
on the carry chains for circuits expressed using a gate-level
descriptions. Moreover, the carry-chain LUTs are specified

FPGA
Architecture
Description

Benchmarks

.xml

.blif

ABC
(Logic Optimization)

AA-Pack

Versatile Placer&Router

VPR
.blif

 Results

.net

Timing & Area Estimation

(a)

MIG-based Synthesis for
Carry Chains

(b)

AA-Pack

Versatile Placer&Router

VPR
.blif

 Results

.net

Timing & Area Estimation

Figure 3: Comparison of (a) the state-of-the-art aca-
demic design flow and (b) the proposed design flow.

using a pre-mapping selection algorithm. The results show
that they can identify more full adders than with the existing
design flow, and that the area is improved by 6% on average,
with no delay penalty. However, their method is effective
only for circuits rich with adders.

In terms of MIG-based FPGA synthesis, Amarù et al. [14]
proposed MIG optimization techniques targeting high-speed
FPGA implementations, which aggressively reduce the logic
depth and enable denser LUT mapping on FPGAs. They
also gave insight on how to exploit the FPGA carry-chain
logic during the logic optimization. However, their method
targetted LUTs operating in normal mode instead of arith-
metic mode, thus it misses out on some opportunities to
improve the performance using carry chains.

4. MIG-BASED SYNTHESIS FOR CARRY
CHAINS

In this section, we describe the proposed MIG-based syn-
thesis for carry chains. First, we introduce proposed flow,
before describing the details of the proposed algorithm.

4.1 Proposed Design Flow
We use the state-of-the-art FPGA design flow VTR 7.0 [15],

shown in Fig. 3(a), as our baseline flow. The BLIF format
circuit is first synthesized and technology mapped by ABC,
the output of which serves as an input to VPR to pack, place,
and route it for a given FPGA architecture description.

Instead of using ABC, which is based on AIGs, for logic
synthesis and technology mapping, the proposed flow uses
an MIG-based logic synthesis, as shown in Fig. 3(b). The
algorithm consists of four main steps: critical path evaluation,
inverter propagation, carry-chain candidate selection, and
carry-chain LUT mapping. The extracted carry-chain logic
are marked as don’t-touch nodes and implemented on the
FPGA’s hard carry chains, while the rest is mapped onto
LUTs as usual.

4.2 Critical Path Evaluation
Given an MIG, we enumerate all critical paths from pri-

mary inputs (PIs) to primary outputs (POs). For each critical
path, a cost function is used to evaluate the carry-chain im-
plementation benefits, including the gains of both nodes and
edges after carry-chain extraction. The nodes gain Nnodes

consists of three parts: 1) the number of nodes in critical
path, npath; 2) the number of nodes that will be implemented

A

B

D

E

C

x0

x3

x5

0

x2

x4

out

(a)

d0 d3

e3e0

x0

x1

5-LUT
(cut A)

x2

x3

x4

x5

B

C out

(b)

const 0

a0

a3

d0

d3

e0

e3

const 0

const 1

a0 a3

k-input
cut

5-LUT
(const 0)

5-LUT
(const 1)

5-LUT
(cut D)

5-LUT
(BUF)

5-LUT
(cut E)

Figure 4: (a) A critical path in an MIG and (b) its
LE carry-chain implementation.

by carry-chain LUTs, nfill; 3) the number of nodes in 2) that
will be duplicated due to its fanout to a node that does not
belong to 1) and 2), ndup. The nodes gain Nnodes is then
defined as

Nnodes = npath + nfill − ndup (1)

The nodes in 1) and 2) are marked as blackbox nodes. The
edges gain Nedges considers the number of internal edges
to connect all blackbox nodes, ninter, and the external nets
that connect blackbox nodes to non-blackbox nodes, nexter.
Hence, edges gain Nedges is then defined as

Nedges = ninter − nexter (2)

The cost function to evaluate a path is defined as

f = αNnodes + βNedges (3)

where α and β are weight factors used to provide similar
weights to the two terms of the equation for combinational
optimization:

α+ β = 1.0 (4)

αNavg
nodes = βNavg

edges (5)

where Navg
nodes and Navg

edges are the average nodes and edges
gain among all critical paths. The path with highest cost is
selected as candidate for carry-chain implementation.

