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Abstract. We present a more concise formulation of the transforma-
tion based synthesis approach for reversible logic synthesis, which is one
of the most prominent explicit ancilla-free synthesis approaches. Based
on this formulation we devise a symbolic variant of the approach that
allows one to find a circuit in shorter time using less memory for the
function representation. We present both a BDD based and a SAT based
implementation of the symbolic variant. Experimental results show that
both approaches are significantly faster than the state-of-the-art method.
We were able to find ancilla-free circuit realizations for large optimally
embedded reversible functions for the first time.
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1 Introduction

The most important application areas of reversible logic are quantum computing
and low power design. Due to the requirement of reversibility, only n-input and
n-output Boolean functions that represent permutations can be considered. One
of the most important problems to solve is synthesis, which is the problem of
finding a circuit that realizes a given reversible function f : Bn → Bn.

Due to the reversibility, a reversible circuit cannot have fanout. Therefore, it
is composed as a cascade of reversible gates. The circuit has r ≥ n circuit lines.
If r = n, i.e., no additional ancilla line is required to realize f , the synthesis is
called ancilla-free. So far, almost all presented ancilla-free synthesis approaches
(e.g., [9, 4, 7]) use an explicit representation of f , e.g., as a truth table or a per-
mutation, which grows exponentially with n. Consequently, the approaches are
not applicable to large reversible functions. Recently, two ancilla-free synthesis
approaches [15, 14] have been presented that work on a symbolic representation
of f (using decision diagrams) and therefore overcome the limitation and are
applicable to much larger functions.

In this paper, we present a symbolic ancilla-free synthesis approach based
on the most prominent explicit ancilla-free synthesis approach, called transfor-
mation based synthesis [9]. We reformulate the algorithm in a more concise way
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Fig. 1. Example reversible circuit with sample simulation

and derive properties which we exploit in the symbolic variant. In addition to
a binary decision diagram (BDD) based implementation that follows principles
from [15] and [14], we also present an implementation based on Boolean sat-
isfiability (SAT) of the symbolic synthesis approach for the first time. So far
Boolean satisfiability was only used for minimal circuit synthesis [6, 20], which
is only applicable to very small functions. Due to the symbolic description of the
algorithm, it can be performed using fewer computation steps and using lower
memory requirements for the representation of f . An experimental evaluation
shows that the SAT based implementation outperforms the BDD based approach
and both approaches outperform the previously presented symbolic approaches
significantly.

The contributions of the paper can be summarized as follows: (1) a more
concise formulation for the transformation based synthesis approach presented
in [9], (2) a generic symbolic variant of the algorithm, and (3) two implementa-
tions, one based on BDDs and one based on SAT. With these contributions we
were able to find ancilla-free circuit realizations for several benchmarks for the
first time (including reversible functions with 68 variables). All these contribu-
tions make our approach particularly interesting for hierarchical reversible logic
synthesis to ensure local optimal results with respect to the number of ancilla
lines.

2 Preliminaries

A reversible function is a Boolean multi-output function f : Bn → Bn that
is bijective, i.e., every possible input pattern corresponds to a unique output
pattern. Let X be a set of lines identified as {1, . . . , n}. In this work, we consider
the family of multiple-controlled Toffoli gates. A Toffoli gate, denoted T(C, t),
inverts a target line t ∈ X if, and only if, the value of each control line in
C ⊆ X \ {t} is 1. All other lines remain unchanged. If |C| = 0 or if |C| = 1, we
refer to the gate as a NOT gate or a CNOT gate, respectively. As an example,
the gate T({1, 2}, 3) inverts the value of line 3 if, and only if, the first two lines
are set to 1. We use the customary notation of solid circles to denote control lines
and the ‘⊕’ symbol to denote the target line. Fig. 1 shows an example circuit
using this notation with a simulation of the assignment 001 7→ 110.

The assignment of a variable xi in a Boolean function f(x1, . . . , xn) is referred
to as the co-factor of f with respect to xi. If xi is assigned 1, the co-factor is
called positive and denoted fxi

. Otherwise, it is called negative and denoted
fx̄i . Existential quantification of a variable in a Boolean function, also called



smoothing, is defined as ∃xi f = fx̄i
∨ fxi

. The effect is that all occurrences of
xi and x̄i are removed from an expression representing f .

