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ABSTRACT
Approximate computing is an emerging methodology that
allows to increase efficiency in a range of resilient applications
for an affordable loss of precision or quality. In this paper,
we exploit approximation in a multi-criteria optimization
approach for the widely used data structure Binary Decision
Diagram (BDD) to achieve higher efficiency besides lowering
the inaccuracy. For this purpose, we utilize an ε-preferred
evolutionary algorithm giving a higher priority to minimize
BDD sizes as well as maintaining certain error constraints. In
particular, we propose an adaptive ε-setting method which
adds an automated factor to the algorithm based on the
behavior of the function under approximation. This improves
the performances of the algorithm by correcting the effect of
the user set error constraints which can restrict the dimen-
sions of the search and can lead to immature convergence.

In comparison with the non-optimized BDDs, the proposed
algorithm achieves a high gain of 68.02% at a low cost of 2.12%
inaccuracy for the whole benchmark set. The experimental
results also reveal a considerable improvement of 25.19% in
the average value of error rate besides reduction in BDD sizes
compared to the manual ε-setting approach.

CCS CONCEPTS
•Mathematics of computing →Evolutionary algorithms;
•Applied computing →Computer-aided design;

KEYWORDS
Approximate BDD optimization; prioritized evolutionary
algorithm; adaptive algorithm

ACM Reference format:
Saeideh Shirinzadeh, Mathias Soeken, Daniel Große, and Rolf
Drechsler. 2017. An Adaptive Prioritized ε-Preferred Evolutionary
Algorithm for Approximate BDD Optimization. In Proceedings
of the Genetic and Evolutionary Computation Conference 2017,
Berlin, Germany, July 15–19, 2017 (GECCO ’17), 8 pages.
DOI: http://dx.doi.org/10.1145/3071178.3071281

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
GECCO ’17, Berlin, Germany
© 2017 ACM. 978-1-4503-4920-8/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3071178.3071281

1 INTRODUCTION
Approximate computing has gained high attention due to
allowing to lower costs by causing a loss of quality in resilient
applications. A wide variety of modern applications such
as media processing, recognition, and data mining tolerate
acceptable error rates that can be exploited by approximate
computing circuits and systems to increase efficiency in time
or energy [5], [14].

Approximate synthesis of multi-level logic circuits was pro-
posed in [20] to minimize area of the resulting circuits for a
given error threshold. Another approach has been proposed
in [26] that introduces a systematic methodology to formu-
late the problem of approximate computing and mapping
it into an equivalent traditional synthesis problem. Binary
Decision Diagrams (BDD) is a graph based data structure
for efficient representation of Boolean functions, which can
be also exploited for approximate computing in the area of
electronic design automation. BDDs are canonical w.r.t. a
variable ordering, which determines the number of nodes in
BDDs, the so-called BDD size [11]. BDD size is the main
cost metric for most of the applications utilizing BDDs such
as logic synthesis and formal verification [4]. Nonetheless, a
BDD can easily explode in size when the number of input
variables of the manipulated Boolean function increases.

Improving the variable ordering of a BDD is known to
be NP-complete [2]. So far, many BDD optimization meth-
ods, using either exact or heuristic approaches, have been
proposed to find efficient BDD representations [11]. Using
approximation provides another alternative to variable re-
ordering to lower the number of nodes at a cost of inaccuracy.
An approach for functional approximation of BDDs was pro-
posed in [23], which eliminates a number of nodes by applying
some operators to manually selected BDD levels denoted by
variable indices. A similar BDD approximation methodology
was incorporated with the classical variable reordering in [22]
to attain BDDs with smaller sizes and lower error overheads.
For this purpose, a prioritized ε-preferred evolutionary algo-
rithm was suggested in [22] as an appropriate approach to
satisfy size minimization and error constraints.

Although the approach presented in [22] addresses the
main aspects of approximate BDD optimization, it’s entirely
manual nature of applying error constraints results in imma-
ture convergence to higher deviation from the exact BDD.
In this work, we propose an adaptive ε-selection method
to prevent this drawback. The proposed approach adds an
automated element, which is adopted based on the behavior
of the function under approximation, to the user defined
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Figure 1: BDD for the function (x1 ⊕ x2) ∨ (x3 ⊕ x4)

error constraint required by the evolutionary algorithm. This
compensates the lack of sufficient knowledge of the user in
setting error constraints which can dramatically limit the
search directions and lead to lower quality results. Using the
proposed adaptive algorithm improves the BDD sizes and
especially lowers the error overheads which is also confirmed
by the experiments showing a reduction of 25.19% in the
error rate compared to the manual approach.