Figure 4(a) provides an example in which the nodes {A,B,C}
are on the candidate path, npath = 3; supposing the nodes
{D,E} will be implemented by carry-chain LUTs, nfill = 2;
the blackbox nodes are then {A,B,C,D,E}, because node E
has another fanout to a non-blackbox node, ndup = 1. There-
fore, Nnodes = 3 + 2− 1 = 4. For edges gain, each MAJ node
has 3 input edges and the number of blackbox nodes is 5, thus
ninter = 15. Node E has 2 external nets that connect non-
blackbox nodes, thus nexter = 2, and Nedges = 15− 2 = 13.
The carry-chain implementation of Fig. 4(a) is shown in
Fig. 4(b), in which MAJ nodes {A,B,C} on the critical path
are mapped to carry chains, while nodes {D,E} are mapped
to carry-chain LUTs. The first full adder of the carry chain is

A

B

D

E

C

0

A

B

D

E

C

0

A

B

D

E

C

0

A

B

D

E

C

0

(a) (b) (c) (d)

a

b

c

a

b

c

a

b

c

a

b

c

d

e

d

e

d

e

d

e

Figure 5: Inverter propagation in the carry-chain
edges.

used as a half adder because the first Cin must be connected
to a constant 0 in order for A to be propagated from the
LUTs to the cout. The details of how to determine the nodes
to be implemented by carry-chain LUTs are described in
Section 4.5.

4.3 Inverter Propagation
For most commercial products, the carry-chain architecture

does not allow inverter operation along the carry-in/carry-out
paths. Although inverters can be realized by the LUTs, it will
bring in an additional delay and area overhead. To optimize
the inverters used in carry chains, we used Boolean algebra
inverter propagation (Ω.I) rule. An approach by Testa et
al. [17] shows that (Ω.I) rule is efficient in complemented
edges minimization for emerging nanotechnologies.

The Ω.I rule can be applied to all edges along the path
recursively in a bottom-up or top-down manner. For exam-
ple, Fig. 5(a) shows the original graph with inverters. The
critical path {A,B,C} is highlighted in red. In a bottom-up
manner, we first find the output edge a of node A that is
complemented, then we apply Ω.I to change complement
states of all inputs/outputs of node B, as shown in Fig. 5(b).
Next, after edges b and c are processed, as shown in Fig. 5(c),
there are no inverters along the critical path. If the number
of complemented edges in carry chains is even, then the com-
plemented edges compensate each other and the final result
is a carry chain with no inverters. Otherwise, at most one
inverter exists at a primary input or output.

To make sure minimum number of inverters are used to
feed the carry chains, the Ω.I can be also applied to carry-
chain inputs by just one level. Figure 5 (c) shows an example.
The output edges d and e, which are inputs to node D and
E, respectively, are complemented. We apply Ω.I on node
D and E to minimize inverter numbers in carry-chain inputs.
Finally, the MIG after critical path inverter propagation is
shown in Fig. 5(d).

4.4 Selection of Carry-Chain Candidates
Note that the carry-chain pattern (adder/MAJ + 5-input

LUTs) is a better choice for technology mapping than a
6-input LUT only when the associated 5-input LUTs are effi-
ciently utilized. After extracting a chain of MAJ nodes from
a logic network, it is possible that two inputs of some MAJ
nodes are primary inputs. Consequently, to accommodate
such MAJ nodes, the two 5-input LUTs have to be configured
as buffers, which we define as loose carry-chain pattern. In
addition, there could be more than one loose carry-chain
pattern in a chain. Figure 6 illustrates an example of two
cascaded loose carry-chain patterns, where the number of
used inputs of the four 5-input LUTs is only four. Note that
the two LEs in Fig. 6 have only five inputs (including Cin)

FFCLK

M
U
X

FF
CLK

M
U
X

+

M
U
X

M
U
X

LE[1]