Let f(x1, . . . , xn) = (y1, . . . , ym) be a multiple-output function, where each
output is specified by a Boolean function yi = fi(x1, . . . , xn). Then the charac-
teristic function of f is

F (x1, . . . , xn, y1, . . . , ym) =

m∧
i=1

(ȳi ⊕ fi(x1, . . . , xn)) . (1)

Note that ā⊕ b = a⊕ b is the XNOR operation.
Due to space limitations we refer the reader to the relevant literature for

binary decision diagrams (e.g., [3]) and Boolean satisfiability (e.g., [2]).

3 Truth table based algorithm

The transformation based synthesis algorithm [9] is one of the first and most
popular ancilla-free synthesis algorithms for reversible functions. It works on the
truth table representation of a reversible function f : Bn → Bn. In each step, f
is updated by applying a gate g = T (C, t):

f ← f ◦ g (2)

This step is repeated until f is the identity function and at completion the
composition of all collected gates g1, . . . , gk realizes the original f .

The gates are selected such that they transform output patterns to input
patterns in an assignment x 7→ y with x = x1 . . . xn and y = y1 . . . yn. The
step in (2) is repeatedly applied to transform y in order to match x. Each gate
will change one bit position yi that differs from xi in an order that first 0’s are
changed to 1’s and then 1’s are changed to 0’s. Let Xp = {i | xi = p} and
Yp = {i | yi = p} partition the bits in x and y according to their polarities. The
sets X1 ∩ Y0 and X0 ∩ Y1 characterize the bit positions in which x and y differ.
Inserting the gate sequence

©
i∈X1∩Y0

T(Y1, i) ◦ ©
i∈X0∩Y1

T(X1, i) (3)

in reverse order to the front end of the circuit will transform the output pattern
such that it matches the input pattern. Here, ‘©’ denotes the accumulation
symbol for functional decomposition. Besides transforming y to match x, the
gates also transform other output patterns in the truth table. However, the
following essential property holds. All output patterns y′ 6= y such that y′ ≤ x
are not affected by any gate in (3). This property was first observed in [1].
Hence, applying this transformation to all input/output assignments x(i) 7→ y(i)

for 1 ≤ i ≤ 2n will result in the identity function if the input patterns x(i) are
ordered such that

x(i) 6= x(j) for all i 6= j and x(i) 6≤ x(j) for all i > j, (4)



x1x2x3 y1y2y3 X1 ∩ Y0 X0 ∩ Y1

000 111 000 000 000 000 000 ∅ {1, 2, 3}
001 000 111 001 001 001 001 ∅ {1, 2}
010 110 001 111 010 010 010 ∅ {1, 3}
011 100 011 101 101 011 011 {2} {1}
100 010 101 011 110 100 100
101 001 110 110 011 111 101 ∅ {2}
110 011 100 100 100 110 110
111 101 010 010 111 101 111

Fig. 2. Example application of the transformation based synthesis method. The syn-
thesis adjusts five input/output assignments whose values after gate application are
underlined. The two rightmost columns show the values of the sets X1∩Y0 and X0∩Y1

in each of these steps.

where ’≤’ refers to bitwise comparison. Ordering the input patterns with respect
to their integer representation, i.e., 0 . . . 00, 0 . . . 01, . . . , 1 . . . 11 satisfies (4). The
following algorithm formalizes the synthesis approach using this order.

Algorithm T. (Transformation based synthesis). Given an n-variable reversible
function f , this algorithm computes a reversible circuit C that realizes f by
transforming output patterns in numerical order of their corresponding input
patterns.
T1. [Initialize.] Let C be empty and set x← 0.
T2. [Prepend gates.] Compute X0, X1, Y0, and Y1 for x and y = f(x). Set

f ← f ◦ ©
i∈X1∩Y0

T(Y1, i) ◦ ©
i∈X0∩Y1

T(X1, i) (5)

according to (3) and prepend the gates in reverse order to C.
T3. [Terminate?] If x = 2n − 1, terminate. Otherwise, set x← x + 1 and return

to step 2.
The function f is updated in (5) by adjusting all output patterns in f that match
the control lines of the gates. An example application of the algorithm using this
order is given in Fig. 2 that results in the reversible circuit

x1 y1
x2 y2
x3 y3

The time complexity of Algorithm T is exponential in the number of variables
for all functions f since x is incremented by 1 in step 3 until all 2n input patterns
have been considered. One can check whether f(x) 6= x before computing X0,
X1, Y0, and Y1. However, the gain in efficiency is negligible. The problem is that
there is no way to skip a whole sequence of assignments and jump to the next
one that requires adjustment. In Section 5, we will present a symbolic variant



of Algorithm T that allows such jumps, enabling a linear time complexity for
certain classes of functions in the best case.