The remainder of this paper is organized as follows. In
Section 2 we present the preliminaries on BDD approximation
as well as discussing the existing BDD approaches for BDD
minimization briefly. Section 3 explains the requirements of
the BDD approximation problem. In Section 4, we present
our proposed evolutionary approach. Experimental results
are presented in Section 5 and Section 6 concludes the paper.

2 BACKGROUND

2.1 Preliminaries
2.1.1 Binary Decision Diagrams. A BDD (e.g., [10]) is

a graph-based representation of a function that is based
on the Shannon decomposition f = xifxi ⊕ x̄ifx̄i , where
fxi and fx̄i designate function f when the variable xi is
equal to 1 or 0, respectively. Applying this decomposition
recursively allows dividing the function into many smaller
sub-functions. Solid and dashed lines refer to high and low
successors, respectively (see Fig. 1). BDDs make use of the
fact that for many functions of practical interest, smaller
sub-functions occur repeatedly and need to be represented
only once. Combined with an efficient recursive algorithm
that makes use of caching techniques and hash tables to
implement elementary operations, BDDs are a powerful data
structure for many practical applications. BDDs are ordered
in the sense that the Shannon decomposition is applied w.r.t.
some given variable ordering which also has an effect on the
BDD’s number of nodes. Improving the variable ordering
for BDDs is NP-complete [2] and many heuristics have been
presented that aim at finding a good ordering. Throughout
this paper, we consider the initial BDDs, i.e. the input
BDDs before being approximated and optimized, with a
fixed variable ordering and we assume that this is the natural
one x1 < x2 < · · · < xn.

Given a Boolean function f(x) = f(x1, . . . , xn), |f | refers
to the number of binary vectors x = x1 . . . xn such that
f(x) = 1 (ON-set). We define B(f) to be the size of the

BDD representation for f and a given variable ordering,
which is the total number of nodes, including the sinks.

2.1.2 BDD approximation. BDD approximation aims at
minimizing a BDD representing a given Boolean function f

by approximating it with a Boolean function f̂ and respecting
a given threshold based on an error metric. The associated
exact decision problem is called Approximate BDD Minimiza-

tion (ABM, [23]) and tries to find an approximated function f̂
for a given function f , under constraints including an error
metric e, a threshold t, and a size bound b, to satisfy the two

following statements e(f, f̂) ≤ t and B(f̂) ≤ b.
In this paper, we use worst-case error and error rate as

error metrics e. The worst-case error

wc(f, f̂) = max
x∈Bn

| int(f(x))− int(f̂(x))| (1)

where ‘int’ represents the integer value of a bit vector, is the
maximum difference between the value of the approximated
output and the corresponding exact version for all input
combinations. The error rate

er(f, f̂) =

∑
x∈Bn

[f(x) 6= f̂(x)]

2n
(2)

is the ratio of the number of inequalities between the approx-
imated output and the initial function to the total number
of input assignments. The product of error rate and the
total number of input assignments is equal to the Hamming
distance when applied to single-output functions. The first
metric considers the integer representation of the function
values instead of the binary representation. This is useful
since in most applications a change in more significant bits
has a much higher effect than changes in less significant bits.

In order to approximate a BDD we use the operators
which can efficiently be implemented using the APPLY algo-
rithm [18]. These operators should (i) change the function
and (ii) reduce the size of the BDD. The functional change
should at best not be too drastically, i.e., the effect on the
error metric is kept small. In this paper, we use co-factoring
on some variable xi, i.e.,

f̂ ← fxi or f̂ ← fx̄i , (3)

as the simplest operator, however, with quite a significant
effect on the error metric. A more complex algorithm is
called heavy branch subsetting [17] which we apply partially
to the level of xi and all lower levels (towards the terminals),
denoted bfcxi and dfexi and called rounding up and rounding
down. For each node that appears at level xi or lower (in
other words for each node labeled xj with j ≥ i), the lighter
child, i.e., the child with the smaller ON-set, is replaced by a
terminal node. The terminal node is ⊥ when rounding down,
and > when rounding up.