5-LUT
(BUF)

Cout

5-LUT
(BUF)

in3
in4

FFCLK

M
U
X

FF
CLK

M
U
X

+

M
U
X

M
U
X

Cin
LE[0]

5-LUT
(BUF)

5-LUT
(BUF)

in1
in2

Figure 6: Two cascaded loose carry-chain patterns.

in total. If only the carry-chain output Cout is used (the
normal outputs out0 and out1 of LEs are not used), the two
LEs could be alternatively implemented with a single 6-input
LUT. Compared to a single 6-input LUT, the two LEs are
less efficient in both area and delay. The pin-to-pin delays
of two loose carry-chain patterns are

Cin to Cout: 2 · tadder

in1 to Cout: tlr + tlut5 + 2 · tadder

in2 to Cout: tlr + tlut5 + 2 · tadder

in3 to Cout: tlr + tlut5 + tadder

in4 to Cout: tlr + tlut5 + tadder

Average: tlr + 0.8 · tlut5 + 1.6 · tadder

where tadder, tlr and tlut5 represent the delays of an adder,
local routing and a 5-input LUT, respectively. The average
pin-to-pin delay of a LE operating in the mode of a single
6-input LUT is tlr + tlut6 + tmux, where tlut6 and tmux denotes
the delay of a 6-input LUT and an output selector (a 2 : 1
multiplexer). When the pin-to-pin delay of two loose carry-
chain patterns is larger than that of single 6-input LUT
mode, two loose carry-chain patterns should be replaced by
a 6-input LUT in terms of performance. Note this is only
established on the fact that only cout is used, while other
regular outputs are not used. Similar conclusion can be
drawn for LE in fracturable 5-LUT mode.

Therefore, we restore some loose carry-chain patterns,
which have less than four or five used inputs in total, to
be processed by standard LUT technology mapping. Given
a critical path extracted from an MIG (Section 4.2), the
carry-chain nodes are selected based on the above described
loose carry-chain patterns checking. Therefore, the original
carry chain is decomposed into several parts. However, as
the carry chains start with a half adder and exit through the
sumout, small pieces of carry chains are also too expensive to
be implemented. Considering this issue, we evaluate the loose
pattern and carry-chain length simultaneously. For example,
if two sub-carry-chains are separated by only one MIG node,
we will connect them together to construct a rational chain
implementation. From our experimental results, we found
that MIG nodes that have relatively low logic-levels are prone
to be removed from the carry chains. This is mainly because
these low-level nodes generally are fed by primary inputs,
which are loose pattern mapping.

4.5 Carry-Chain LUT Mapping
The MIG network will be partitioned into two parts after

the critical path is extracted. As shown in Fig. 7, the first

Table 1: Experimental Results Compared to Traditional Design Flow

Benchmark
Traditional Design Flow Improvement by the Proposed Flow (%)

#LUT D RA TA CW WL #LUT D RA TA CW WL #Adder

pm1 17 1.52 4.06 15.1 26 109 23.53 -1.24 2.68 0.00 7.69 7.34 3
f51m 23 2.30 3.36 22.6 24 95 13.04 -24.44 -18.68 -33.33 -16.67 -2.11 3
o64 35 2.40 21.5 30.2 34 808 11.43 -5.32 0.00 0.00 0.00 -15.84 7

C432 52 7.12 8.83 45.3 34 362 36.54 -7.79 16.69 16.67 5.88 9.39 11
i5 69 3.06 47.5 52.8 42 1294 11.59 -3.85 20.55 0.00 14.29 -1.78 5

m4 88 2.21 8.83 67.9 34 312 6.82 -1.87 -3.70 0.00 -11.76 -11.22 5
cavlc 122 2.79 13.9 98.1 30 395 14.75 -0.99 0.00 8.04 0.00 21.01 13

too large 173 4.35 25.4 136 40 1327 3.47 -6.50 -15.04 0.00 -15.00 -4.67 5
dalu 234 5.20 31.9 181 50 1742 11.54 -9.11 8.08 12.71 -24.00 20.44 22
t481 290 4.85 35.2 219 40 2209 -1.72 -0.38 -16.58 -0.06 -20.00 -6.38 18
i8 307 3.42 57.2 234 48 3347 0.98 -8.31 -1.40 0.00 -4.17 5.71 8
in1 387 3.58 39.7 294 34 2640 3.88 -2.89 0.00 2.72 0.00 -8.71 10