Since gates are appended to the front end of the circuit at each step, the
algorithm is referred to as backward-directed transformation based synthesis.
The algorithm can also be applied in the forward direction by adjusting input
patterns to match their output patterns. For this purpose, gates

©
i∈X0∩Y1

T(X1, i) ◦ ©
i∈X1∩Y0

T(Y1, i) (6)

are appended to the back end of the circuit at each step and the output patterns
y(i) are ordered with respect to the constraints that are obtained by replacing x
with y in (4). The two approaches can be combined into a bidirectional approach
by fixing a valid order of patterns z(1), . . . , z(2n) and at each step i either insert-
ing gates according to (3) in the backward direction to adjust the assignment
z(i) 7→ f(z(i)) or inserting gates according to (6) in the forward direction to ad-
just the assignment f−1(z(i)) 7→ z(i). A good heuristic for choosing the direction
is to select the assignment with the smaller Hamming distance, which directly
corresponds to the number of gates. The circuits for the function in Fig. 2 ob-
tained by applying the algorithm in the forward direction and bidirectional are

and

respectively. In the case of a tie for the Hamming distance in the bidirectional
approach, backward direction was chosen.

The two circuits obtained from the unidirectional approaches each consist of
10 gates, whereas using the bidirectional algorithm a circuit consisting of 8 gates
can be obtained. An optimal realization for the function using Tofolli gates with
positive control lines requires 7 gates.

It is worth noting that the Toffoli gates in (3) to change 0’s to 1’s have the
same set of control lines Y1 and the Toffoli gates to change 1’s to 0’s have the
same set of control lines X1. This fact can be emphasized and the representation
can be made more concise when allowing Toffoli gates to have multiple targets
by passing a set of lines instead of a line as the second parameter for ‘T’:

T(Y1, Y0 ∩X1) ◦ T(X1, X0 ∩ Y1) (7)

4 Symbolic representation of reversible functions

We make use of binary decision diagrams to symbolically manipulate and evalu-
ate a reversible function f : Bn → Bn. When representing f using a BDD over n
variables and n start vertices, the reversibility of f is not explicitly represented.
Such a BDD representation corresponds to considering each column of the truth
table representation of f individually. Instead, we use the BDD representation
for the characteristic function of f (see [15, 14]), which in the remainder of the
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Fig. 3. BDDs for F in (8) using a) the natural and b) the interleaved variable order

paper is denoted F . Each one-path in the BDD of F represents one input/output
assignments in f .

As an example consider the CNOT gate T({1}, 2) over 2 variables. Its char-
acteristic function is

F (x1, x2, y1, y2) = (ȳ1 ⊕ x1)(ȳ2 ⊕ x2 ⊕ x1)

= x̄1x̄2ȳ1ȳ2 ∨ x̄1x2ȳ1y2 ∨ x1x̄2y1y2 ∨ x1x2y1ȳ2.
(8)

The first expression emphasizes the functional behavior of the gate, i.e., y1 = x1

and y2 = x2 ⊕ x1, whereas the second expression lists all input/output assign-
ments explicitly.

The order of the variables in the BDD of a characteristic function F for a
reversible function f is crucial. If inputs are evaluated before outputs, e.g., in
their natural order x1 < · · · < xn < y1 < · · · < yn, the size of F will always
be exponential. After all inputs have been evaluated each output pattern must
be represented by a node y1 , and there are 2n different output patterns. The
same effect can be observed if all outputs are evaluated before inputs due to the
function reversibility. However, if we interleave the inputs with the outputs, e.g.,
x1 < y1 < · · · < xn < yn, compact representations are possible [16]. Fig. 3 shows
the BDDs for F in (8) both in the natural and the interleaved order. Solid and
dashed lines refer to high and low edges, respectively.