2.2 Related work
In many VLSI CAD applications BDDs are directly mapped
to target circuits such that each BDD node is simply replaced
by a multiplexer in the real implementation [11]. Hence, the
smaller size of BDDs means the smaller chip area which
makes number of nodes the main cost metric. There has
been few approaches presenting BDD optimization techniques
w.r.t. different criteria such as the number of paths [13,
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15], expected or average path length [11]. In [21], a multi-
objective BDD optimization method was proposed to reduce
both of the number of nodes and paths in BDDs. Nonetheless,
the majority of approaches presented so far optimize BDDs
w.r.t. the number of nodes.

There are several methods that use exhaustive optimization
techniques to reduce the number of nodes in BDDs [11, 12, 16].
These exact methods guarantee to find the optimum BDD,
but their complexity is a serious drawback which makes the
use of heuristic approaches more practical. Sifting [18] is
a well-known heuristic for BDD node minimization which
algorithm is based on a hill-climbing framework. Sifting
swaps two adjacent variables in a BDD without changing the
function. The variables are moved upward and downward in
the variable ordering representing the BDD. The resulting
BDD sizes are recorded during the variable movements. At
the end of this procedure each variable is moved back and
fixed at the position where the BDD with the minimum
number of nodes was found. Sifting is recognized as a fast
and useful technique, but it fails to find or even approach the
optimum BDD when the number of input variables increases.
Other approaches such as simulated annealing [1] and genetic
algorithms [9] have been also proposed for BDD minimization,
which can achieve BDD sizes up to half of that found by
sifting.

As approximation is becoming an emerging computing
paradigm for exploiting the intrinsic error resilience in many
of modern applications, the need for approximate comput-
ing design methods increases. In [23], this requirement was
addressed for applications using BDDs by introducing a min-
imization approach for approximate computing. The paper
proposes approximate operators for eliminating a number
of nodes in BDDs as well as several algorithms to compute
different error metrics.

In [22], the fundamentals of BDD approximation proposed
in [23] were incorporated with variable ordering to increase
gain by simultaneously optimizing and approximating BDDs.
The approach uses a prioritized ε-preferred evolutionary algo-
rithm to search for BDDs represented by variable permutation
and pairs them with their corresponding approximation op-
erators which lead to smaller sizes and deviations from the
exact function. A higher priority is given to BDD sizes to
ensure that the minimum approximated BDD is attainable
under certain error constraints. At the same time, setting
ε values below the constraints allows to choose BDDs with
lower error values in case of equal sizes.

3 ALGORITHM REQUIREMENTS
In this section we briefly review the requirements of an algo-
rithm for the approximate BDD optimization problem.

The most simple model for approximate BDD optimization
considering the two error metrics described in Section 2.1.2
is a three-objective problem with the first objective set to
the BDD size. This model might need to avoid occurrence
of non-comparable solutions by adding density information
due to the presence of three objectives. The model is also
not a true projection of the problem because of ignoring
the main purpose of approximate BDD computing which is
finding the BDD with the minimum size. Moreover, it does

not guarantee to maintain the validity of the approximated
BDDs.

By incorporation of approximation and optimization for
BDDs, we accept to pay some costs as errors to find smaller
BDDs which might not exist using only variable ordering
techniques. Thus, the error metrics can not be considered as
important as the number of BDD nodes. This means that
the optimization algorithm should be capable of handling
higher priority of the first criterion. A more comprehensive
priority scheme that allows different priority scenarios for
all objectives might be also of interest for some Boolean
functions when one of the error metrics highly affects the
precision and validity of approximation. For example, for a
BDD representing an adder a high value of error-rate can be
tolerated if the integer values of the real and the approximated
functions are slightly different even for a large number of
assignments. While a high value of worst-case error can mean
a failure since it shows that the output of the approximated
function is unacceptable for at least one input assignment.

Besides the discussion above on the priority of objectives,
the algorithm should also guarantee that the final solutions
represent valid BDDs according to the user defined standards.
Hence, for each error metric a threshold value should be set.
It is worth noting that it is sufficient for the algorithm to
satisfy the error thresholds. In fact, we ensure not to lose the
minimum BDD size at a cost of finding error values smaller
than required.

Both of the aspects mentioned above have been addressed
in [22] by utilizing the prioritized ε-preferred which maintains
the higher significance of BDD size by a priority scheme, and
ensures the fulfillment of the error constraints by setting
threshold values besides the metric ε. The latter contributes
on guiding the search towards lower error values if several
candidates with the minimum size coexist. Nevertheless,
an important factor has been taken into account by the
algorithm used in [22].