C6288 433 11.18 46.6 332 40 3120 5.31 -25.60 -1.85 2.41 -5.00 -3.88 21
prom2 527 3.38 50.9 400 34 2553 -0.95 -11.85 -3.94 -2.00 -11.76 0.00 3

Avg. 10.01 -7.87 -0.94 0.51 -5.75 0.66

#LUT: number of LUTs, D: delay (ns), RA: routing area, TA: total area (area unit: 104 number of minimum transistor size), CW: channel width,
WL: wirelength, #Adder: number of adders

MIG

PO PO

PI PI PI

PO

MIG
remainder

z
0

z
1

=

PO

MIG
cc

z
0

z
1

Y
0

Y
0

PI PI

Figure 7: MIG network splitting.

part MIGcc contains the carry-chain nodes and external
edges, while the other part MIGremainder is the remainder
MIG network without carry chains. For the inputs/outputs
of carry-chain nodes, additional primary outputs/inputs are
created to ensure correct circuit functionality.

Considering the utilization of carry-chain LUTs, we employ
the CutMap algorithm [18] to find a pair of cuts, named cuta
and cutb, in MIGremainder that will be implemented with the
two carry-chain LUTs connected to an adder. Since there can
be several options for each carry-chain LUTs, for each pair
of LUTs, the two cuts with the highest cumulative gain are
selected [13]. The gain of a cut is computed as the number of
nodes covered by the cut that do not need to be duplicated.
A node has to be duplicated if at least one of its fanout nodes
is not covered by the cut.

To guarantee that the cuts are legally mapped to the LUTs,
the maximum number of independent inputs among the two
cuts should be less than or equal to K. Hence, for each cut
pair, we make sure the cuts can be mapped by verifying that

nPI(cuta) + nPI(cutb)− nShared(cuta, cutb) ≤ K (6)

where K is the allowed maximum number of independent
inputs, nPI(cutx) indicates the number of inputs of cutx and
nShared(cuta, cutb) presents the shared number of inputs of
cuta and cutb. In this paper, we consider K = 5 because the
LB shown in Fig. 1 has at most five independent inputs.

For each input pair of carry-chain nodes in MIGcc, we
explore the corresponding primary outputs in MIGremainder

to find two cuts. In Fig. 7, the Z0 node in MIGreminder drives
two nodes in MIGcc and therefore has a fanout of 2. Note
that the LB in Fig. 1 supports at most two extra outputs

among the two fracturable LUTs plus one carry output. To
find the best cut size for all pairs, a heuristic algorithm is
used to sort carry-chain inputs from bottom-up. The inputs
of the pairs are marked as visited when they have extra
output. Hence, if a input node is already visited, it means
the other node in the pair can have a cut size of K − 1
because the visited node just occupy one independent input.
An example can be found in Fig. 4(b) where the LUT to
implement ‘cut D’ has an extra output.

5. EXPERIMENTAL RESULTS
In this section, we first introduce the experimental method-

ology used for the experiments. Then, the results of these
experiments on several MCNC benchmarks are presented.

5.1 Methodology
The design flow used for our experiment is shown in Fig. 3.

Instead of using ABC for logic optimization in the baseline
flow, we implemented our MIG-based approach in C++ as
a command called ‘fpga’ on top of the CirKit framework.1.
The benchmarks considered from MCNC are general com-
binational circuits that have limited number of full adders.
The arbitrary circuit description is transformed into MIG
using ‘xmglut’ command in CitKit [19]. We use the proposed
approach on top of FPGA physical design stage, as a preopti-
mization step, which produces an alternative but functional
equivalent BLIF description to the flow. The ‘cec’ command
is used to check the equivalence. The script of ABC used
for technology mapping is “resyn; resyn2; if -K 6” for all
soft logics from MIGremainder that is mapped into 6-input
LUTs.