The symbolic representation of the reversible function f by the character-
istic function F allows several operations that can be implemented efficiently
using BDDs. The most important one is functional composition which is re-
duced to multiplication of the permutation matrices represented by the respec-
tive BDDs. Let f1(x1, . . . , xn) = (z1, . . . , zn) and f2(z1, . . . , zn) = (y1, . . . , yn)
be two reversible functions and F1 and F2 their characteristic functions. Also,
let h = f1 ◦ f2 be the composition of f1 and f2. Then

H = ∃z(F1 ∧ F2) (9)



is the characteristic function of h (see, e.g., [18]). We demonstrate how this
operation works illustrated on the disjunctive normal forms that are represented
by the BDDs. Note that existential quantification can be implemented using
Bryant’s APPLY algorithm [3] in the conventional manner. Let

F1 = x̄1x̄2z̄1z̄2 ∨ x̄1x2z̄1z2 ∨ x1x̄2z1z2 ∨ x1x2z1z̄2

and
F2 = z̄1z̄2y1ȳ2 ∨ z̄1z2y1y2 ∨ z1z̄2ȳ1ȳ2 ∨ z1z2ȳ1y2

be the characteristic functions of the CNOT gate T({1}, 2) and the NOT gate
T({}, 1), respectively. The operation F1 ∧ F2 pairs up those minterms for which
the polarities of z1 and z2 are equal; all other combinations evaluate to false and
therefore vanish from the expression, i.e.,

F1 ∧ F2 = x̄1x̄2z̄1z̄2y1ȳ2 ∨ x̄1x2z̄1z2y1y2 ∨ x1x̄2z1z2ȳ1y2 ∨ x1x2z1z̄2ȳ1ȳ2,

and existentially quantifying over z1 and z2 removes these gluing variables from
the expression:

∃z1∃z2(F1 ∧ F2)= x̄1x̄2y1ȳ2 ∨ x̄1x2y1y2 ∨ x1x̄2ȳ1y2 ∨ x1x2ȳ1ȳ2.

If the variable names don’t match, one can also use existential quantification
to locally rename them. To rename a function F (x, y) to F (x, z), denoted Fy→z,
one computes

∃y (F ∧
∧n

i=1 ȳi ⊕ zi) . (10)

5 Symbolic algorithm

The truth table based variant of the transformation based algorithm visits all 2n

assignments. It is not possible to only visit the assignments that need adjustment,
i.e., for which the output pattern differs from the input pattern. In this section
we discuss a symbolic variant of the algorithm. Besides a symbolic representation
of the function, which can decrease the space requirements, a major difference
of the symbolic variant is the order in which the assignments are visited. The
truth table based variant of the algorithm, Algorithm T, visits all assignments
in numerical order of the input patterns. For example, if n = 4, the order is

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

(11)

Ordering the input patterns according to their Hamming weight, i.e., the
number of ones, is also valid. The symbolic variant of the transformation based
algorithm makes use of this property. For n = 4, the order is

0000,

0001,
0010,
0100,
1000,

0011,
0101,
0110,
1001,
1010,
1100,

0111,
1011,
1101,
1110

1111 (12)



where the order of patterns within a set of patterns of the same Hamming weight
can be arbitrary. The key difference in the symbolic variant is that it iterates
through these sets (of which there are n + 1, i.e., linearly many) instead of iter-
ating through all patterns individually (of which there are 2n, i.e., exponentially
many). For each set the algorithm extracts assignments (in a possibly arbitrary
order) that are not matched yet and disregards those that are already matched.
The constraint (4) ensures that the inserted gates do not affect any other as-
signment within the current set or previously considered sets.

For an n-variable reversible function f , we can symbolically represent all
input patterns x with Hamming weight k such that f(x) 6= x with the expression

F (x, y) ∧ S=k(x) ∧D(x, y) (13)

where F is the characteristic function of f , x = x1, . . . , xn, and y = y1, . . . , yn.
The symmetric function

S=k(x) = [x1 + · · ·+ xn = k] (14)

restricts the assignments to those that have input patterns of Hamming weight
k. The function

D(x, y) =

n∨
i=1

xi ⊕ yi (15)

further restricts the assignments such that the input patterns and output pat-
terns differ in at least one bit. These are all requirements to describe the symbolic
transformation based algorithm.