The values of errors caused by approximation highly de-
pend on the characteristics of the functions represented by
BDDs. It is almost impossible for a user to anticipate the
behavior of a function under approximation [23]. For some
functions, a small operation on the BDD under approxima-
tion can cause dramatic inaccuracies without a noticeable
improvement in the size, whereas high gain can be achiev-
able at low error costs for other functions. In such a case,
approximate BDD optimization may not lead to the best
possible error values. If the error constraints are set too loose,
the process will terminate without finding the best possible
error values. On the other hand, strict constraints may allow
only few individuals in the population which cover a small
percentage of the whole search space. This can limit the of
directions of evolution and prevent to obtain minimal BDDs.
Therefore, a proper adaptive error constraint scheme depend-
ing on the behavior of the function under approximation can
be highly effective on the quality of results.

In this work, we use the same evolutionary algorithm as
proposed in [22] but enhance it with an adaptive ε setting
method. This alleviates the concerns about error constraints
by allowing to loose the manually set threshold values and
move the weight of the constraints to the automated ε setting.
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4 ALGORITHM FEATURES
In this section, we first explain the prioritized ε-preferred
relation with adaptive ε which we employed for comparison
of solutions. Then, we present the overview of the proposed
multi-objective algorithm for approximate BDD optimization.

4.1 Prioritized ε-preferred
In general, an arbitrary multi-objective problem with m
objectives is defined as

min f(x) = (f1(x), f2(x), . . . , fm(x))T,

solution x = (x1, x2, . . . , xn)T in the equation above is
a decision vector from the decision space Ω ⊆ Rn, and
f : Ω→ Λ is a set of m objective functions which evaluates a
solution by mapping it to objective space Λ ⊆ Rm. Assuming
two arbitrary solutions x, y ∈ Ω, the Pareto-dominance can
be defined as

x ≺ y :⇔ ∃j ∈ {1, 2, . . . ,m} :

fj(x) < fj(y) ∧ ∀i 6= j : fi(x) ≤ fi(y).

As discussed before, the strict relation of Pareto-dominance
is not required for the approximate BDD optimization. In
this case, we are only interested in finding BDDs with smaller
sizes, and the error metrics does not matter until they sat-
isfy the threshold values. To find the appropriate ranking
method for this purpose, we introduce the so-called relation
preferred proposed in [7]. Preferred is a refinement of Pareto-
dominance which respects the number of objective functions
for discriminating solutions. For i, j ∈ {1, 2, . . . ,m}, relation
preferred is defined as

x ≺preferred y :⇔
|{i : fi(x) < fi(y)}| > |{j : fj(y) < fj(x)}|.

More informally, the equation above means that solution x is
preferred to y if the number of objective functions of x which
are smaller than their corresponding values of y is larger than
the number of objective functions of y smaller than the same
components of x.

Relation preferred is not transitive and as a result it
can not be a partial order. Consequently, concepts such
as non-dominating levels represented for Pareto-dominance
[6], where each solution in a level dominates all solutions
belonging to the levels with higher fitness values can not be
defined for preferred. For a population compared based on
preferred, the solutions can be pairwise comparable [7]. To
make this more clear we give an example. Let f(x) = (8, 7, 1),
f(y) = (1, 9, 6), and f(z) = (7, 0, 9) be solutions mapped into
the objective space. According to relation preferred, x is
preferred to y and y is preferred to z. For a transitive relation
it could be concluded that x has the same relation with z,
while here solution z is preferred to x. Indeed, the solutions
x, y, and z describe a cycle in comparison with each other.

Solutions inside a cycle are denoted as incomparable and
are ranked equally. To sort solutions based on preferred, the
population is divided into the so-called Satisfiability Classes
(SCs, [7]). Each SC represents the fitness value for a set of

solutions that are not comparable according to the concept
explained above. Solutions of SCs indicated by smaller values
are preferred to solutions of SCs with larger indices during
selection. However, due to the non-transitivity of relation
preferred all solutions belonging to an SC are not necessarily
preferred to the entire solutions with larger SC indices. For
example, two solutions x and y in two successive SCs might
be incomparable but x is classified in a better SC since it
has been also incomparable with another solution z which is
preferred to y.