In this paper, we consider the FPGA architecture shown
in Fig. 1, where each LB consists of I = 10 LEs, and N = 50
inputs. A length-4 uni-directional routing architecture, fea-
tured by Fs = 3, Fc,in = 0.15 and Fc,out = 0.10 is employed.
We add 30% slack to the minimum routing channel width to
simulate the low stress routing.

5.2 Area and Delay
The results of evaluating the proposed approach are shown

in Table 1. The left part indicates results for the traditional

1github.com/msoeken/cirkit

design flow, while the right part presents the improvement
percentage by the proposed approach. The number of adders
used for carry-chain implementation is also reported in the
last column.

In total, the proposed flow reduces the delay by 8% on
average. The delay is composed of the total amount of logic
and net delay. The stacked bar plot of delay distribution is
shown in Fig. 8. Generally, the net delay is reduced in most
of the considered benchmarks. This is because we use hard-
wired carry chains for delay-efficient connections. However,
one can note that the carry-chain implementation does not
guarantee the net delay reduction. As the cost of routing to
the hard carry chain is high, the net delay for the routing
purpose can be considerable. The logic delay is determined
by the technology mapping, as presented in Section 4.5,
several extra primary outputs should be created to feed the
carry chains. Basically, the technology mapper use more
LUTs to implement these extra connections. This is why the
proposed flow consumes 10% more LUTs than the traditional
approach. Without efficient carry-chain LUT utilization, the
increased logic delay caused by additional LUTs is expected
to compensate the decreased net delay. Consequently, it
indicates that the impact of the hard adder logic on delay
improvement of an application is highly dependent on how
the rest of the application is implemented by the soft logic.

The channel width is reduced by 6%, while the routing
and total used area is practically the same with only few
percentages points of difference, on average. Finally, the
benefits of carry-chain implementations, by absorbing more
logic into carry-chain LUTs, result in channel width improve-
ment. After loose pattern removal that are too expensive
for carry-chain implementation, the number of used adders
range from 3 to 22. The benchmark with the largest delay
reduction is C6288, which used 21 adders to achieve a 25.6%
performance improvement.

5.3 Discussion
The performance improvement for general logic using hard-

wired FPGA carry chains is encouraging. However, as also
discussed in [13], the VPR packer may fail to associate the
carry-chain LUTs with their respective adders and ends
up wasting the carry-chain LUTs as buffers while placing
their targeted functions in other logic blocks. This leads
to increased logic delay, number of logic blocks, and used
area. Moreover, the current VPR tool does not allow the
permutation of positions of carry chains during physical
synthesis. These tight constraints limit the possibility of
better physical results.

Moreover, the critical path in terms of logic levels, might
not be a critical path in the circuit after packing, placement,
and routing. The carry chains we extracted currently are
based on only one critical path at logic level. Further im-
provement can be achieved by extracting more critical paths
by iteratively extracting the carry chains, or refining the cost
function to embody the physical significance.

6. CONCLUSIONS
Hard-wired carry chains are highly efficient for arithmetic

primitives implementation. Although existing research demon-
strated very effective results for arithmetic-rich applications,
due to the inherent inflexible design, general applications
can merely take advantage of it. The MIG-based logic syn-
thesis opens opportunities for FPGA carry chains for general
purpose circuits. Instead of identifying adder primitives in ei-
ther high-level description or gate-level netlist, we find carry
chains effortlessly by using MIGs since the carry signal of an
adder is realized by a majority gate. The proposed synthe-
sis method for carry chains first evaluates all critical paths

0

2

4

6

8

10

12

De
la
y	
(n
s)

Benchmark

Traditional	Flow-Logic	Delay Traditional	Flow-Net	Delay
Proposed	Flow-Logic	Delay Proposed	Flow-Net	Delay

Figure 8: Comparisons of logic and net delay.