Algorithm S. (Symbolic transformation based synthesis). Given the charac-
teristic function F to an n-variable reversible function f , this algorithm finds a
circuit C that realizes f . In this algorithm, f and F always refer to the same
function in different representations.
S1. [Initialize.] Let C be empty and set k ← 0.
S2. [Terminate?] If k = n + 1, terminate.
S3. [Increment k.] If F ∧ S=k ∧D = ⊥, set k ← k + 1 and go to step 2.
S4. [Extract assignment and prepend gates.] Extract x 7→ y by picking any

minterm from F ∧ S=k ∧D and compute X0, X1, Y0, and Y1. Set

f ← f ◦ ©
i∈X1∩Y0

T(Y1, i) ◦ ©
i∈X0∩Y1

T(X1, i) (16)

and prepend the gates in reverse order to C. Return to step 3.
The linear runtime complexity is readily verified by inspecting step 2. The pos-
sible exponential complexity comes with step 4 as it is executed

(
n
k

)
times in the

worst case for each k ∈ {0, . . . , n} and therefore
∑n

i=0

(
n
k

)
= 2n times in total.

In the following, two implementations of Algorithm S are described. The first
uses BDDs while the second uses SAT. There are two parts in the algorithm that
require individual attention depending on the underlying technique: (i) solving
F ∧ S=k ∧D in step 3, extracting a solution in step 4 in case of the expression
being satisfiable, and (ii) updating F in step 4 according to (16).
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Fig. 4. Runtime behavior of (a) the BDD based and (b) the SAT based approach. The
x-axis shows the number of assignments, the left y-axis (marks) shows the runtime to
solve each assignment in seconds, the right y-axis (line) shows the size of the BDD
(nodes) or SAT instance (clauses)



5.1 BDD based implementation

Solving F ∧ S=k ∧D is done in a straightforward way by checking whether its
BDD is not equal to ⊥ . If that is the case, a satisfying solution can be extracted
by picking any path from the start vertex to > . Every such path visits all
variables and therefore represents a minterm. This is true because each path in
F already represents a minterm and S=k and D only restrict F further.

The BDD of F is updated by composing it with a BDD that represents the
characteristic function of a gate from the right. In order to execute fewer BDD
operations we make use of the fact that the gates in (16) can be expressed as
two multiple-target gates as described in (7). The characteristic function of a
multiple-target gate T(C, T ) is

G =
∧
i∈T

(
ȳi ⊕ xi ⊕

∧
j∈C xj

)
∧
∧
i∈T

(ȳi ⊕ xi) (17)

where T = {1, . . . , n} \ T . The gate can then be multiplied to F by computing
F ← ∃z (Fy→z ∧Gx→z) as described in (10).

5.2 SAT based implementation

For the SAT based implementation a satisfiability check is performed on the
formula F ∧ S=k ∧D. For this purpose, the formula needs to be represented in
conjunctive normal form. The characteristic function F is initially represented
as a BDD as in the BDD based implementation. Each node xi with children
h and l represents the function fv = xi ?h : l and is translated to

(x̄i ∨ h̄ ∨ fv)(x̄i ∨ h ∨ f̄v)(xi ∨ l̄ ∨ fv)(xi ∨ l ∨ f̄v). (18)

Similar clauses are added for each node yi . To enforce only valid input/output
assignments the variable representing the start vertex fv0

is added as a unit
clause.4 The subexpression S=k is called a cardinality constraint and several ways
to encode such constraints as clauses have been proposed. One such encoding
has been proposed in [11], which is also used in this implementation. Finally, the
formula D can be translated using the Tseytin encoding for representing gates
as clauses. Some of the clauses can be saved by making use of blocked clause
elimination [10, 8].

The tricky part in Algorithm S is updating F in step 4. As the aim is to
avoid BDD operations, we cannot just compute a new F by multiplying it with
the gates that are computed from the extracted assignment. Instead, we extend
the SAT formula by further constraints that represent the gates, and—since
gates update the output patterns of f—compute new outputs yi. Let T(C, T )

4 We also tried to write F to an AIG, perform circuit optimization, and obtain the CNF
from the optimized AIG, however, no improvement in runtime could be observed,
although the number of clauses can be decreased this way.



be a multiple-target gate that is added in step 4. For each i ∈ T we add a new
variable y′i and clauses for the constraint

G =
∧
i∈T

(
ȳ′i ⊕ yi ⊕

∧
j∈C yj

)
(19)

using the Tseytin encoding. In this manner all created gates can be encoded
and are added to the subsequent SAT calls, i.e., one updates F by setting F ←
F ∧G1 ∧G2 where G1 and G2 are the two encoded multiple-target gates added
in step 4. It is important to take care of the updated output variables which
occur in D, see (15), and each G, see (19). For this purpose, we first introduce a
set of variables ỹ1, . . . , ỹn initially set to ỹi ← yi for i ≤ 1 ≤ n. Then, we replace
yi by ỹi and yj by ỹj in equations (15) and (19). Finally, we update ỹi ← y′i for
each i ∈ T in each added multiple-target gate T(C, T ).