In [25], relation ε-preferred was proposed to make preferred
more robust for many objective optimization problems. ε-
preferred adds the parameter ε to enhance the quality of final
solutions by specifying limits for each dimension. Comparing
two objective vectors f(x) = (1, 1, 100) and f(y) = (5, 5, 5)
based on preferred, solution x is ranked better while it might
not be recognized efficient by the user for the high value of
100 in one dimension. This problem is addressed by setting
maximum values εi, i ∈ {1, . . . ,m} for each optimization
objective.

Using ε-preferred, we first need to compare two given
solutions x, y ∈ Ω based on the number of times that each
solution violates ε. Assuming i, j ∈ {1, . . . ,m}, a relation
ε-exceed is defined as

x ≺ε-exceed y :⇔ |{i : fi(x) < fi(y)∧ |fi(x)−fi(y)| > εi}|
> |{j : fj(x) > fj(y) ∧ |fj(x)− fj(y)| > εj}|.

According to the equation above solution x ε-exceeds y if the
number of times that x exceeds ε in any dimension is smaller
than the same count for y. ε-preferred means the same as
ε-exceed if the solutions have different ε-exceeding counts,
otherwise preferred is required to discriminate between solu-
tions. Using ε-exceed the complete definition of ε-preferred
is formally expressed by

x ≺ε-preferred y :⇔
x ≺ε-exceed y ∨ (y ⊀ε-exceed x ∧ x ≺preferred y).

As discussed in Section 3 the main goal of BDD approxi-
mation is size minimization under certain error constraints,
which makes priority an undeniable requirement. Considering
objective priorities with relation preferred was introduced in
[19]. The model incorporates a lexicographical ordering of
objectives w.r.t. a user defined priority vector. To fulfill the
requirements of the approximate BDD optimization problem
we use the prioritized ε-preferred relation proposed in [8].
Prioritized ε-preferred denoted by ≺prio-ε-pref exploits the
same model used in [19] and is able to handle different levels
of priorities for all of the optimization objectives.

Let p = {p1, p2, . . . , pm} be a priority vector determining
priorities assigned to an m-objective problem. Each com-
ponent pi, i ∈ {1, 2, . . . ,m} can adopt values from the set
{1, 2, . . . , n}, n ≤ m, where n is equal to m in case that
all objectives have different priorities. Considering a mini-
mization problem, we assume that a lower value of pi means
objective i is of higher priority. Given two solutions x, y ∈ Ω,
x|j and y|j represent subvectors of x and y only including
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objective functions with priority of j, prioritized ε-preferred
is defined as

x ≺prio-ε-pref y :⇔ ∃j ∈ {1, 2, . . . ,n} :

x|j ≺ε-preferred y|j ∧ ∀k < j : y|k ⊀ε-preferred x|k.

The relation defined above employs ε-preferred to compare
subvectors of objective functions with equal priorities. x is
prioritized ε-preferred to y if there is a subvector of objective
functions in x with priority value j that is ε-preferred to the
corresponding subvector in y, and at the same time x|j is not
ε-preferred by any subvector of priority higher than j in y.

4.2 Adaptive ε
To ensure removal of invalid solutions, we should make sure
that such solutions are ranked at the end of population and
are not survived for the next generations. This approach
fails to sort the population properly in the presence of a
large number of invalid solutions which occurs when the error
thresholds are low for the function. An ε-scheme, which
is set based on the existing values of objective functions,
can be highly effective for the hard task of threshold setting
in the problem of approximate BDD optimization. Indeed,
error estimation requires high expertise. For many Boolean
functions, there might not be any solution satisfying a small
value of threshold, and on the other hand for a high threshold
the search might end up missing solutions with low error
values. Using an adaptive ε makes it possible to set large
threshold values to ensure that the algorithm will not be
stuck in finding incomparable invalid solutions, and at the
same time, the search is directed toward desired error values
considering limits for each error metric.

It is worth noting that the value of ε does not matter for
the prioritized optimization objective, i.e., the BDD size. As
explained before, prioritized ε-preferred performs compar-
isons based on relation ε-preferred in subvectors of objectives
function with equal priorities starting from the most sig-
nificant criterion. It is clear that comparisons of solutions
for a single objective function ≺ε-preferred works the same as
Pareto-dominance. In fact, x|1 ≺ε-preferred y|1 here can only
mean that the BDD size of solution x is smaller than the
same metric in y which fulfills the problem requirement of
size minimization. Hence, we can simply set ε1 to any value
such as zero.