to determine a path candidate for carry-chain implementa-
tion. Then, the nodes along the path are further analyzed to
identify and remove inefficient carry-chain mapped blocks,
called loose patterns. As a result, long critical paths are
decomposed into several parts for efficient carry-chain imple-
mentation. By evaluating MCNC benchmarks, which have
a limited number of adders by construction, the proposed
method can improve performance by 8% and channel width
by 6% on average, respectively.
Acknowledgments. This research was partly supported by H2020-ERC-

2014-ADG 669354 CyberCare, by NSF China 61501268, by Zhejiang

Provincial NSF LQ15F040001, and by Ningbo City NSF 2015A610112.

7. REFERENCES
[1] J. Luu, C. McCullough, S. Wang, S. Huda, B. Yan, C. Chiasson,

K. B Kent, J. Anderson, J. Rose, and V. Betz. On hard adders
and carry chains in FPGAs. In FCCM, pages 52–59. 2014.

[2] L. Amarù, P.-E. Gaillardon, and G. De Micheli. Majority-
inverter graph: A novel data-structure and algorithms for ef-
ficient logic optimization. In DAC, pages 1–6. 2014.

[3] L. Amarù, P.-E. Gaillardon, and G. De Micheli. Majority-
inverter graph: A new paradigm for logic optimization. IEEE
Trans on CAD, 35(5):806–819, 2016.

[4] R. Brayton and A. Mishchenko. ABC: An academic industrial-
strength verification tool. In CAV, pages 24–40. 2010.

[5] R. E Bryant. Graph-based algorithms for Boolean function ma-
nipulation. IEEE Trans on Computers, 100(8):677–691, 1986.

[6] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for
deep-submicron FPGAs. Kluwer Academic Publishers, 1999.

[7] M. Hutton et al. Improving FPGA performance and area using
an adaptive logic module. In FPL, pages 135–144, 2004.

[8] Altera. Stratix 10 advance information brief. Altera Corpora-
tion, July 2015.

[9] Xilinx. Virtex-7 user guide DS180 (v1.17). Xilinx, May 2015.
[10] G. De Micheli. Synthesis and optimization of digital circuits.

McGraw-Hill Higher Education, 1994.
[11] M. T. Frederick and A. K. Somani. Beyond the arithmetic con-

straint: depth-optimal mapping of logic chains in LUT-based
FPGAs. In FPGA, pages 37–46. 2008.

[12] T. B. Preußer and R. G. Spallek. Enhancing FPGA device capa-
bilities by the automatic logic mapping to additive carry chains.
In FPL, pages 318–325. 2010.

[13] A. Petkovska, G. Zgheib, D. Novo, M. Owaida, A. Mishchenko,
and P. Ienne. Improved carry chain mapping for the VTR flow.
In ICFPT, pages 80–87, 2015.

[14] L. Amarù, A. Petkovska, P.-E. Gaillardon, D. Novo, P. Ienne,
and G. De Micheli. Majority-inverter graph for FPGA synthesis.
In SASIMI, pages 165–170, 2015.

[15] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A.
Somerville, K. B Kent, P. Jamieson, and J. Anderson. The VTR
project: Architecture and CAD for FPGAs from Verilog to rout-
ing. In FPGA, pages 77–86, 2012.

[16] Berkeley Logic Synthesis and Verification Group ABC:
A system for sequential synthesis and verification,
http://www.eecs.berkeley.edu/ alanmi/abc/.

[17] E. Testa, M. Soeken, O. Zografos, L. Amarù, P. Raghavan, R.
Lauwereins, P.-E. Gaillardon, and G. De Micheli. Inversion op-
timization in majority-inverter graphs. In NANOARCH, 2016.

[18] J. Cong and Y.-Y. Hwang. Simultaneous depth and area mini-
mization in LUT-based FPGA mapping In FPGA, 1995.

[19] W. Haaswijk, M. Soeken, L. Amarù, P.-E. Gaillardon, and G.
De Micheli. A novel basis for logic rewriting. In ASPDAC, 2017.