In order to speed up the solving process, we have implemented the SAT
based approach in an incremental manner. Constraints for S=k and D are added
using activation literals to the solver whenever updated versions are required
and enforced by assuming the respective activation literals in the SAT calls (see,
e.g., [5]).

5.3 Runtime behavior

A thorough experimental evaluation is given in the next section. In order to
understand the differences of the BDD based and the incremental SAT based
implementations of the transformation based synthesis approaches better, this
section presents the results of a simple runtime evaluation experiment.

For each assignment, we recorded the runtime it took to obtain and apply the
assignment (i.e., performing steps 3 and 4 in Algorithm S) as well as the size of
F at that moment. In the case of the BDD implementation, the size of F is the
number of nodes in the BDD, and in the case of the SAT implementation, the size
of F is the number of clauses in the SAT instance. Four selected benchmarks,
namely dk27, alu3, x2, and dk17 serve as representatives. Other benchmarks
show similar effects.

The results of the experimental evaluation are provided in the plots in Fig. 4.
The x-axis shows the number of adjusted assignments, i.e., how often step 4 has
been applied, the marks (left y-axis) show the required runtime in seconds to
obtain and apply each assignment and the solid line (right y-axis) shows the
current size of F . The four plots on the left hand side show the results for
the BDD based implementation. It can be seen that the runtime to obtain and
adjust an assignment correlates with the size of F . Also, the size of F is initially
small, increases very quickly and then decreases towards the size of the identity
function. All considered benchmark functions show this same effect; only four
of them are depicted here as representatives. The effect may be explainable
as follows: It is well-known that BDDs have an exponential size in the average
case [19] when considering random Boolean functions, but often show reasonable
space requirements for the very small subset of “nonrandom functions” that are



often considered in realistic applications. The characteristic function that is input
to Algorithm S is not random, and neither is the identity characteristic function
which is obtained after the last step. However, applying the Toffoli gates in the
course of the algorithm can depart this nonrandom space.

A completely different behavior is observed for the SAT based implementa-
tion, shown in the plots on the right hand side. The size of F increases linearly
due to the addition of clauses for S=k, D, and the gates. The runtime does not
correlate with the size, although larger runtimes are only observed once the SAT
instance has many clauses—yet many assignments can be obtained and adjusted
in a very short time even when the number of clauses is large.

This experiment demonstrates that the SAT based approach in general is
advantageous compared to the BDD based approach: i) the size of F cannot
explode, since it increases linearly, and ii) the runtimes are not overly affected
by the size of F . An improved encoding of the SAT instance therefore has a
significant effect on the overall solution time. Also note that the size of F , both
for BDDs and SAT, does not impact the size of the resulting reversible circuit,
but only the number of assignments that need to be adjusted.

6 Experimental evaluation

We have implemented both symbolic transformation based synthesis approaches
in C++ on top of RevKit [13] in the command ‘tbs’.5 We have compared the ap-
proach to the state-of-the-art symbolic ancilla-free synthesis approach presented
in [14] that is based on functional decomposition (DBS). It was shown that the
DBS approach is faster than the approach presented in [15]. Benchmarks were
taken from www.revlib.org as PLA files and optimally embedded using the ap-
proach presented in [16] which returns a BDD of the characteristic function. The
experimental results are shown in Table 1. Besides the benchmark function, their
number of inputs and outputs are listed together with the minimum number of
lines after optimum embedding. The columns list the number of gates and the
runtime in seconds (with a timeout of one hour, referred to as TO) required for
each synthesis approach. For both transformation based synthesis approaches,
also the number of adjusted assignments, i.e., how often step 4 is executed in
Algorithm S, is reported.

Our main concern in this work is scalability and the possibility to obtain a
circuit with a minimum number of lines. Therefore, we compare the approaches
with respect to runtime. Other metrics such as gate count and quantum cost
can be improved using post optimization approaches. The SAT based variant
outperforms the BDD based approach, in particular for alu1, apex4, and ex5p.
Both approaches outperform the decomposition based synthesis approach; that
algorithm did not terminate for the majority of the benchmarks within the one
hour timeout. In very few cases (see parity and urf6 ) the DBS approach was
able to find a solution in which both TBS approaches did not find a solution.
5 The code can be downloaded at https://www.github.com/msoeken/cirkit. Check the
file addons/cirkit-addon-reversible/demo.cs for a usage demonstration.