ε values can also be set manually to a fraction of corre-
sponding thresholds for both of the error metrics as in [22].
However, an automatic adaptive ε selection scheme is more
influential on the performance of the algorithm as explained
before. In [8], it was proposed to assign the the averages
of objective functions as the ε values for each optimization
criterion. Here, we suggest an adaptive method based on the
standard normal distribution of those error values of the par-
ent population which satisfy the thresholds. The εi, i ∈ {2, 3}
at each generation is equal to N(µi, σi

2), where µi and σi

are respectively the mean value and standard deviation of
the set of ith error values.

Using the proposed adaptive ε selection method, in the
primary generations ε values are larger with a high probabil-
ity since the objective functions are spread widely over the

objective space. As the number of generations increases the
ε values decrease due to the fact that the population gets
more evolved which leads to the concentration of objective
functions on smaller values. This way a higher diversity is
provided in the early generations, while convergence tends
to be more greedy in the final generations.

The average based ε proposed in [8] decreases steadily as
the population evolves and the objective functions become
smaller. However, this statement is also true for the proposed
adaptive ε selection with a high probability, there is still a
poor possibility of too high or low ε values far different from
the average of population resulted by the normal distribution.
This can cause preferring solutions with worse objective
functions during some comparisons. This technique can be
useful for allowing individuals dissimilar to the majority of
solutions. It increases the diversity of the population, and
thus can also improve the convergence of the results due to
adding new search directions.

4.3 Evolutionary cycle and operators
The proposed approach minimizes BDDs by performing
both variable reordering and approximation. For this pur-
pose, we use an elitist genetic algorithm based on relation
prioritized ε-preferred to find the smallest approximated
BDDs with valid error values represented by a variable or-
dering and an approximation vector. Hence, each individual
inside the population has two parts which are initialized
independently. One part designates the exact BDD by a
permutation of input variables of the Boolean function and
the other is a vector consisting of pairs designating the ap-
proximation operators and the BDD level indices where each
operator should be applied. The length of the approximation
vector is determined by the maximum allowed number of
approximation operators which is defined as an option for
initializing the population. The approximation vector in each
initial individual might contain a randomly generated number
of approximation operators from one to this maximum value.

After initialization, the population is evaluated. First the
exact BDDs are created according to the variable orderings,
and then the approximation vectors are applied to the corre-
sponding BDDs to create the approximated ones. Thereafter,
the objective functions, i.e., the size and error values of the
approximated BDDs, are set to each individual of the popu-
lation. Then, the relation prioritized ε-preferred is used to
sort the population into satisfiability classes. We use binary
tournament for mating selection and then apply the variation
operators to make an offspring of the same size as the parent
population. The union of both parent and offspring popula-
tions are then sorted and the best individuals are survived
as the next generation according to their fitness values. This
cycle is continued until a certain number of iterations.

As mentioned before, the fitness value for each solution
is equal to the index of the satisfiability class to which the
solution belongs to. In fact, the density information of popu-
lation is not considered in selection. By giving higher priority
to one of the objectives the search is focused on the best ever
found value of the prioritized criterion instead of finding a
good distribution of solutions not preferred to each other.
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It is obvious that there should be two types of variation op-
erators for the distinct parts of each individual, i.e., both cross
over and mutation operators should be specifically defined for
the permutations of variable orderings and the approxima-
tion vectors to prevent invalid solutions. For crossover of the
variable orderings we use Partially Matched Crossover [15]
which guarantees valid permutations. The crossover operator
for the approximation vectors selects two positions randomly
and breaks the parents into three sections. Then two children
are produced by combination of sections from both parents.

We utilize the same mutation operators used in [21] for the
mutation of variable orderings. Three mutation operators
are defined differently for the approximation vectors. The
first operator selects one position in the vector randomly
and increments or decrements its content by equal proba-
bilities. The validity of the solutions is also maintained by
only allowing changes which keep the indices denoting either
approximation operators or BDD levels within their accept-
able ranges. The second mutation operator applies the first
operator on the same approximation vector twice. The third
operator chooses one pair of approximation operator and
level index and increments or decrements both with equal
probabilities.