T
ab

le
1.

E
xp

er
im

en
ta
lR

es
ul
ts

D
B

S
[1

4]
T

B
S

(B
D

D
)

T
B

S
(S

A
T

)

Fu
nc
ti
on

I
/

O
lin

es
ga
te
s

ti
m
e

as
si
gn

m
en
ts

ga
te
s

ti
m
e

as
si
gn

m
en
ts

ga
te
s

ti
m
e

ad
d6

12
/
7

13
10
98
9

99
7.
58

40
88

26
47
9

86
7.
21

40
53

26
73
1

83
7.
76

al
u1

12
/

8
18

T
O

40
12

35
65
5

24
88
.8
0

40
36

35
66
4

41
4.
12

al
u2

10
/

6
14

T
O

10
21

66
91

54
.2
1

10
06

64
71

19
.1
5

al
u3

10
/

8
14

T
O

10
04

67
85

65
.3
8

95
9

62
97

19
.0
5

ap
ex
4

9
/

19
26

T
O

45
2

39
46

80
.3
8

45
2

40
07

6.
76

ap
la

10
/

12
22

T
O

10
21

10
35
1

34
9.
09

10
22

10
23
4

28
.9
0

cm
15
2a

11
/
1

11
26
60

21
.3
5

20
30

10
64
4

13
8.
68

20
19

10
43
4

84
.6
8

cm
85
a

11
/

3
13

94
89

83
6.
93

18
90

12
32
4

18
6.
89

17
06

11
30
5

62
.3
7

dk
17

10
/

11
19

T
O

10
23

91
69

18
0.
13

10
24

89
55

22
.6
4

dk
27

9
/

9
15

T
O

44
9

27
30

10
.5
2

38
3

23
91

1.
41

ex
10
10

10
/

10
18

T
O

10
23

88
74

16
1.
13

10
24

87
19

21
.0
2

ex
5p

8
/
63

68
T
O

25
3

30
67

30
1.
32

25
1

29
43

4.
83

pa
ri
ty

16
/

1
16

44
31
.3
1

T
O

T
O

sy
m
10

10
/

1
11

24
09

36
.6
0

10
17

54
45

27
.0
7

10
11

55
74

16
.2
4

ur
f4

11
/

11
11

26
41

25
.4
8

20
27

10
65
1

13
2.
63

20
29

10
57
4

90
.8
8

ur
f6

15
/

15
15

21
64

7.
00

T
O

T
O

x2
10

/
7

16
T
O

90
5

70
12

86
.2
6

91
8

69
46

14
.8
5



When both DBS and TBS find a circuit, DBS shows a comparable perfor-
mance and is sometimes even faster. Particularly, the reported gate costs for the
circuits obtained by DBS is significantly lower compared to the circuits obtained
from TBS. This effect is also observed when comparing the truth-table based im-
plementations of these two algorithms. One reason for this improvement may be
the ability of DBS to support mixed-polarity control lines, which cannot easily
be utilized in transformation-based synthesis.

We have not compared our approach with heuristic hierarchical approaches
that allow the use of additional lines. Such approaches are typically faster and
can be applied to larger functions—however, with the disadvantage of adding a
possibly large number of additional lines. For some functions, particularly arith-
metic components, hand-crafted synthesis results exist that lead to significantly
better results (see, e.g., [17])—however, we intend to have a general purpose
algorithm that is not tailored to a specific function type.

7 Conclusions

In this paper we have presented a symbolic variant of the transformation-based
synthesis approach for reversible logic. The approach allows the realization of
large reversible functions without additional ancilla lines. It exploits a property
considering the ordering in which assignments need to be considered for adjust-
ment. Both a BDD and a SAT based implementation of the symbolic synthesis
algorithm have been presented. So far, SAT has not been used for the synthesis of
large reversible functions. An experimental evaluation shows that it significantly
outperforms the state-of-the-art ancilla-free symbolic synthesis approaches wṙṫ.
runtime. For some benchmarks, ancilla-free realizations have were found for the
first time. In future work, we want to integrate further optimizations that have
been proposed for the truth-table variant of the algorithm, such as bidirectional
adjustment and the consideration of a larger gate library [12].
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