5 EXPERIMENTAL RESULTS

5.1 Experimental setup
We have assessed the performance of our proposed algo-
rithm on a set of multiple-output benchmark set including
20 Boolean functions. The benchmarks are from ISCAS89 [3]
with a range of input variables from 13 to 54, and primary
outputs from 9 to 52. For each benchmark, the population
size is set to three times the number of input variables but
not larger than 120. The algorithm terminates after 500 gen-
erations and the results shown in Table 1 represent the best
out of ten independent runs for each benchmark function.
The sum of the probabilities of crossover operators for both
variable ordering and approximation vectors are set to 1. A
probability of 1/n, where n is the number of input variables of
the Boolean function, i.e., the length of the ordering vectors,
is equally distributed over the three mutation operators.

The maximum number of times that approximation opera-
tors are applied to any solution in the population is set to the
3 during all experiments. This gives a fixed length of 6 to all
approximate vectors since they are formed of pairs of indices
denoting approximation operators and their corresponding
BDD levels. Thus, the overall probability for the three mu-
tation operators designed for approximation vectors is set
to 1/6. For BDD representation of the benchmark functions
and for the implementation of the approximation operators
we have used the CUDD package [24].

5.2 Performance evaluation and
comparison

Table 1 shows the results obtained by the proposed adap-
tive ε-preferred evolutionary algorithm. The results are also
compared with non-optimized initially ordered BDDs indi-
cated by #N -initial, BDDs optimized by sifting reordering
technique [18], and the results obtained by the proposed

algorithm when ε is set manually, to see the effect of the
adaptive scheme.

The threshold values for the error rate is set to 10%, i.e.,
each output of the approximated BDD can be different from
the corresponding output in the exact BDD for a maximum
of 10% of the whole input assignments. We have used the
same value of 10% as the threshold for the worst case error
denoted by WC. According to the definition of the worst case
error, such a threshold means that the maximum difference
between the equivalent integer values of the output vectors
of the approximated BDD and the exact one can not exceed
2m−2 for a Boolean function with m outputs, which is equal to
the 10% of the largest possible value that the exact function
can adopt. The default manual values of ε for each error
metric are set to 5%, and as discussed before the adaptive ε
at each generation is selected from the normal distribution
of the valid solutions with error values under thresholds.

It should be noted that the results in Table 1 with abso-
lute 0 error values, show that no approximation have been
performed. Actually, the approximated BDD representations
satisfying the defined thresholds have not been reachable for
one or both of the error metrics. Therefore, the algorithm
converges to optimized BDDs represented by the best found
variable orderings and empty approximation vectors.

The experimental evaluations show a noticeable size reduc-
tion at a small cost of error for both manual and adaptive
versions of the proposed algorithm. More precisely, the adap-
tive ε approach obtains a size improvement of 68.02% on
average in comparison with the initial BDDs. This improve-
ment has been achieved at a low cost of total inaccuracy, i.e.
the average of both error metrics, equal to 2.12%, which is
insignificant compared to the amount of size reduction.

Comparison of the results with the sifting [18] reordering
technique also shows that the proposed algorithm using both
manual and adaptive ε lowers the number of BDD nodes
considerably. The average number of BDD nodes over the
entire benchmark set by the proposed adaptive ε-preferred
algorithm is reduced by 23.51% compared to the same value
obtained by sifting [18]. The gain achieved in the BDD sizes
is more than 10 times the total inaccuracy of 2.12%, which
proves that incorporating approximation with BDD optimiza-
tion, i.e. variable reordering, has been highly effective.

According to Table 1, the algorithm using adaptive ε
outperforms the manual approach in both BDD sizes and
inaccuracy. The difference between the average size improve-
ment achieved by the manual and adaptive ε methods is very
small. However, the average error rate by the adaptive ap-
proach is reduced by 25.19% compared to the algorithm using
the manual ε. This confirms that the adaptive ε approach
has been successful in guiding the search towards minimum
BDDs with smaller error values.

5.3 Assessment of ε-setting methods
To see the effect of different ε schemes on the quality of
results, we have performed experiments on a set of six selected
benchmark functions by setting the threshold values for both
error rate and the worst case error at 0%, 5%, 10%, 25%, 50%,
75% and 95%. The default manual ε values are set to half
of the thresholds for both error metrics and each benchmark
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Table 1: Experimental Evaluation and comparison with initially ordered and reordered BDDs by Sifting [18]

Benchmark #I/O #N -initial #N -Sifting Manual ε Proposed adaptive ε

[18] #N ER(%) WC(%) impr.(%) #N ER(%) WC(%) impr.(%)

s208 18/9 1033 61 30 9.32 0.19 97.09 29 7.76 0.19 97.19
s298 17/20 125 78 72 0.78 3.12 42.40 73 0.78 3.12 41.60
s344 24/26 206 104 106 6.25 3.12 48.54 103 6.25 0.39 50.00
s349 24/26 206 104 105 0.00 0.00 49.02 104 0.00 0.00 49.51
s382 24/27 168 121 121 0.00 0.00 27.97 119 0.00 0.00 29.16
s386 13/13 281 123 114 0.39 0.19 59.43 110 0.39 0.19 60.85
s400 24/27 168 121 122 2.25 0.19 27.38 126 0.00 0.00 25.00
s420 34/17 262227 185 63 6.24 <0.001 99.97 63 6.24 <0.001 99.97
s444 24/27 226 161 126 0.00 0.00 44.24 122 0.00 0.00 46.01
s510 25/13 19076 165 147 0.00 0.00 99.22 146 0.00 0.00 99.23
s526 24/27 232 141 116 0.00 0.00 50.00 119 0.00 0.00 48.70
s641 54/42 1352 629 408 8.98 3.12 69.82 405 2.72 6.83 70.04
s713 54/42 1352 629 403 2.72 6.83 70.19 387 2.72 6.83 71.37
s820 23/24 2651 258 221 0.09 9.76 91.66 219 0.09 9.76 91.73
s832 23/24 2651 258 218 0.09 9.37 91.77 218 0.09 9.37 91.77
s953 45/52 1723 402 102 0.38 5.42 94.08 106 0.19 5.42 93.84
s967 45/52 1755 417 264 9.84 3.61 84.95 259 9.78 3.61 85.24
s1196 32/32 2295 642 627 2.59 <0.001 72.67 617 <0.001 <0.001 73.11
s1238 32/32 2295 642 627 2.59 <0.001 72.67 600 2.59 <0.001 73.85
s1488 14/25 1016 391 375 0.00 0.00 63.09 383 0.00 0.00 62.30

AVG 15051.90 281.60 218.35 2.62 2.24 67.80 215.40 1.96 2.28 68.02

#I: number of inputs, #O: number of outputs, #N -initial: non-approximated BDD size, #N -sifting: BDD size obtained by
sifting reordering technique [18], #N : BDD size after approximation, ER: error rate, WC: worst case error, improvement is
calculated compared to the initially ordered non-approximated BDD

has been run 5 times for each given threshold value for the
same number of 500 generations. We have also compared the
performance of our algorithm with the adaptive ε scheme
proposed in [8], which is the average value of each objective
function over the entire parent population at each generation.

Figure 2 shows the BDD sizes obtained by the three dif-
ferent ε-selection methods at the given threshold values. We
have removed duplication of data points representing BDDs
with equal sizes which is the reason for having less than seven
measurements in a few plots. It is obvious that the BDDs
representing different functions slope down to smaller sizes
with different paces. However, all of the plots show that
the BDD sizes decrease as the threshold values increase as
expected, which is the main purpose of approximation.

A quick look at Figure 2 reveals that smaller BDD sizes
have been obtained by the proposed adaptive ε in comparison
with the manual ε and average ε [8] approaches. The results
by the proposed ε scheme show smaller BDD sizes compared
to the two other ε selection methods for all of the functions,
except s1196 at threshold 50%. These results confirm that
the proposed adaptive ε approach is also influential for the
convergence of the BDD sizes as well as the error values.

6 CONCLUSION
Approximate computing is an emerging paradigm that can
be exploited in a variety of applications which can tolerate
some levels of inaccuracy. In this paper we proposed an

approach for approximate optimization of BDDs which are
widely used in formal verification and VLSI CAD. We pro-
posed an adaptive ε-preferred evolutionary algorithm for a
three-objective optimization problem. The first objective,
i.e., the number of nodes of BDDs, was set to a higher priority
which projects the main purpose of the BDD approximation.
The two other objectives are error metrics measuring the
inaccuracy caused by approximation. For given error thresh-
olds, the algorithm is designed to find the BDD with the
minimum possible number of nodes while by the adaptive
ε schemes we ensure to prefer lower error values for equal
BDD sizes. The experimental results show that the proposed
approach has accomplished a considerable size reduction of
BDDs for small error values.
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Figure 2: Comparison of different ε selection approaches
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